The first in vivo multiparametric comparison of different radiation exposure biomarkers in human blood
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
PubMed
29474504
PubMed Central
PMC5825084
DOI
10.1371/journal.pone.0193412
PII: PONE-D-17-39917
Knihovny.cz E-zdroje
- MeSH
- biologické markery krev MeSH
- celková dávka radioterapie MeSH
- chromozomální aberace MeSH
- genetická transkripce účinky záření MeSH
- leukocyty patologie účinky záření MeSH
- lidé středního věku MeSH
- lidé MeSH
- mikrojádra chromozomálně defektní MeSH
- mitochondriální DNA účinky záření MeSH
- nádory endometria krev radioterapie MeSH
- nádory hlavy a krku krev radioterapie MeSH
- radiační expozice * MeSH
- radiometrie metody MeSH
- radioterapie škodlivé účinky MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- vztah dávky záření a odpovědi MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- biologické markery MeSH
- mitochondriální DNA MeSH
The increasing risk of acute large-scale radiological/nuclear exposures of population underlines the necessity of developing new, rapid and high throughput biodosimetric tools for estimation of received dose and initial triage. We aimed to compare the induction and persistence of different radiation exposure biomarkers in human peripheral blood in vivo. Blood samples of patients with indicated radiotherapy (RT) undergoing partial body irradiation (PBI) were obtained soon before the first treatment and then after 24 h, 48 h, and 5 weeks; i.e. after 1, 2, and 25 fractionated RT procedures. We collected circulating peripheral blood from ten patients with tumor of endometrium (1.8 Gy per fraction) and eight patients with tumor of head and neck (2.0-2.121 Gy per fraction). Incidence of dicentrics and micronuclei was monitored as well as determination of apoptosis and the transcription level of selected radiation-responsive genes. Since mitochondrial DNA (mtDNA) has been reported to be a potential indicator of radiation damage in vitro, we also assessed mtDNA content and deletions by novel multiplex quantitative PCR. Cytogenetic data confirmed linear dose-dependent increase in dicentrics (p < 0.01) and micronuclei (p < 0.001) in peripheral blood mononuclear cells after PBI. Significant up-regulations of five previously identified transcriptional biomarkers of radiation exposure (PHPT1, CCNG1, CDKN1A, GADD45, and SESN1) were also found (p < 0.01). No statistical change in mtDNA deletion levels was detected; however, our data indicate that the total mtDNA content decreased with increasing number of RT fractions. Interestingly, the number of micronuclei appears to correlate with late radiation toxicity (r2 = 0.9025) in endometrial patients suggesting the possibility of predicting the severity of RT-related toxicity by monitoring this parameter. Overall, these data represent, to our best knowledge, the first study providing a multiparametric comparison of radiation biomarkers in human blood in vivo, which have potential for improving biological dosimetry.
Biomedical Research Centre University Hospital Hradec Králové Czech Republic
Bundeswehr Institute of Radiobiology Munich Germany
Institute for Global Health Barcelona Spain
Institute for Hematology and Blood Transfusion Hospital Na Bulovce Prague Czech Republic
Zobrazit více v PubMed
Blakely WF, Salter CA, Prasanna PGS. Early-response biological dosimetry—recommended countermeasure enhancements for mass-casualty radiological incidents and terrorism. Health Phys. 2005;89: 494–504. PubMed
Chaudhry MA. Biomarkers for human radiation exposure. J Biomed Sci. 2008;15: 557–563. doi: 10.1007/s11373-008-9253-z PubMed DOI
Rothkamm K, Beinke C, Romm H, Badie C, Balagurunathan Y, Barnard S, et al. Comparison of established and emerging biodosimetry assays. Radiat Res. 2013;180: 111–119. doi: 10.1667/RR3231.1 PubMed DOI PMC
Kabacik S, Mackay A, Tamber N, Manning G, Finnon P, Paillier F, et al. Gene expression following ionising radiation: identification of biomarkers for dose estimation and prediction of individual response. Int J Radiat Biol. 2011;87: 115–129. doi: 10.3109/09553002.2010.519424 PubMed DOI
Manning G, Kabacik S, Finnon P, Bouffler S, Badie C. High and low dose responses of transcriptional biomarkers in ex vivo X-irradiated human blood. Int J Radiat Biol. 2013;89: 512–522. doi: 10.3109/09553002.2013.769694 PubMed DOI
Badie C, Kabacik S, Balagurunathan Y, Bernard N, Brengues M, Faggioni G, et al. Laboratory intercomparison of gene expression assays. Radiat Res. 2013;180: 138–148. doi: 10.1667/RR3236.1 PubMed DOI PMC
Abend M, Badie C, Quintens R, Kriehuber R, Manning G, Macaeva E, et al. Examining Radiation-Induced In Vivo and In Vitro Gene Expression Changes of the Peripheral Blood in Different Laboratories for Biodosimetry Purposes: First RENEB Gene Expression Study. Radiat Res. 2016;185: 109–123. doi: 10.1667/RR14221.1 PubMed DOI
Manning G, Macaeva E, Majewski M, Kriehuber R, Brzóska K, Abend M, et al. Comparable dose estimates of blinded whole blood samples are obtained independently of culture conditions and analytical approaches. Second RENEB gene expression study. Int J Radiat Biol. 2017;93: 87–98. doi: 10.1080/09553002.2016.1227105 PubMed DOI
Yakes FM, Van Houten B. Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc Natl Acad Sci U S A. 1997;94: 514–519. PubMed PMC
Prithivirajsingh S, Story MD, Bergh SA, Geara FB, Ang KK, Ismail SM, et al. Accumulation of the common mitochondrial DNA deletion induced by ionizing radiation. FEBS Lett. 2004;571: 227–232. doi: 10.1016/j.febslet.2004.06.078 PubMed DOI
Guo Y, Cai Q, Samuels DC, Ye F, Long J, Li C-I, et al. The use of next generation sequencing technology to study the effect of radiation therapy on mitochondrial DNA mutation. Mutat Res. 2012;744: 154–160. doi: 10.1016/j.mrgentox.2012.02.006 PubMed DOI PMC
Wen Q, Hu Y, Ji F, Qian G. Mitochondrial DNA alterations of peripheral lymphocytes in acute lymphoblastic leukemia patients undergoing total body irradiation therapy. Radiat Oncol Lond Engl. 2011;6: 133 doi: 10.1186/1748-717X-6-133 PubMed DOI PMC
Phillips NR, Sprouse ML, Roby RK. Simultaneous quantification of mitochondrial DNA copy number and deletion ratio: a multiplex real-time PCR assay. Sci Rep. 2014;4: 3887 doi: 10.1038/srep03887 PubMed DOI PMC
Badie C, Hess J, Zitzelsberger H, Kulka U. Established and Emerging Biomarkers of Radiation Exposure. Clin Oncol. 2016;28: 619–621. doi: 10.1016/j.clon.2016.06.002 PubMed DOI
RTOG website [Internet]. https://www.rtog.org/ResearchAssociates/AdverseEventReporting.aspx
Cerná M, Spĕvácková V, Batáriová A, Smíd J, Cejchanová M, Ocadlíková D, et al. Human biomonitoring system in the Czech Republic. Int J Hyg Environ Health. 2007;210: 495–499. doi: 10.1016/j.ijheh.2007.01.005 PubMed DOI
Kmochova A, Tichy A, Zarybnicka L, Sinkorova Z, Vavrova J, Rehacek V, et al. Modulation of ionizing radiation-induced effects by NU7441, KU55933 and VE821 in peripheral blood lymphocytes. J Appl Biomed. 2016;14: 19–24. doi: 10.1016/j.jab.2015.07.001 DOI
Fenech M. Cytokinesis-block micronucleus assay evolves into a “cytome” assay of chromosomal instability, mitotic dysfunction and cell death. Mutat Res Mol Mech Mutagen. 2006;600: 58–66. doi: 10.1016/j.mrfmmm.2006.05.028 PubMed DOI
Manning G, Tichý A, Sirák I, Badie C. Radiotherapy-Associated Long-term Modification of Expression of the Inflammatory Biomarker Genes ARG1, BCL2L1, and MYC. Front Immunol. 2017;8: 412 doi: 10.3389/fimmu.2017.00412 PubMed DOI PMC
Paul S, Amundson SA. Development of gene expression signatures for practical radiation biodosimetry. Int J Radiat Oncol Biol Phys. 2008;71: 1236–1244. doi: 10.1016/j.ijrobp.2008.03.043 PubMed DOI PMC
Port M, Pieper B, Knie T, Dörr H, Ganser A, Graessle D, et al. Rapid Prediction of Hematologic Acute Radiation Syndrome in Radiation Injury Patients Using Peripheral Blood Cell Counts. Radiat Res. 2017;188: 156–168. doi: 10.1667/RR14612.1 PubMed DOI
Vinnikov VA. Optimizing the Microscopy Time Schedule for Chromosomal Dosimetry of High-dose and Partial-body Irradiations. Genome Integr. 2017;8 doi: 10.4103/2041-9414.198908 PubMed DOI PMC
Fernandes TS, Loyd DC, Amaral A. Biodosimetry for dose assessment of partial-body exposure: a methodological improvement. Braz Arch Biol Technol. 2008;51: 97–102. doi: 10.1590/S1516-89132008000700016 DOI
Matsuoka A, Yamada K, Hayashi M, Sofuni T. Chromosomal aberrations detected by chromosome painting in lymphocytes from cancer patients given high doses of therapeutic X-rays. J Radiat Res (Tokyo). 1996;37: 257–265. PubMed
Carbonell F, Ganser A, Fliedner TM, Arnold R, Kubanek B. The fate of cells with chromosome aberrations after total-body irradiation and bone marrow transplantation. Radiat Res. 1983;93: 453–460. PubMed
Sreedevi B, Rao BS, Nagaraj H, Pal NK. Chromosome aberration analysis in radiotherapy patients and simulated partial body exposures: biological dosimetry for non-uniform exposures. Radiat Prot Dosimetry. 2001;94: 317–322. PubMed
Gershkevitsh E, Hildebrandt G, Wolf U, Kamprad F, Realo E, Trott K-R. Chromosomal aberration in peripheral lymphocytes and doses to the active bone marrow in radiotherapy of prostate cancer. Strahlenther Onkol Organ Dtsch Rontgengesellschaft Al. 2002;178: 36–42. PubMed
Roch-Lefèvre S, Pouzoulet F, Giraudet AL, Voisin P, Vaurijoux A, Gruel G, et al. Cytogenetic assessment of heterogeneous radiation doses in cancer patients treated with fractionated radiotherapy. Br J Radiol. 2010;83: 759–766. doi: 10.1259/bjr/21022597 PubMed DOI PMC
Silva-Barbosa I, Pereira-Magnata S, Amaral A, Sotero G, Melo HC. Dose assessment by quantification of chromosome aberrations and micronuclei in peripheral blood lymphocytes from patients exposed to gamma radiation. Genet Mol Biol. 2005;28: 452–457. doi: 10.1590/S1415-47572005000300021 DOI
Lue SW, Repin M, Mahnke R, Brenner DJ. Development of a High-Throughput and Miniaturized Cytokinesis-Block Micronucleus Assay for Use as a Biological Dosimetry Population Triage Tool. Radiat Res. 2015;184: 134–142. PubMed PMC
Bertucci A, Smilenov LB, Turner HC, Amundson SA, Brenner DJ. In vitro RABiT measurement of dose rate effects on radiation induction of micronuclei in human peripheral blood lymphocytes. Radiat Environ Biophys. 2016;55: 53–59. doi: 10.1007/s00411-015-0628-z PubMed DOI PMC
Repin M, Pampou S, Karan C, Brenner DJ, Garty G. RABiT-II: Implementation of a High-Throughput Micronucleus Biodosimetry Assay on Commercial Biotech Robotic Systems. Radiat Res. 2017;187: 492–498. doi: 10.1667/RR011CC.1 PubMed DOI PMC
Scott RS, McMahon EJ, Pop SM, Reap EA, Caricchio R, Cohen PL, et al. Phagocytosis and clearance of apoptotic cells is mediated by MER. Nature. 2001;411: 207–211. doi: 10.1038/35075603 PubMed DOI
Wen Q, Hu Y, Zhang X, Kong P, Chen X. Gene expression signature of lymphocyte in acute lymphoblastic leukemia patients immediately after total body irradiation. Leuk Res. 2011;35: 1044–1051. doi: 10.1016/j.leukres.2010.12.026 PubMed DOI
Paul S, Barker CA, Turner HC, McLane A, Wolden SL, Amundson SA. Prediction of in vivo radiation dose status in radiotherapy patients using ex vivo and in vivo gene expression signatures. Radiat Res. 2011;175: 257–265. doi: 10.1667/RR2420.1 PubMed DOI PMC
Brzóska K, Kruszewski M. Toward the development of transcriptional biodosimetry for the identification of irradiated individuals and assessment of absorbed radiation dose. Radiat Environ Biophys. 2015;54: 353–363. doi: 10.1007/s00411-015-0603-8 PubMed DOI PMC
Badie C, Dziwura S, Raffy C, Tsigani T, Alsbeih G, Moody J, et al. Aberrant CDKN1A transcriptional response associates with abnormal sensitivity to radiation treatment. Br J Cancer. 2008;98: 1845–1851. doi: 10.1038/sj.bjc.6604381 PubMed DOI PMC
Martin DR, Dutta P, Mahajan S, Varma S, Stevens SM. Structural and activity characterization of human PHPT1 after oxidative modification. Sci Rep. 2016;6: 23658 doi: 10.1038/srep23658 PubMed DOI PMC
O’Brien G, Cruz-Garcia L, Majewski M, Grepl J, Abend M, Port M, et al. FDXR is a biomarker of radiation exposure in vivo. Sci Rep. 2018;8: 684 doi: 10.1038/s41598-017-19043-w PubMed DOI PMC
Zeegers D, Venkatesan S, Koh SW, Low GKM, Srivastava P, Sundaram N, et al. Biomarkers of Ionizing Radiation Exposure: A Multiparametric Approach. Genome Integr. 2017;8: 6 doi: 10.4103/2041-9414.198911 PubMed DOI PMC
In Vivo Validation of Alternative FDXR Transcripts in Human Blood in Response to Ionizing Radiation