Study of 213Bi and 211Pb Recoils Release from 223Ra Labelled TiO2 Nanoparticles
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/15_003/0000464
Ministry of Education, Youth and Sports of the Czech Republic
8J20PL016
Ministry of Education, Youth and Sports of the Czech Republic
SGS22/188/OHK4/3T/14
Czech Technical University in Prague
PubMed
36614682
PubMed Central
PMC9821810
DOI
10.3390/ma16010343
PII: ma16010343
Knihovny.cz E-zdroje
- Klíčová slova
- Bi-213, Bismuth, Pb-211, Ra-223, Radium, TiO2, lead, nanoparticles, nuclear recoil,
- Publikační typ
- časopisecké články MeSH
Nanoparticles of various materials were proposed as carriers of nuclides in targeted alpha particle therapy to at least partially eliminate the nuclear recoil effect causing the unwanted release of radioactive progeny originating in nuclear decay series of so-called in vivo generators. Here, we report on the study of 211Pb and 211Bi recoils release from the 223Ra surface-labelled TiO2 nanoparticles in the concentration range of 0.01-1 mg/mL using two phase separation methods different in their kinetics in order to test the ability of progeny resorption. We have found significant differences between the centrifugation and the dialysis used for labelled NPs separation as well as that the release of 211Pb and 211Bi from the nanoparticles also depends on the NPs dispersion concentration. These findings support our previously proposed recoils-retaining mechanism of the progeny by their resorption on the NPs surface. At the 24 h time-point, the highest overall released progeny fractions were observed using centrifugation (4.0% and 13.5% for 211Pb and 211Bi, respectively) at 0.01 mg/mL TiO2 concentration. The lowest overall released fractions at the 24 h time-point (1.5% and 2.5% for 211Pb and 211Bi respectively) were observed using dialysis at 1 mg/mL TiO2 concentration. Our findings also indicate that the in vitro stability tests of such radionuclide systems designed to retain recoil-progeny may end up with biased results and particular care needs to be given to in vitro stability test experimental setup to mimic in vivo dynamic conditions. On the other hand, controlled and well-defined progeny release may enhance the alpha-emitter radiation therapy of some tumours.
Zobrazit více v PubMed
Guerra Liberal F.D.C., O’Sullivan J.M., McMahon S.J., Prise K.M. Targeted alpha therapy: Current clinical applications. Cancer Biother. Radiopharm. 2020;35:404–417. doi: 10.1089/cbr.2020.3576. PubMed DOI
Kim Y.S., Brechbiel M.W. An overview of targeted alpha therapy. Tumour Biol. 2012;33:573–590. doi: 10.1007/s13277-011-0286-y. PubMed DOI PMC
Bayer Xofigo, SPC. [(accessed on 4 October 2022)]. Available online: https://www.ema.europa.eu/en/documents/product-information/xofigo-epar-product-information_en.pdf.
Hallqvist A., Bergmark K., Back T., Andersson H., Dahm-Kahler P., Johansson M., Lindegren S., Jensen H., Jacobsson L., Hultborn R., et al. Intraperitoneal alpha-Emitting Radioimmunotherapy with 211At in Relapsed Ovarian Cancer: Long-Term Follow-up with Individual Absorbed Dose Estimations. J. Nucl. Med. 2019;60:1073–1079. doi: 10.2967/jnumed.118.220384. PubMed DOI PMC
Watabe T., Kaneda-Nakashima K., Shirakami Y., Liu Y., Ooe K., Teramoto T., Toyoshima A., Shimosegawa E., Nakano T., Kanai Y., et al. Targeted Alpha Therapy Using Astatine (211At)-Labeled Phenylalanine: A Preclinical Study in Glioma Bearing Mice. Oncotarget. 2020;11:1388–1398. doi: 10.18632/oncotarget.27552. PubMed DOI PMC
Frantellizzi V., Cosma L., Brunotti G., Pani A., Spanu A., Nuvoli S., De Cristofaro F., Civitelli L., De Vincentis G. Targeted Alpha Therapy with Thorium-227. Cancer Biother. Radiopharm. 2020;35:437–445. doi: 10.1089/cbr.2019.3105. PubMed DOI
Satapathy S., Sharma A., Sood A., Maheshwari P., Gill H.J.S. Delayed Nephrotoxicity After 225Ac-PSMA-617 Radioligand Therapy. Clin. Nucl. Med. 2022;47:e466–e467. doi: 10.1097/RLU.0000000000004149. PubMed DOI
Lawal I.O., Morgenstern A., Vorster M., Knoesen O., Mahapane J., Hlongwa K.N., Maserumule L.C., Ndlovu H., Reed J.D., Popoola G.O., et al. Hematologic toxicity profile and efficacy of [225Ac]Ac-PSMA-617 α-radioligand therapy of patients with extensive skeletal metastases of castration-resistant prostate cancer. Eur. J. Nucl. Med. Mol. Imaging. 2022;49:3581–3592. doi: 10.1007/s00259-022-05778-w. PubMed DOI
Kratochwil C., Bruchertseifer F., Giesel F., Apostolidis C., Haberkorn U., Morgenstern A. Ac-225-DOTATOC—An Empiric Dose Finding for Alpha Particle Emitter Based Radionuclide Therapy of Neuroendocrine Tumors. J. Nucl. Med. 2015;56:1232.
Atallah E., Berger M., Jurcic J., Roboz G., Tse W., Mawad R., Rizzieri D., Begna K., Orozco J., Craig M., et al. A Phase 2 Study of Actinium-225 (225Ac)-Lintuzumab in Older Patients with Untreated Acute Myeloid Leukemia (AML) J. Med. Imaging Radiat. Sci. 2019;50:37. doi: 10.1016/j.jmir.2019.03.113. DOI
De Kruijff R.M., Wolterbeek H.T., Denkova A.G. A Critical Review of Alpha Radionuclide Therapy—How to Deal with Recoiling Daughters? Pharmaceuticals. 2015;8:321–336. doi: 10.3390/ph8020321. PubMed DOI PMC
Lin W. Introduction: Nanoparticles in medicine. Chem. Rev. 2015;115:10407–10409. doi: 10.1021/acs.chemrev.5b00534. PubMed DOI
Kozempel J., Mokhodoeva O., Vlk M. Progress in Targeted Alpha-Particle Therapy. What We Learned about Recoils Release from In Vivo Generators. Molecules. 2018;23:581. doi: 10.3390/molecules23030581. PubMed DOI PMC
Wolfram J., Zhu M., Yang Y., Shen J., Gentile E., Paolino D., Fresta M., Nie G., Chen C., Shen H., et al. Safety of Nanoparticles in Medicine. Curr. Drug Targets. 2015;16:1671–1681. doi: 10.2174/1389450115666140804124808. PubMed DOI PMC
Czerwińska M., Fracasso G., Pruszyński M., Bilewicz A., Kruszewski M., Majkowska-Pilip A., Lankoff A. Design and Evaluation of (223)Ra-Labeled and Anti-PSMA Targeted NaA Nanozeolites for Prostate Cancer Therapy—Part I. Materials. 2020;13:3875. doi: 10.3390/ma13173875. PubMed DOI PMC
Kleynhans J., Sathekge M., Ebenhan T. Obstacles and Recommendations for Clinical Translation of Nanoparticle System-Based Targeted Alpha-Particle Therapy. Materials. 2021;14:4784. doi: 10.3390/ma14174784. PubMed DOI PMC
Wang G., De Kruijff R.M., Rol A., Thijssen L., Mendes E., Morgenstern A., Bruchertseifer F., Stuart M.C.A., Wolterbeek H.T., Denkova A.G. Retention studies of recoiling daughter nuclides of 225Ac in polymer vesicles. Appl. Radiat. Isot. 2014;85:45–53. doi: 10.1016/j.apradiso.2013.12.008. PubMed DOI
Chang M.-Y., Seideman J., Sofou S. Enhanced loading efficiency and retention of 225Ac in rigid liposomes for potential targeted therapy of micrometastases. Bioconjug. Chem. 2008;19:1274–1282. doi: 10.1021/bc700440a. PubMed DOI
Souza B.N.R.F., Ribeiro E.R.F.R., da Silva de Barros A.O., Pijeira M.S.O., Kenup-Hernandes H.O., Ricci-Junior E., Diniz Filho J.F.S., dos Santos C.C., Alencar L.M.R., Attia M.F., et al. Nanomicelles of Radium Dichloride [223Ra]RaCl2 Co-Loaded with Radioactive Gold [198Au]Au Nanoparticles for Targeted Alpha–Beta Radionuclide Therapy of Osteosarcoma. Polymers. 2022;14:1405. doi: 10.3390/polym14071405. PubMed DOI PMC
Pijeira M.S.O., Viltres H., Kozempel J., Sakmár M., Vlk M., İlem-Özdemir D., Ekinci M., Srinivasan S., Rajabzadeh A.R., Ricci-Junior E., et al. Radiolabeled nanomaterials for biomedical applications: Radiopharmacy in the era of nanotechnology. EJNMMI Radiopharm. Chem. 2022;7:8. doi: 10.1186/s41181-022-00161-4. PubMed DOI PMC
Gaweda W., Pruzynski M., Cedrowska E., Rodak M., Majokwska-Pilip A., Gawel D., Bruchertseifer F., Morgenstern A., Bilewicz A. Traztuzumab modified barium ferrite magnetic nanoparticles labeled with radium-223: A new potential radiobioconjuagte for alpha radioimmunotherapy. Nanomaterials. 2020;10:2067. doi: 10.3390/nano10102067. PubMed DOI PMC
Pellico J., Gawne P.J., De Rosales R.T.M. Radiolabelling of nanomaterials for medical imaging and therapy. Chem. Soc. Rev. 2021;5:3355–3423. doi: 10.1039/D0CS00384K. PubMed DOI
Toro-González M., Dame A.N., Mirzadeh S., Rojas J.V. Encapsulation and retention of 225Ac, 223Ra, 227Th, and decay daughters in zircon-type gadolinium vanadate nanoparticles. Radiochim. Acta. 2020;108:967–977. doi: 10.1515/ract-2019-3206. DOI
Salvanou E.A., Stellas D., Tsoukalas C., Mavroidi B., Paravatou-Petsotas M., Kalogeropoulos N., Xanthopoulos S., Denat F., Laurent G., Bazzi R., et al. A Proof-of-Concept Study on the Therapeutic Potential of Au Nanoparticles Radiolabeled with the Alpha-Emitter Actinium-225. Pharmaceutics. 2020;12:188. doi: 10.3390/pharmaceutics12020188. PubMed DOI PMC
Suchánková P., Kukleva E., Štamberg K., Nykl P., Vlk M., Kozempel J. Study of 223Ra uptake mechanism on hydroxyapatite and titanium dioxide nanoparticles as a function of pH. RSC Adv. 2020;10:3659–3666. doi: 10.1039/C9RA08953E. PubMed DOI PMC
Suchánková P., Kukleva E., Nykl E., Nykl P., Sakmár M., Vlk M., Kozempel J. Hydroxyapatite and Titanium Dioxide Nanoparticles: Radiolabelling and In Vitro Stability of Prospective Theranostic Nanocarriers for 223Ra and 99mTc. Nanomaterials. 2020;10:1632. doi: 10.3390/nano10091632. PubMed DOI PMC
Arazi L., Cooks T., Schmidt M., Keisari Y., Kelson I. Treatment of solid tumors by interstitial release of recoiling short-lived alpha emitters. Phys. Med. Biol. 2007;52:5025–5042. doi: 10.1088/0031-9155/52/16/021. PubMed DOI
Nishri Y., Vatarescu M., Luz I., Epstein L., Dumančić M., Del Mare S., Shai A., Schmidt M., Deutsch L., Den R.B., et al. Diffusing alpha-emitters radiation therapy in combination with temozolomide or bevacizumab in human glioblastoma multiforme xenografts. Front. Oncol. 2022;12:888100. doi: 10.3389/fonc.2022.888100. PubMed DOI PMC
Krolicki L., Bruchertseifer F., Kunikowska J., Koziara H., Krolicki B., Jakucinski M., Pawlak D., Apostolidis C., Mirzadeh S., Rola R., et al. Prolonged survival in secondary glioblastoma following local injection of targeted alpha therapy with 213Bi-substance P analogue. Eur. J. Nucl. Med. Mol. Imaging. 2018;45:1636–1644. doi: 10.1007/s00259-018-4015-2. PubMed DOI PMC
Gorin J.-B., Guilloux Y., Morgenstern A., Chérel M., Davodeau F., Gaschet J. Using α radiation to boost cancer immunity? OncoImmunology. 2014;3:e954925. doi: 10.4161/21624011.2014.954925. PubMed DOI PMC
Confino H., Schmidt M., Efrati M., Hochman I., Umansky V., Kelson I., Keisari Y. Inhibition of mouse breast adenocarcinoma growth by ablation with intratumoral alpha-irradiation combined with inhibitors of immunosuppression and CpG. Cancer Immunol. Immunother. 2016;65:1149–1158. doi: 10.1007/s00262-016-1878-6. PubMed DOI PMC
Gorin J.-B., Ménager J., Gouard S., Maurel C., Guilloux Y., Faivre-Chauvet A., Morgenstern A., Bruchertseifer F., Chérel M., Davodeau F., et al. Antitumor Immunity Induced after α Irradiation. Neoplasia. 2014;16:319–328. doi: 10.1016/j.neo.2014.04.002. PubMed DOI PMC
Kukleva E., Suchánková P., Štamberg K., Vlk M., Šlouf M., Kozempel J. Surface protolytic property characterization of hydroxyapatite and titanium dioxide nanoparticles. RSC Adv. 2019;9:21989–21995. doi: 10.1039/C9RA03698A. PubMed DOI PMC
Suchánková P., Kukleva E., Štamberg K., Nykl P., Sakmár M., Vlk M., Kozempel J. Determination, Modeling and Evaluation of Kinetics of 223Ra Sorption on Hydroxyapatite and Titanium Dioxide Nanoparticles. Materials. 2020;13:1915. doi: 10.3390/ma13081915. PubMed DOI PMC
Live Chart of Nuclides, IAEA Vienna Austria. [(accessed on 22 December 2022)]. Available online: https://www-nds.iaea.org/relnsd/vcharthtml/VChartHTML.html.
Holzwarth U., Ojea Jimenez I., Calzolai L. A random walk approach to estimate the confinement of α-particle emitters in nanoparticles for targeted radionuclide therapy. EJNMMI Radiopharm. Chem. 2018;3:9. doi: 10.1186/s41181-018-0042-3. PubMed DOI PMC
Kelly J.M., Amor-Coarasa A., Sweeney E., Wilson J., Cusey P.W., Babich J.W. A suitable time point for quantifying the radiochemical purity of 225Ac-labeled radiopharmaceuticals. EJNMMI Radiopharm. Chem. 2021;6:38. doi: 10.1186/s41181-021-00151-y. PubMed DOI PMC