LncRNAs LY86-AS1 and VIM-AS1 Distinguish Plasma Cell Leukemia Patients from Multiple Myeloma Patients
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NV18-03-00203
Ministry of Health
FNBr 65269705
Ministry of Health
MUNI/A/1698/2020
Ministry of Education Youth and Sports
PubMed
34829867
PubMed Central
PMC8615960
DOI
10.3390/biomedicines9111637
PII: biomedicines9111637
Knihovny.cz E-zdroje
- Klíčová slova
- biomarkers, disease progression, long non-coding RNA, multiple myeloma, next-generation sequencing, plasma cell leukemia,
- Publikační typ
- časopisecké články MeSH
Long non-coding RNAs (lncRNAs) are functional RNAs longer than 200 nucleotides. Due to modern genomic techniques, the involvement of lncRNAs in tumorigenesis has been revealed; however, information concerning lncRNA interplay in multiple myeloma (MM) and plasma cell leukemia (PCL) is virtually absent. Herein, we aimed to identify the lncRNAs involved in MM to PCL progression. We investigated representative datasets of MM and PCL patients using next-generation sequencing. In total, 13 deregulated lncRNAs (p < 0.00025) were identified; four of them were chosen for further validation in an independent set of MM and PCL patients by RT-qPCR. The obtained results proved the significant downregulation of lymphocyte antigen antisense RNA 1 (LY86-AS1) and VIM antisense RNA 1 (VIM-AS1) in PCL compared to MM. Importantly, these two lncRNAs could be involved in the progression of MM into PCL; thus, they could serve as promising novel biomarkers of MM progression.
Zobrazit více v PubMed
Bayat E., Kelly J.J. Dysproteinemic neuropathies. In: Katirji B., Kaminski H.J., Ruff R.L., editors. Neuromuscular Disorders in Clinical Practice. 2nd ed. Springer; New York, NY, USA: 2014. pp. 633–645. DOI
Lipsker D., Thomas P. Gammopathies. In: Plewig G., French L., Ruzicka T., Kaufmann R., Hertl M., editors. Braun-Falco’s Dermatology. Springer; Berlin/Heidelberg, Germany: 2020. pp. 1–9. DOI
Gavriatopoulou M., Musto P., Caers J., Merlini G., Kastritis E., van de Donk N., Gay F., Hegenbart U., Hajek R., Zweegman S., et al. European myeloma network recommendations on diagnosis and management of patients with rare plasma cell dyscrasias. Leukemia. 2018;32:1883–1898. doi: 10.1038/s41375-018-0209-7. PubMed DOI
Ali A., Paul Y., Nwabudike S.M., Ogbonna O., Grantham M. Taddesse-heath L. plasma cell leukemia presenting as a chest wall mass: A case report. Case Rep. Oncol. 2016;9:338–343. doi: 10.1159/000447353. PubMed DOI PMC
Maluskova D., Svobodova I., Kucerova M., L Brozova L., Muzik J., Jarkovský J., Hájek R., Maisnar V., Dusek L. Epidemiology of multiple myeloma in the czech republic. Klin. Onkol. 2017;30:35–42. doi: 10.14735/amko20172S35. PubMed DOI
Ludwig H., Durie S.N., Meckl A., Hinke A., Durie B. Multiple myeloma incidence and mortality around the globe; Interrelations between health access and quality, economic resources, and patient empowerment. Oncologist. 2020;25:1406–1413. doi: 10.1634/theoncologist.2020-0141. PubMed DOI PMC
Garcés M., Simicek M., Vicari M., Brozova L., Burgos L., Bezdekova R., Alignani D., Calasanz M.-J., Growkova K., Goicoechea I., et al. Transcriptional profiling of circulating tumor cells in multiple myeloma: A new model to understand disease dissemination. Leukemia. 2020;34:589–603. doi: 10.1038/s41375-019-0588-4. PubMed DOI
Borghesi L., Milcarek C. From B cell to plasma cell: Regulation of V(D)J recombination and antibody secretion. Immunol. Res. 2006;36:27–32. doi: 10.1385/IR:36:1:27. PubMed DOI
Kumar S.K., Rajkumar V., Kyle R.A., van Duin M., Sonneveld P., Mateos M.-V., Gay F., Anderson K.C. Multiple myeloma. Nat. Rev. Dis. Primers. 2017;3:17046. doi: 10.1038/nrdp.2017.46. PubMed DOI
Rajkumar V. Updated diagnostic criteria and staging system for multiple myeloma. Am. Soc. Clin. Oncol. Educ. Book. 2016;36:418–423. doi: 10.1200/EDBK_159009. PubMed DOI
Zapletalova M., Krejci D., Jarkovsky J., Muzik J., Dusek L., Pour L. Epidemiology of plasma cell leukemia in the Czech Republic. Klin. Onkol. 2019;32:47–51. doi: 10.14735/amko201947. PubMed DOI
Sant M., Allemani C., Tereanu C., De Angelis R., Capocaccia R., Visser O., Marcos-Gragera R., Maynadié M., Simonetti A., Lutz J.-M., et al. Incidence of hematologic malignancies in Europe by morphologic subtype: Results of the HAEMACARE project. Blood. 2010;116:3724–3734. doi: 10.1182/blood-2010-05-282632. PubMed DOI
Kyle R.A. Plasma cell leukemia. Report on 17 cases. Arch. Intern. Med. 1974;133:813–818. doi: 10.1001/archinte.133.5.813. PubMed DOI
van de Donk N.W.C.J., Lokhorst H.M., Anderson K.C., Richardson P.G. How I treat plasma cell leukemia. Blood. 2012;120:2376–2389. doi: 10.1182/blood-2012-05-408682. PubMed DOI PMC
Fernandéz de Larrea C., Kyle R.A., Durie B.G.M., Ludwig H., Usmani S., Vesole D.H., Hajek R., San Miguel J.F., Sezer O., Sonneveld P., et al. Plasma cell leukemia: Consensus statement on diagnostic requirements, response criteria and treatment recommendations by the International Myeloma Working Group. Leukemia. 2013;27:780–791. doi: 10.1038/leu.2012.336. PubMed DOI PMC
Silberstein L.E., Anastasi J. Neutrophilic leukocytosis, neutropenia, monocytosis, and monocytopenia. In: Hoffman R., Benz E.J. Jr., Silberstein L.E., Heslop H.E., Weitz J.I., Anastasi J., Salami M.E., Abutalib S.A., editors. Hematology: Basic Principles and Practice. 7th ed. Elsevier; Amsterdam, The Netherlands: 2017. DOI
Tauzon S.A., Holmberg L.A., Nadeem O., Richardson P.G. A clinical perspective on plasma cell leukemia; current status and future directions. Blood Cancer J. 2021;11:23. doi: 10.1038/s41408-021-00414-6. PubMed DOI PMC
Granell M., Calvo X., Garcia-Guiñón A., Escoda L., Abella E., Martínez C.M., Teixidó M., Gimenez M.T., Senín A., Sanz P., et al. Prognostic impact of circulating plasma cells in patients with multiple myeloma: Implications for plasma cell leukemia definition. Haematologica. 2017;102:1099–1104. doi: 10.3324/haematol.2016.158303. PubMed DOI PMC
Gundesen M.T., Lund T., Moeller H.E.H., Abildgaard N. Plasma cell leukemia: Definition, presentation, and treatment. Curr. Oncol. Rep. 2019;21:8. doi: 10.1007/s11912-019-0754-x. PubMed DOI PMC
Bladé J., Kyle R.A. Nonsecretory myeloma, immunoglobulin D myeloma, and plasma cell leukemia. Hematol. Oncol. Clin. N. Am. 1999;13:1259–1272. doi: 10.1016/S0889-8588(05)70125-8. PubMed DOI
Chaulagain C.P., Diacovo M.J., Van A., Martinez F., Fu C.-L., Jimenez A.M.J., Ahmed W., Answer F. Management of primary plasma cell leukemia remains challenging even in the era of novel agents. Clin. Med. Insights Blood Disord. 2021;14 doi: 10.1177/2634853521999389. PubMed DOI PMC
Albarracin F., Fonseca R. Plasma cell leukemia. Blood Rev. 2011;25:107–112. doi: 10.1016/j.blre.2011.01.005. PubMed DOI PMC
Gonsalves W.I., Rajkumar S.V., Go R.S., Dispenzieri A., Gupta V., Singh P.P., Buadi K., Lacy M., Kapoor P., Dingli D., et al. Trends in survival of patients with primary plasma cell leukemia: A population-based analysis. Blood. 2014;124:907–912. doi: 10.1182/blood-2014-03-565051. PubMed DOI PMC
Mina R., Joseph N.S., Kaufman J.L., Gupta V.A., Heffner L.T., Hofmeister C.C., Boise L.H., Dhodapkar M.V., Gleason C., Nooka A.K., et al. Survival outcomes of patients with primary plasma cell leukemia (pPCL) treated with novel agents. Cancer. 2019;125:416–423. doi: 10.1002/cncr.31718. PubMed DOI
Tiedemann R.E., Gonzalez-Paz N., Kyle R.A. Genetic aberrations and survival in plasma cell leukemia. Leukemia. 2008;22:1044–1052. doi: 10.1038/leu.2008.4. PubMed DOI PMC
Mina R., D’Agostino M., Cerrato C., Gay F., Palumbo A. Plasma cell leukemia: Update on biology and therapy. Leuk. Lymphoma. 2017;58:1538–1547. doi: 10.1080/10428194.2016.1250263. PubMed DOI
Swaminathan N., Varadi G. Secondary plasma cell leukemia: A case report. Cureus. 2020;12:8693. doi: 10.7759/cureus.8693. PubMed DOI PMC
Gallagher P.G. Long noncoding RNAs in erythropoiesis. Blood. 2014;123:465–466. doi: 10.1182/blood-2013-12-538306. PubMed DOI
Sana J., Faltejskova P., Svoboda M., Slaby O. Novel classes of non-coding RNAs and cancer. J. Transl. Med. 2012;10:103. doi: 10.1186/1479-5876-10-103. PubMed DOI PMC
Rinn J.L., Chang H.Y. Genome regulation by long noncoding RNAs. Annu. Rev. Biochem. 2012;81:145–166. doi: 10.1146/annurev-biochem-051410-092902. PubMed DOI PMC
Gomez A.Q., Nolasco S., Soares H. Non-coding RNAs: Multi-tasking molecules in the cell. Int. J. Mol. Sci. 2013;14:16010–16039. doi: 10.3390/ijms140816010. PubMed DOI PMC
Fernandes J.C.R., Acuña S.M., Aoki J.I., Floeter-Winter L.M., Muxel S.M. Long Non-Coding RNAs in the Regulation of Gene Expression: Physiology and Disease. Noncoding RNA. 2019;5:17. doi: 10.3390/ncrna5010017. PubMed DOI PMC
Tang S., Zhou J., Jing H., Liao M., Lin S., Huang Z., Huang T., Zhing J., Wang H. Functional roles of lncRNAs and its potential mechanisms in neuropathic pain. Clin. Epigenetics. 2019;11:78. doi: 10.1186/s13148-019-0671-8. PubMed DOI PMC
Bútová R., Vychytilová-Faltejsková P., Součková A., Sevcikova S., Hajek R. Long non-coding RNAS in multiple myeloma. Non-Coding RNA. 2019;5:13. doi: 10.3390/ncrna5010013. PubMed DOI PMC
Nobili L., Lionetti M., Neri A. Long non-coding RNAs in normal and malignant hematopoiesis. Oncotarget. 2016;7:50666–50681. doi: 10.18632/oncotarget.9308. PubMed DOI PMC
Gu Y., Xiao X., Yang S. LncRNA MALAT1 acts as an oncogene in multiple myeloma through sponging miR-509-5p to modulate FOXP1 expression. Oncotarget. 2017;8:101984–101993. doi: 10.18632/oncotarget.21957. PubMed DOI PMC
Ronchetti D., Agnelli L., Pietrelli A., Todoerti K., Manzoni M., Taiana E., Neri A. A compendium of long non-coding RNAs transcriptional fingerprint in multiple myeloma. Sci. Rep. 2018;8:6557. doi: 10.1038/s41598-018-24701-8. PubMed DOI PMC
Sedlarikova L., Gromesova B., Kubaczkova V., Radova L., Filipova J., Jarkovsky J., Brozova L., Velichova R., Almasi M., Penka M. Deregulated expression of long non-coding RNA UCA 1 in multiple myeloma. Eur. J. Haematol. 2017;99:223–233. doi: 10.1111/ejh.12908. PubMed DOI
Sun Y., Jiang T., Jia Y., Zou J., Wang X., Gu W. LncRNA MALAT1/miR-181a-5p affects the proliferation and adhesion of myeloma cells via regulation of Hippo-YAP signaling pathway. Cell Cycle. 2019;18:2509–2523. doi: 10.1080/15384101.2019.1652034. PubMed DOI PMC
Ronchetti D., Manzoni M., Todoerti K., Neri A., Agnelli L. In silico characterization of miRNA and long non-coding RNA interplay in multiple myeloma. Genes. 2016;7:107. doi: 10.3390/genes7120107. PubMed DOI PMC
Carrasco-Leon A., Ezponda T., Meydan C., Valcárcel C.V., Ordoñez R., Kulis M., Garate L., Miranda E., Segura V., Guruceaga E., et al. Characterization of complete lncRNAs transcriptome reveals the functional and clinical impact of lncRNAs in multiple myeloma. Leukemia. 2021;35:1438–1450. doi: 10.1038/s41375-021-01147-y. PubMed DOI PMC
Zhou M., Zhao H., Wang Z., Cheng L., Yang L., Shi H., Yang H., Sun J. Identification and validation of potential prognostic lncRNA biomarkers for predicting survival in patients with multiple myeloma. J. Exp. Clin. Cancer Res. 2015;3:102. doi: 10.1186/s13046-015-0219-5. PubMed DOI PMC
Shen Y., Feng Y., Chen H., Huang L., Wang F., Bai J., Yang Y., Wang J., Zhao W., Jia Y., et al. Focusing on long non-coding RNA dysregulation in newly diagnosed multiple myeloma. Life Sci. 2018;196:133–142. doi: 10.1016/j.lfs.2018.01.025. PubMed DOI
Cumova J., Kovarova L., Potacova A., Buresova I., Kryukov F., Penka M., Michalek J., Hajek R. Optimization of immunomagnetic selection of myeloma cells from bone marrow using magnetic activated cell sorting. Int. J. Hematol. 2010;92:314–319. doi: 10.1007/s12185-010-0651-4. PubMed DOI
Lu M., Hu Y., Wu Y., Zhou X., Jian Y., Tian Y., Chen W. Genome-wide discovery and characterization of long noncoding RNAs in patients with multiple myeloma. BMC Med. Genom. 2019;12:135. doi: 10.1186/s12920-019-0577-5. PubMed DOI PMC
Aken B.L., Achuthan P., Akanni W., Amode M.R., Bernsdorff F., Bhai J., Billis K., Carvalho-Silva D., Cummins C., Clapham P., et al. Ensembl 2017. Nucleic Acids Res. 2017;45:635–642. doi: 10.1093/nar/gkw1104. PubMed DOI PMC
R Core Team R: A Language and Environment for Statistical Computing. [(accessed on 20 May 2021)]. Available online: https://www.R-project.org/
Liao Y., Smyth G.K., Shi W. The Subread aligner: Fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Res. 2013;41:108. doi: 10.1093/nar/gkt214. PubMed DOI PMC
Robinson M.D., McCarthy D.J., Smyth G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–140. doi: 10.1093/bioinformatics/btp616. PubMed DOI PMC
McCarthy D.J., Che Y., Smyth G.K. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 2012;40:4288–4297. doi: 10.1093/nar/gks042. PubMed DOI PMC
Richie M.E., Phipson B., Wu D., Hu Y., Law C.W., Shi W., Smyth G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:47. doi: 10.1093/nar/gkv007. PubMed DOI PMC
Spizzo R., Almeida M.I., Colombatti A., Calin G.A. Long non-coding RNAs and cancer: A new frontier of translational research? Oncogene. 2012;31:4577–4587. doi: 10.1038/onc.2011.621. PubMed DOI PMC
Jiang M.C., Ni J.J., Ciu W.Y., Wang B.Y., Zhuo W. Emerging roles of lncRNA in cancer and therapeutic opportunities. Am. J. Cancer Res. 2019;9:1354–1366. doi: 10.18632/oncotarget.22840. PubMed DOI PMC
Carlevaro-Fita J., Lanzós A., Feuerbach L., Hong C., Mas-Ponte D., Pedersen J.S., PCAWG Drivers and Functional Interpretation Group. Johnson R., PCAWG Consortium Cancer LncRNA Census reveals evidence for deep functional conservation of long noncoding RNAs in tumorigenesis. Commun. Biol. 2020;3:56. doi: 10.1038/s42003-019-0741-7. PubMed DOI PMC
Taniue K., Akimitsu N. The functions and unique features of LncRNAs in cancer development and tumorigenesis. Int. J. Mol. Sci. 2021;22:632. doi: 10.3390/ijms22020632. PubMed DOI PMC
Morelli E., Gullà A., Rocca R., Federico C., Raimondi L., Malvestiti S., Agosti V., Rossi M., Costa G., Giavaresi G., et al. The non-coding RNA landscape of plasma cell dyscrasias. Cancers. 2020;12:320. doi: 10.3390/cancers12020320. PubMed DOI PMC
Sedlarikova L., Besse L., Novosadova S., Kubaczkova V., Radova L., Stanik M., Krejci M., Hajek R., Sevcikova S. MicroRNAs in urine are not biomarkers of multiple myeloma. J. Negat. Results Biomed. 2015;14:1–6. doi: 10.1186/s12952-015-0035-7. PubMed DOI PMC
Chauhan S., Jaisinghani P., Rathore J., Tariq H., Galan Y., Madhavan A., Rana H., Frenia D. Plasma cell leukemia. JFMPC. 2018;7:461–465. doi: 10.4103/jfmpc.jfmpc_310_17. PubMed DOI PMC
Ravi P., Kumar S.K., Roeker L., Gonsalves W., Buadi F., Lacy M.Q., Go R.S., Dispenzieri A., Kapoor P., Lust J.A., et al. Revised diagnostic criteria for plasma cell leukemia: Results of a Mayo Clinic study with comparison of outcomes to multiple myeloma. Blood Cancer J. 2018;8:116. doi: 10.1038/s41408-018-0140-1. PubMed DOI PMC
Fulwyler M.J. Electronic separation of biological cells by volume. Science. 1965;150:910–911. doi: 10.1126/science.150.3698.910. PubMed DOI
Shtalrid M., Shvidel L., Vorst E. Polyclonal reactive peripheral blood plasmacytosis mimicking plasma cell leukemia in a patient with Staphylococcal sepsis. Leuk. Lymphoma. 2003;44:379–380. doi: 10.1080/1042819021000029713. PubMed DOI
Touzeau C., Pellat-Deceunynck C., Gastinne T., Accard F., Jego G., Avet-Loiseau H., Robillard N., Harousseau J.L., Bataille R., Moreau P. Reactive plasmacytoses can mimick plasma cell leukemia: Therapeutical implications. Leuk. Lymphoma. 2007;48:207–208. doi: 10.1080/10428190601016159. PubMed DOI
Bezdekova R., Penka M., Hajek R., Rihova L. Circulating plasma cells in monoclonal gammopathies. Klin. Onkol. 2017;30:29–34. doi: 10.14735/amko20172S29. PubMed DOI
Naeem A., Amar S., Mehta D., Malik M.N. Thrombocytosis as an initial presentation of plasma cell neoplasm: A case report. Cureus. 2019;11:4286. doi: 10.7759/cureus.4286. PubMed DOI PMC
Li T., Gu M., Liu P., Liu Y., Guo J., Zhang W., Deng A., Qian C. Abnormal expression of long noncoding RNAs in primary immune thrombocytopenia: A microarray related study. Cell Physiol. Biochem. 2018;48:618–632. doi: 10.1159/000491890. PubMed DOI
Saeidi L., Ghaedi H., Sadatamini M. Long non-coding RNA LY86-AS1 and HCG27_201 expression in type 2 diabetes mellitus. Mol. Biol. Rep. 2018;45:2601–2608. doi: 10.1007/s11033-018-4429-8. PubMed DOI
Cao M., Li H., Zhao J., Cui J., Hu G. Identification of age- and gender-associated long noncoding RNAs in the human brain with Alzheimer’s disease. Neurobiol. Aging. 2019;81:116–126. doi: 10.1016/j.neurobiolaging.2019.05.023. PubMed DOI PMC
EBI Search. [(accessed on 30 May 2021)]. Available online: https://www.ebi.ac.uk/ebisearch/search.ebi?db=allebi&query=LY86-AS1&FormsButton3=Go.
Salviano-Silva A., Farias T.D.J., Bumiller-Bini V., de Sousa Castro M., Lobo-Alves S.C., Busch H., Pföhler C., Worm M., Goebeler M., van Beek N., et al. Genetic variability of immune-related lncRNAs: Polymorphisms in LINC-PINT and LY86-AS1 are associated with pemphigus foliaceus susceptibility. Exp. Dermatol. 2021;30:831–840. doi: 10.1111/exd.14275. PubMed DOI
Omidvar M.E., Ghaedi H., Kazerouni F., Kalbasi S., Shanaki M., Miraalamy G., Zare A., Rahimipour A. Clinical significance of long noncoding RNA VIM-AS1 and CTBP1-AS2 expression in type 2 diabetes. J. Cell Biochem. 2019;120:9315–9323. doi: 10.1002/jcb.28206. PubMed DOI
Sun J.G., Li X.B., Yin R.H., Li X.F. lncRNA VIM-AS1 promotes cell proliferation, metastasis and epithelial-mesenchymal transition by activating the Wnt/β-catenin pathway in gastric cancer. Mol. Med. Rep. 2020;22:4567–4578. doi: 10.3892/mmr.2020.11577. PubMed DOI PMC
Zhang Y., Zhang J., Liang S., Lang G., Liu G., Deng X. Long non-coding RNA VIM-AS1 promotes prostate cancer growth and invasion by regulating epithelial–mesenchymal transition. J BUON. 2019;24:2090–2098. PubMed
Mohebi M., Ghafouri-Fard S., Modarressi M.H., Dashti S., Zekri A., Kholghi-Oskooei V., Taheri M. Expression analysis of vimentin and the related lncRNA network in breast cancer. Exp. Mol. Pathol. 2020;115:104439. doi: 10.1016/j.yexmp.2020.104439. PubMed DOI
Kollinerova S., Vassanelli S., Modriansky M. The role of miR-29 family members in malignant haematopoiesis. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech. Repub. 2014;158:489–501. doi: 10.5507/bp.2014.029. PubMed DOI
Zeng F., Luo G., Lu Y., Zhang Z., Zhou Y., Chen Y., Zhou Z. Long non-coding RNA VIM Antisense RNA 1 (VIM-AS1) sponges mikroRNA-29 to participate in diabetic retinopathy. Acta Diabetol. 2020;57:1111–1116. doi: 10.1007/s00592-020-01536-2. PubMed DOI PMC