Recent Advances in Metal Oxide and Phosphate Nanomaterials Radiolabeling with Medicinal Nuclides
Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection
Document type Journal Article, Review
PubMed
39346817
PubMed Central
PMC11425600
DOI
10.1021/acsomega.4c04145
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
- Review MeSH
The utilization of nanomaterials in biomedical applications has surged in recent years; yet, the transition from research to practical implementation remains a great challenge. However, a promising area of research has emerged with the integration of nanomaterials with diagnostic and therapeutic radionuclides. In this Review, we elucidate the motivations behind selecting metal oxide- and phosphate-based nanomaterials in conjunction with these radionuclides, while addressing its issues and limitations. Various metal oxide- and phosphate-based nanoparticles, exhibiting low toxicity and high tolerability, have been proposed for diverse biomedical applications, ranging from bone substitutes to drug delivery systems and controlled release vectors for pharmaceuticals, including radionuclides for nuclear medicine imaging and therapy. Moreover, the potential synergistic effects of multimodal combinational therapies, integrating chemotherapeutics, immunomodulators, or hyperthermia, underscore the versatility of these nanoconstructs. Our comprehensive exploration includes the underlying principles of radiolabeling strategies, the pivotal attributes of nanomaterial platforms, and their applications. Through this perspective, we present the potential of nanotechnology-enabled nuclear medicine. Furthermore, we discuss the potential systemic and local applications of these nanoconstructs, considering their in vitro and in vivo characteristics, as well as their physicochemical properties.
See more in PubMed
Jia Y.; Jiang Y.; He Y.; Zhang W.; Zou J.; Magar K. T.; Boucetta H.; Teng C.; He W. Approved Nanomedicine against Diseases. Pharmaceutics 2023, 15 (3), 774.10.3390/pharmaceutics15030774. PubMed DOI PMC
Thapa R. K.; Kim J. O. Nanomedicine-Based Commercial Formulations: Current Developments and Future Prospects. J. Pharm. Investig 2023, 53 (1), 19–33. 10.1007/s40005-022-00607-6. PubMed DOI PMC
Majkowska-Pilip A.; Gawęda W.; Żelechowska-Matysiak K.; Wawrowicz K.; Bilewicz A. Nanoparticles in Targeted Alpha Therapy. Nanomaterials 2020, 10 (7), 1366.10.3390/nano10071366. PubMed DOI PMC
Reilly R. M.; Georgiou C. J.; Brown M. K.; Cai Z. Radiation Nanomedicines for Cancer Treatment: A Scientific Journey and View of the Landscape. EJNMMI Radiopharm Chem. 2024, 9 (1), 37.10.1186/s41181-024-00266-y. PubMed DOI PMC
Khursheed R.; Dua K.; Vishwas S.; Gulati M.; Jha N. K.; Aldhafeeri G. M.; Alanazi F. G.; Goh B. H.; Gupta G.; Paudel K. R.; Hansbro P. M.; Chellappan D. K.; Singh S. K. Biomedical Applications of Metallic Nanoparticles in Cancer: Current Status and Future Perspectives. Biomedicine & Pharmacotherapy 2022, 150, 112951.10.1016/j.biopha.2022.112951. PubMed DOI
Sokolova V.; Epple M. Biological and Medical Applications of Calcium Phosphate Nanoparticles. Chem.—Eur. J. 2021, 27 (27), 7471–7488. 10.1002/chem.202005257. PubMed DOI PMC
Mitchell M. J.; Billingsley M. M.; Haley R. M.; Wechsler M. E.; Peppas N. A.; Langer R. Engineering Precision Nanoparticles for Drug Delivery. Nat. Rev. Drug Discov 2021, 20 (2), 101–124. 10.1038/s41573-020-0090-8. PubMed DOI PMC
Higino T.; França R. Drug-Delivery Nanoparticles for Bone-Tissue and Dental Applications. Biomed Phys. Eng. Express 2022, 8 (4), 042001.10.1088/2057-1976/ac682c. PubMed DOI
Goel M.; Mackeyev Y.; Krishnan S. Radiolabeled Nanomaterial for Cancer Diagnostics and Therapeutics: Principles and Concepts. Cancer Nanotechnol 2023, 14 (1), 15.10.1186/s12645-023-00165-y. PubMed DOI PMC
Mortezaee K.; Narmani A.; Salehi M.; Bagheri H.; Farhood B.; Haghi-Aminjan H.; Najafi M. Synergic Effects of Nanoparticles-Mediated Hyperthermia in Radiotherapy/Chemotherapy of Cancer. Life Sci. 2021, 269, 119020.10.1016/j.lfs.2021.119020. PubMed DOI
Riley R. S.; June C. H.; Langer R.; Mitchell M. J. Delivery Technologies for Cancer Immunotherapy. Nat. Rev. Drug Discov 2019, 18 (3), 175–196. 10.1038/s41573-018-0006-z. PubMed DOI PMC
Siddique S.; Chow J. C. L. Recent Advances in Functionalized Nanoparticles in Cancer Theranostics. Nanomaterials 2022, 12 (16), 2826.10.3390/nano12162826. PubMed DOI PMC
Choi J.; Kim G.; Cho S. B.; Im H.-J. Radiosensitizing High-Z Metal Nanoparticles for Enhanced Radiotherapy of Glioblastoma Multiforme. J. Nanobiotechnology 2020, 18 (1), 122.10.1186/s12951-020-00684-5. PubMed DOI PMC
Długosz O.; Matyjasik W.; Hodacka G.; Szostak K.; Matysik J.; Krawczyk P.; Piasek A.; Pulit-Prociak J.; Banach M. Inorganic Nanomaterials Used in Anti-Cancer Therapies:Further Developments. Nanomaterials 2023, 13 (6), 1130.10.3390/nano13061130. PubMed DOI PMC
Halder J.; Pradhan D.; Biswasroy P.; Rai V. K.; Kar B.; Ghosh G.; Rath G. Trends in Iron Oxide Nanoparticles: A Nano-Platform for Theranostic Application in Breast Cancer. J. Drug Target 2022, 30 (10), 1055–1075. 10.1080/1061186X.2022.2095389. PubMed DOI
Zhao S.; Yu X.; Qian Y.; Chen W.; Shen J. Multifunctional Magnetic Iron Oxide Nanoparticles: An Advanced Platform for Cancer Theranostics. Theranostics 2020, 10, 6278–6309. 10.7150/thno.42564. PubMed DOI PMC
Ziental D.; Czarczynska-Goslinska B.; Mlynarczyk D. T.; Glowacka-Sobotta A.; Stanisz B.; Goslinski T.; Sobotta L. Titanium Dioxide Nanoparticles: Prospects and Applications in Medicine. Nanomaterials 2020, 10 (2), 387.10.3390/nano10020387. PubMed DOI PMC
Noman M. T.; Ashraf M. A.; Ali A. Synthesis and Applications of Nano-TiO2: A Review. Environmental Science and Pollution Research 2019, 26 (4), 3262–3291. 10.1007/s11356-018-3884-z. PubMed DOI
Kawassaki R. K.; Romano M.; Dietrich N.; Araki K. Titanium and Iron Oxide Nanoparticles for Cancer Therapy: Surface Chemistry and Biological Implications. Frontiers in Nanotechnology 2021, 3, 735434.10.3389/fnano.2021.735434. DOI
Falk G. S.; Borlaf M.; López-Muñoz M. J.; Fariñas J. C.; Rodrigues Neto J. B.; Moreno R. Microwave-Assisted Synthesis of TiO2 Nanoparticles: Photocatalytic Activity of Powders and Thin Films. J. Nanopart. Res. 2018, 20 (2), 23.10.1007/s11051-018-4140-7. DOI
Raja G.; Cao S.; Kim D.-H.; Kim T.-J. Mechanoregulation of Titanium Dioxide Nanoparticles in Cancer Therapy. Materials Science and Engineering: C 2020, 107, 110303.10.1016/j.msec.2019.110303. PubMed DOI PMC
Tong R.; Lin H.; Chen Y.; An N.; Wang G.; Pan X.; Qu F. Near-Infrared Mediated Chemo/Photodynamic Synergistic Therapy with DOX-UCNPs@mSiO2/TiO2-TC Nanocomposite. Materials Science and Engineering C 2017, 78, 998–1005. 10.1016/j.msec.2017.04.112. PubMed DOI
Aula S.; Lakkireddy S.; Jamil K.; Kapley A.; Swamy A. V. N.; Lakkireddy H. R. Biophysical, Biopharmaceutical and Toxicological Significance of Biomedical Nanoparticles. RSC Adv. 2015, 5 (59), 47830–47859. 10.1039/C5RA05889A. DOI
Elgrabli D.; Beaudouin R.; Jbilou N.; Floriani M.; Pery A.; Rogerieux F.; Lacroix G. Biodistribution and Clearance of TiO2 Nanoparticles in Rats after Intravenous Injection. PLoS One 2015, 10 (4), e0124490.10.1371/journal.pone.0124490. PubMed DOI PMC
Kreyling W. G.; Holzwarth U.; Haberl N.; Kozempel J.; Hirn S.; Wenk A.; Schleh C.; Schaffler M.; Lipka J.; Semmler-Behnke M.; Gibson N. Quantitative Biokinetics of Titanium Dioxide Nanoparticles after Intravenous Injection in Rats: Part 1. Nanotoxicology 2017, 11 (4), 434–442. 10.1080/17435390.2017.1306892. PubMed DOI
Hildebrand H.; Schymura S.; Holzwarth U.; Gibson N.; Dalmiglio M.; Franke K. Strategies for Radiolabeling of Commercial TiO2 Nanopowder as a Tool for Sensitive Nanoparticle Detection in Complex Matrices. J. Nanopart. Res. 2015, 17 (6), 278.10.1007/s11051-015-3080-8. DOI
Holzwarth U.; Ponti J. 44Ti Diffusion Labelling of Commercially Available, Engineered TiO2 and SiO2 Nanoparticles. J. Nanopart. Res. 2020, 22 (9), 248.10.1007/s11051-020-04978-5. DOI
Suchánková P.; Kukleva E.; Nykl E.; Nykl P.; Sakmár M.; Vlk M.; Kozempel J. Hydroxyapatite and Titanium Dioxide Nanoparticles: Radiolabelling and in Vitro Stability of Prospective Theranostic Nanocarriers for 223Ra and 99mTc. Nanomaterials 2020, 10 (9), 1632.10.3390/nano10091632. PubMed DOI PMC
Suchánková P.; Kukleva E.; Nykl E.; Nykl P.; Sakmár M.; Vlk M.; Kozempel J. Hydroxyapatite and Titanium Dioxide Nanoparticles: Radiolabelling and in Vitro Stability of Prospective Theranostic Nanocarriers For 223 Ra And 99m Tc. Nanomaterials 2020, 10 (9), 1632.10.3390/nano10091632. PubMed DOI PMC
Kozempel J.; Sakmár M.; Janská T.; Vlk M. Study of 213Bi and 211Pb Recoils Release from 223Ra Labelled TiO2 Nanoparticles. Materials 2023, 16 (1), 343.10.3390/ma16010343. PubMed DOI PMC
Sakmár M.; Kozempel J.; Kučka J.; Janská T.; Štíbr M.; Vlk M.; Šefc L. Biodistribution Study of 211Pb Progeny Released from Intravenously Applied 223Ra Labelled TiO2 Nanoparticles in a Mouse Model. Nucl. Med. Biol. 2024, 130–131, 108890.10.1016/j.nucmedbio.2024.108890. PubMed DOI
Cędrowska E.; Pruszynski M.; Majkowska-Pilip A.; Męczyńska-Wielgosz S.; Bruchertseifer F.; Morgenstern A.; Bilewicz A. Functionalized TiO2 Nanoparticles Labelled with 225Ac for Targeted Alpha Radionuclide Therapy. J. Nanopart. Res. 2018, 20 (3), 83.10.1007/s11051-018-4181-y. PubMed DOI PMC
Karpov T. E.; Muslimov A. R.; Antuganov D. O.; Postovalova A. S.; Pavlov D. A.; Usov Y. V.; Shatik S. V.; Zyuzin M. V.; Timin A. S. Impact of Metallic Coating on the Retention of 225Ac and Its Daugthers within Core-Shell Nanocarriers. J. Colloid Interface Sci. 2022, 608, 2571–2583. 10.1016/j.jcis.2021.10.187. PubMed DOI
Cedrowska E.; Łyczko M.; Piotrowska A.; Bilewicz A.; Stolarz A.; Trzcińska A.; Szkliniarz K.; Wąs B. Silver Impregnated Nanoparticles of Titanium Dioxide as Carriers for 211At. Radiochimica Acta 2016, 104 (4), 267–275. 10.1515/ract-2014-2373. DOI
Choi P. S.; Lee J. Y.; Chae J. H.; Wadas T.; Cheng Z.; Hur M. G.; Park J. H. Theranostics through Utilizing Cherenkov Radiation of Radioisotope Zr-89 with a Nanocomposite Combination of TiO2 and MnO2. ACS Appl. Mater. Interfaces 2023, 15 (3), 3689–3698. 10.1021/acsami.2c09195. PubMed DOI
Kavadiya S.; Biswas P. Design of Cerenkov Radiation-Assisted Photoactivation of TiO2 Nanoparticles and Reactive Oxygen Species Generation for Cancer Treatment. J. Nucl. Med. 2019, 60 (5), 702.10.2967/jnumed.118.215608. PubMed DOI PMC
Dakroury G.; Abo-Zahra S. The Use of Titanium Oxide/Polyethylene Glycol Nanocomposite in Sorption of 134Cs and 60Co Radionuclides from Aqueous Solutions. J. Radioanal Nucl. Chem. 2020, 324, 1351.10.1007/s10967-020-07167-9. DOI
Attallah M. F.; Mohamed G. Y.; Breky M. M. E. Production and Subsequent Separation of 47Sc of Nuclear Medicine Applications Using Neutron-Induced Reactions on Different Natural Targets. J. Radioanal Nucl. Chem. 2022, 331 (4), 1723–1730. 10.1007/s10967-022-08232-1. DOI
Ocak M. Ge-68/Ga-68 Generators and Current Approach to Ga-68 Radiopharmaceuticals. Nuclear Medicine Seminars 2023, 9 (1), 31–41. 10.4274/nts.galenos.2023.0005. DOI
Rajan A.; Sharma M.; Sahu N. K. Assessing Magnetic and Inductive Thermal Properties of Various Surfactants Functionalised Fe3O4 Nanoparticles for Hyperthermia. Sci. Rep 2020, 10 (1), 15045.10.1038/s41598-020-71703-6. PubMed DOI PMC
Patil-Sen Y.; Torino E.; De Sarno F.; Ponsiglione A. M.; Chhabria V.; Ahmed W.; Mercer T. Biocompatible Superparamagnetic Core-Shell Nanoparticles for Potential Use in Hyperthermia-Enabled Drug Release and as an Enhanced Contrast Agent. Nanotechnology 2020, 31 (37), 375102.10.1088/1361-6528/ab91f6. PubMed DOI
Oberdick S. D.; Jordanova K. V.; Lundstrom J. T.; Parigi G.; Poorman M. E.; Zabow G.; Keenan K. E. Iron Oxide Nanoparticles as Positive T1 Contrast Agents for Low-Field Magnetic Resonance Imaging at 64 MT. Sci. Rep 2023, 13 (1), 11520.10.1038/s41598-023-38222-6. PubMed DOI PMC
Stanković A.; Mihailović J.; Mirković M.; Radović M.; Milanović Z.; Ognjanović M.; Janković D.; Antić B.; Mijović M.; Vranješ-Đurić S.; Prijović Ž. Aminosilanized Flower-Structured Superparamagnetic Iron Oxide Nanoparticles Coupled to 131I-Labeled CC49 Antibody for Combined Radionuclide and Hyperthermia Therapy of Cancer. Int. J. Pharm. 2020, 587, 119628.10.1016/j.ijpharm.2020.119628. PubMed DOI
Trujillo-Alonso V.; Pratt E. C.; Zong H.; Lara-Martinez A.; Kaittanis C.; Rabie M. O.; Longo V.; Becker M. W.; Roboz G. J.; Grimm J.; Guzman M. L. FDA-Approved Ferumoxytol Displays Anti-Leukaemia Efficacy against Cells with Low Ferroportin Levels. Nat. Nanotechnol 2019, 14 (6), 616–622. 10.1038/s41565-019-0406-1. PubMed DOI PMC
Schütz M. B.; Renner A. M.; Ilyas S.; Lê K.; Guliyev M.; Krapf P.; Neumaier B.; Mathur S. 18F-Labeled Magnetic Nanovectors for Bimodal Cellular Imaging. Biomater. Sci. 2021, 9 (13), 4717–4727. 10.1039/D1BM00616A. PubMed DOI
Liolios C.; Koutsikou T. S.; Salvanou E. A.; Kapiris F.; Machairas E.; Stampolaki M.; Kolocouris A.; Efthimiadou E.; Bouziotis P. Synthesis and in Vitro Proof-of-Concept Studies on Bispecific Iron Oxide Magnetic Nanoparticles Targeting PSMA and GRP Receptors for PET/MR Imaging of Prostate Cancer. Int. J. Pharm. 2022, 624, 122008.10.1016/j.ijpharm.2022.122008. PubMed DOI
Gholipour N.; Akhlaghi M.; Mokhtari Kheirabadi A.; Geramifar P.; Beiki D. Development of Ga-68 Labeled, Biotinylated Thiosemicarbazone Dextran-Coated Iron Oxide Nanoparticles as Multimodal PET/MRI Probe. Int. J. Biol. Macromol. 2020, 148, 932–941. 10.1016/j.ijbiomac.2020.01.208. PubMed DOI
Wang P.; Sun W.; Guo J.; Zhang K.; Liu Y.; Jiang Q.; Su D.; Sun X. One Pot Synthesis of Zwitteronic 99mTc Doped Ultrasmall Iron Oxide Nanoparticles for SPECT/T1-Weighted MR Dual-Modality Tumor Imaging. Colloids Surf. B Biointerfaces 2021, 197, 111403.10.1016/j.colsurfb.2020.111403. PubMed DOI
Salvanou E.-A.; Kolokithas-Ntoukas A.; Liolios C.; Xanthopoulos S.; Paravatou-Petsotas M.; Tsoukalas C.; Avgoustakis K.; Bouziotis P. Preliminary Evaluation of Iron Oxide Nanoparticles Radiolabeled with 68Ga and 177Lu as Potential Theranostic Agents. Nanomaterials 2022, 12 (14), 2490.10.3390/nano12142490. PubMed DOI PMC
Stanković D.; Radović M.; Stanković A.; Mirković M.; Vukadinović A.; Mijović M.; Milanović Z.; Ognjanović M.; Janković D.; Antić B.; Vranješ-Đurić S.; Savić M.; Prijović Ž. Synthesis, Characterization, and Therapeutic Efficacy of 177Lu-DMSA@SPIONs in Nanobrachytherapy of Solid Tumors. Pharmaceutics 2023, 15 (7), 1943.10.3390/pharmaceutics15071943. PubMed DOI PMC
Żuk M.; Gawęda W.; Majkowska-Pilip A.; Osial M.; Wolski M.; Bilewicz A.; Krysiński P. Hybrid Radiobioconjugated Superparamagnetic Iron Oxide-Based Nanoparticles for Multimodal Cancer Therapy. Pharmaceutics 2021, 13 (11), 1843.10.3390/pharmaceutics13111843. PubMed DOI PMC
Żuk M.; Podgórski R.; Ruszczyńska A.; Ciach T.; Majkowska-Pilip A.; Bilewicz A.; Krysiński P. Multifunctional Nanoparticles Based on Iron Oxide and Gold-198 Designed for Magnetic Hyperthermia and Radionuclide Therapy as a Potential Tool for Combined HER2-Positive Cancer Treatment. Pharmaceutics 2022, 14 (8), 1680.10.3390/pharmaceutics14081680. PubMed DOI PMC
Cędrowska E.; Pruszyński M.; Gawęda W.; Żuk M.; Krysiński P.; Bruchertseifer F.; Morgenstern A.; Karageorgou M.-A.; Bouziotis P.; Bilewicz A. Trastuzumab Conjugated Superparamagnetic Iron Oxide Nanoparticles Labeled with 225Ac as a Perspective Tool for Combined α-Radioimmunotherapy and Magnetic Hyperthermia of HER2-Positive Breast Cancer. Molecules 2020, 25 (5), 1025.10.3390/molecules25051025. PubMed DOI PMC
Gawęda W.; Pruszyński M.; Cędrowska E.; Rodak M.; Majkowska-Pilip A.; Gaweł D.; Bruchertseifer F.; Morgenstern A.; Bilewicz A. Trastuzumab Modified Barium Ferrite Magnetic Nanoparticles Labeled with Radium-223: A New Potential Radiobioconjugate for Alpha Radioimmunotherapy. Nanomaterials 2020, 10 (10), 2067.10.3390/nano10102067. PubMed DOI PMC
Gemini-Piperni S.; Ricci-Junior E.; İlem-Özdemir D.; da Silva Batista B.; Alencar L. M. R.; Rossi A. M.; Santos-Oliveira R. Nano-Hydroxyapatite Radiolabeled with Radium Dichloride [223Ra] RaCl2 for Bone Cancer Targeted Alpha Therapy: In Vitro Assay and Radiation Effect on the Nanostructure. Colloids Surf. B Biointerfaces 2023, 223, 113174.10.1016/j.colsurfb.2023.113174. PubMed DOI
Zhai D.; Wang Y.; Yu S.; Zhou J.; Song J.; Hao S.; Chen X. Design and Evaluation of 32P-Labeled Hydroxyapatite Nanoparticles for Bone Tumor Therapy. Drug Deliv 2023, 30 (1), 2168791.10.1080/10717544.2023.2168791. PubMed DOI PMC
Cipreste M. F.; Mussel W. d. N.; Batista da Silva J.; Freitas Marques M. B. d.; Batista R. J. C.; Gastelois P. L.; Macedo W. A. d. A.; Sousa E. M. B. d. B. de. A New Theranostic System for Bone Disorders: Functionalized Folate-MDP Hydroxyapatite Nanoparticles with Radiolabeled Copper-64. Mater. Chem. Phys. 2020, 254, 123265.10.1016/j.matchemphys.2020.123265. DOI
Kollenda S. A.; Klose J.; Knuschke T.; Sokolova V.; Schmitz J.; Staniszewska M.; Costa P. F.; Herrmann K.; Westendorf A. M.; Fendler W. P.; Epple M. In Vivo Biodistribution of Calcium Phosphate Nanoparticles after Intravascular, Intramuscular, Intratumoral, and Soft Tissue Administration in Mice Investigated by Small Animal PET/CT. Acta Biomater 2020, 109, 244–253. 10.1016/j.actbio.2020.03.031. PubMed DOI
Tian L.; Yi X.; Dong Z.; Xu J.; Liang C.; Chao Y.; Wang Y.; Yang K.; Liu Z. Calcium Bisphosphonate Nanoparticles with Chelator-Free Radiolabeling to Deplete Tumor-Associated Macrophages for Enhanced Cancer Radioisotope Therapy. ACS Nano 2018, 12 (11), 11541–11551. 10.1021/acsnano.8b06699. PubMed DOI
Sakmár M.; Ondrák L.; Fialová K.; Vlk M.; Kozempel J.; Bruchertseifer F.; Morgenstern A. In Vitro Studies of 223Ra- and 225Ac-Labelled α-Zirconium Phosphate as Potential Carrier for Alpha Targeted Therapy. J. Radioanal Nucl. Chem. 2023, 332 (5), 1527–1532. 10.1007/s10967-022-08742-y. DOI
Kleynhans J.; Sathekge M.; Ebenhan T. Obstacles and Recommendations for Clinical Translation of Nanoparticle System-Based Targeted Alpha-Particle Therapy. Materials 2021, 14 (17), 4784.10.3390/ma14174784. PubMed DOI PMC