LncRNAs LY86-AS1 and VIM-AS1 Distinguish Plasma Cell Leukemia Patients from Multiple Myeloma Patients

. 2021 Nov 08 ; 9 (11) : . [epub] 20211108

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34829867

Grantová podpora
NV18-03-00203 Ministry of Health
FNBr 65269705 Ministry of Health
MUNI/A/1698/2020 Ministry of Education Youth and Sports

Odkazy

PubMed 34829867
PubMed Central PMC8615960
DOI 10.3390/biomedicines9111637
PII: biomedicines9111637
Knihovny.cz E-zdroje

Long non-coding RNAs (lncRNAs) are functional RNAs longer than 200 nucleotides. Due to modern genomic techniques, the involvement of lncRNAs in tumorigenesis has been revealed; however, information concerning lncRNA interplay in multiple myeloma (MM) and plasma cell leukemia (PCL) is virtually absent. Herein, we aimed to identify the lncRNAs involved in MM to PCL progression. We investigated representative datasets of MM and PCL patients using next-generation sequencing. In total, 13 deregulated lncRNAs (p < 0.00025) were identified; four of them were chosen for further validation in an independent set of MM and PCL patients by RT-qPCR. The obtained results proved the significant downregulation of lymphocyte antigen antisense RNA 1 (LY86-AS1) and VIM antisense RNA 1 (VIM-AS1) in PCL compared to MM. Importantly, these two lncRNAs could be involved in the progression of MM into PCL; thus, they could serve as promising novel biomarkers of MM progression.

Zobrazit více v PubMed

Bayat E., Kelly J.J. Dysproteinemic neuropathies. In: Katirji B., Kaminski H.J., Ruff R.L., editors. Neuromuscular Disorders in Clinical Practice. 2nd ed. Springer; New York, NY, USA: 2014. pp. 633–645. DOI

Lipsker D., Thomas P. Gammopathies. In: Plewig G., French L., Ruzicka T., Kaufmann R., Hertl M., editors. Braun-Falco’s Dermatology. Springer; Berlin/Heidelberg, Germany: 2020. pp. 1–9. DOI

Gavriatopoulou M., Musto P., Caers J., Merlini G., Kastritis E., van de Donk N., Gay F., Hegenbart U., Hajek R., Zweegman S., et al. European myeloma network recommendations on diagnosis and management of patients with rare plasma cell dyscrasias. Leukemia. 2018;32:1883–1898. doi: 10.1038/s41375-018-0209-7. PubMed DOI

Ali A., Paul Y., Nwabudike S.M., Ogbonna O., Grantham M. Taddesse-heath L. plasma cell leukemia presenting as a chest wall mass: A case report. Case Rep. Oncol. 2016;9:338–343. doi: 10.1159/000447353. PubMed DOI PMC

Maluskova D., Svobodova I., Kucerova M., L Brozova L., Muzik J., Jarkovský J., Hájek R., Maisnar V., Dusek L. Epidemiology of multiple myeloma in the czech republic. Klin. Onkol. 2017;30:35–42. doi: 10.14735/amko20172S35. PubMed DOI

Ludwig H., Durie S.N., Meckl A., Hinke A., Durie B. Multiple myeloma incidence and mortality around the globe; Interrelations between health access and quality, economic resources, and patient empowerment. Oncologist. 2020;25:1406–1413. doi: 10.1634/theoncologist.2020-0141. PubMed DOI PMC

Garcés M., Simicek M., Vicari M., Brozova L., Burgos L., Bezdekova R., Alignani D., Calasanz M.-J., Growkova K., Goicoechea I., et al. Transcriptional profiling of circulating tumor cells in multiple myeloma: A new model to understand disease dissemination. Leukemia. 2020;34:589–603. doi: 10.1038/s41375-019-0588-4. PubMed DOI

Borghesi L., Milcarek C. From B cell to plasma cell: Regulation of V(D)J recombination and antibody secretion. Immunol. Res. 2006;36:27–32. doi: 10.1385/IR:36:1:27. PubMed DOI

Kumar S.K., Rajkumar V., Kyle R.A., van Duin M., Sonneveld P., Mateos M.-V., Gay F., Anderson K.C. Multiple myeloma. Nat. Rev. Dis. Primers. 2017;3:17046. doi: 10.1038/nrdp.2017.46. PubMed DOI

Rajkumar V. Updated diagnostic criteria and staging system for multiple myeloma. Am. Soc. Clin. Oncol. Educ. Book. 2016;36:418–423. doi: 10.1200/EDBK_159009. PubMed DOI

Zapletalova M., Krejci D., Jarkovsky J., Muzik J., Dusek L., Pour L. Epidemiology of plasma cell leukemia in the Czech Republic. Klin. Onkol. 2019;32:47–51. doi: 10.14735/amko201947. PubMed DOI

Sant M., Allemani C., Tereanu C., De Angelis R., Capocaccia R., Visser O., Marcos-Gragera R., Maynadié M., Simonetti A., Lutz J.-M., et al. Incidence of hematologic malignancies in Europe by morphologic subtype: Results of the HAEMACARE project. Blood. 2010;116:3724–3734. doi: 10.1182/blood-2010-05-282632. PubMed DOI

Kyle R.A. Plasma cell leukemia. Report on 17 cases. Arch. Intern. Med. 1974;133:813–818. doi: 10.1001/archinte.133.5.813. PubMed DOI

van de Donk N.W.C.J., Lokhorst H.M., Anderson K.C., Richardson P.G. How I treat plasma cell leukemia. Blood. 2012;120:2376–2389. doi: 10.1182/blood-2012-05-408682. PubMed DOI PMC

Fernandéz de Larrea C., Kyle R.A., Durie B.G.M., Ludwig H., Usmani S., Vesole D.H., Hajek R., San Miguel J.F., Sezer O., Sonneveld P., et al. Plasma cell leukemia: Consensus statement on diagnostic requirements, response criteria and treatment recommendations by the International Myeloma Working Group. Leukemia. 2013;27:780–791. doi: 10.1038/leu.2012.336. PubMed DOI PMC

Silberstein L.E., Anastasi J. Neutrophilic leukocytosis, neutropenia, monocytosis, and monocytopenia. In: Hoffman R., Benz E.J. Jr., Silberstein L.E., Heslop H.E., Weitz J.I., Anastasi J., Salami M.E., Abutalib S.A., editors. Hematology: Basic Principles and Practice. 7th ed. Elsevier; Amsterdam, The Netherlands: 2017. DOI

Tauzon S.A., Holmberg L.A., Nadeem O., Richardson P.G. A clinical perspective on plasma cell leukemia; current status and future directions. Blood Cancer J. 2021;11:23. doi: 10.1038/s41408-021-00414-6. PubMed DOI PMC

Granell M., Calvo X., Garcia-Guiñón A., Escoda L., Abella E., Martínez C.M., Teixidó M., Gimenez M.T., Senín A., Sanz P., et al. Prognostic impact of circulating plasma cells in patients with multiple myeloma: Implications for plasma cell leukemia definition. Haematologica. 2017;102:1099–1104. doi: 10.3324/haematol.2016.158303. PubMed DOI PMC

Gundesen M.T., Lund T., Moeller H.E.H., Abildgaard N. Plasma cell leukemia: Definition, presentation, and treatment. Curr. Oncol. Rep. 2019;21:8. doi: 10.1007/s11912-019-0754-x. PubMed DOI PMC

Bladé J., Kyle R.A. Nonsecretory myeloma, immunoglobulin D myeloma, and plasma cell leukemia. Hematol. Oncol. Clin. N. Am. 1999;13:1259–1272. doi: 10.1016/S0889-8588(05)70125-8. PubMed DOI

Chaulagain C.P., Diacovo M.J., Van A., Martinez F., Fu C.-L., Jimenez A.M.J., Ahmed W., Answer F. Management of primary plasma cell leukemia remains challenging even in the era of novel agents. Clin. Med. Insights Blood Disord. 2021;14 doi: 10.1177/2634853521999389. PubMed DOI PMC

Albarracin F., Fonseca R. Plasma cell leukemia. Blood Rev. 2011;25:107–112. doi: 10.1016/j.blre.2011.01.005. PubMed DOI PMC

Gonsalves W.I., Rajkumar S.V., Go R.S., Dispenzieri A., Gupta V., Singh P.P., Buadi K., Lacy M., Kapoor P., Dingli D., et al. Trends in survival of patients with primary plasma cell leukemia: A population-based analysis. Blood. 2014;124:907–912. doi: 10.1182/blood-2014-03-565051. PubMed DOI PMC

Mina R., Joseph N.S., Kaufman J.L., Gupta V.A., Heffner L.T., Hofmeister C.C., Boise L.H., Dhodapkar M.V., Gleason C., Nooka A.K., et al. Survival outcomes of patients with primary plasma cell leukemia (pPCL) treated with novel agents. Cancer. 2019;125:416–423. doi: 10.1002/cncr.31718. PubMed DOI

Tiedemann R.E., Gonzalez-Paz N., Kyle R.A. Genetic aberrations and survival in plasma cell leukemia. Leukemia. 2008;22:1044–1052. doi: 10.1038/leu.2008.4. PubMed DOI PMC

Mina R., D’Agostino M., Cerrato C., Gay F., Palumbo A. Plasma cell leukemia: Update on biology and therapy. Leuk. Lymphoma. 2017;58:1538–1547. doi: 10.1080/10428194.2016.1250263. PubMed DOI

Swaminathan N., Varadi G. Secondary plasma cell leukemia: A case report. Cureus. 2020;12:8693. doi: 10.7759/cureus.8693. PubMed DOI PMC

Gallagher P.G. Long noncoding RNAs in erythropoiesis. Blood. 2014;123:465–466. doi: 10.1182/blood-2013-12-538306. PubMed DOI

Sana J., Faltejskova P., Svoboda M., Slaby O. Novel classes of non-coding RNAs and cancer. J. Transl. Med. 2012;10:103. doi: 10.1186/1479-5876-10-103. PubMed DOI PMC

Rinn J.L., Chang H.Y. Genome regulation by long noncoding RNAs. Annu. Rev. Biochem. 2012;81:145–166. doi: 10.1146/annurev-biochem-051410-092902. PubMed DOI PMC

Gomez A.Q., Nolasco S., Soares H. Non-coding RNAs: Multi-tasking molecules in the cell. Int. J. Mol. Sci. 2013;14:16010–16039. doi: 10.3390/ijms140816010. PubMed DOI PMC

Fernandes J.C.R., Acuña S.M., Aoki J.I., Floeter-Winter L.M., Muxel S.M. Long Non-Coding RNAs in the Regulation of Gene Expression: Physiology and Disease. Noncoding RNA. 2019;5:17. doi: 10.3390/ncrna5010017. PubMed DOI PMC

Tang S., Zhou J., Jing H., Liao M., Lin S., Huang Z., Huang T., Zhing J., Wang H. Functional roles of lncRNAs and its potential mechanisms in neuropathic pain. Clin. Epigenetics. 2019;11:78. doi: 10.1186/s13148-019-0671-8. PubMed DOI PMC

Bútová R., Vychytilová-Faltejsková P., Součková A., Sevcikova S., Hajek R. Long non-coding RNAS in multiple myeloma. Non-Coding RNA. 2019;5:13. doi: 10.3390/ncrna5010013. PubMed DOI PMC

Nobili L., Lionetti M., Neri A. Long non-coding RNAs in normal and malignant hematopoiesis. Oncotarget. 2016;7:50666–50681. doi: 10.18632/oncotarget.9308. PubMed DOI PMC

Gu Y., Xiao X., Yang S. LncRNA MALAT1 acts as an oncogene in multiple myeloma through sponging miR-509-5p to modulate FOXP1 expression. Oncotarget. 2017;8:101984–101993. doi: 10.18632/oncotarget.21957. PubMed DOI PMC

Ronchetti D., Agnelli L., Pietrelli A., Todoerti K., Manzoni M., Taiana E., Neri A. A compendium of long non-coding RNAs transcriptional fingerprint in multiple myeloma. Sci. Rep. 2018;8:6557. doi: 10.1038/s41598-018-24701-8. PubMed DOI PMC

Sedlarikova L., Gromesova B., Kubaczkova V., Radova L., Filipova J., Jarkovsky J., Brozova L., Velichova R., Almasi M., Penka M. Deregulated expression of long non-coding RNA UCA 1 in multiple myeloma. Eur. J. Haematol. 2017;99:223–233. doi: 10.1111/ejh.12908. PubMed DOI

Sun Y., Jiang T., Jia Y., Zou J., Wang X., Gu W. LncRNA MALAT1/miR-181a-5p affects the proliferation and adhesion of myeloma cells via regulation of Hippo-YAP signaling pathway. Cell Cycle. 2019;18:2509–2523. doi: 10.1080/15384101.2019.1652034. PubMed DOI PMC

Ronchetti D., Manzoni M., Todoerti K., Neri A., Agnelli L. In silico characterization of miRNA and long non-coding RNA interplay in multiple myeloma. Genes. 2016;7:107. doi: 10.3390/genes7120107. PubMed DOI PMC

Carrasco-Leon A., Ezponda T., Meydan C., Valcárcel C.V., Ordoñez R., Kulis M., Garate L., Miranda E., Segura V., Guruceaga E., et al. Characterization of complete lncRNAs transcriptome reveals the functional and clinical impact of lncRNAs in multiple myeloma. Leukemia. 2021;35:1438–1450. doi: 10.1038/s41375-021-01147-y. PubMed DOI PMC

Zhou M., Zhao H., Wang Z., Cheng L., Yang L., Shi H., Yang H., Sun J. Identification and validation of potential prognostic lncRNA biomarkers for predicting survival in patients with multiple myeloma. J. Exp. Clin. Cancer Res. 2015;3:102. doi: 10.1186/s13046-015-0219-5. PubMed DOI PMC

Shen Y., Feng Y., Chen H., Huang L., Wang F., Bai J., Yang Y., Wang J., Zhao W., Jia Y., et al. Focusing on long non-coding RNA dysregulation in newly diagnosed multiple myeloma. Life Sci. 2018;196:133–142. doi: 10.1016/j.lfs.2018.01.025. PubMed DOI

Cumova J., Kovarova L., Potacova A., Buresova I., Kryukov F., Penka M., Michalek J., Hajek R. Optimization of immunomagnetic selection of myeloma cells from bone marrow using magnetic activated cell sorting. Int. J. Hematol. 2010;92:314–319. doi: 10.1007/s12185-010-0651-4. PubMed DOI

Lu M., Hu Y., Wu Y., Zhou X., Jian Y., Tian Y., Chen W. Genome-wide discovery and characterization of long noncoding RNAs in patients with multiple myeloma. BMC Med. Genom. 2019;12:135. doi: 10.1186/s12920-019-0577-5. PubMed DOI PMC

Aken B.L., Achuthan P., Akanni W., Amode M.R., Bernsdorff F., Bhai J., Billis K., Carvalho-Silva D., Cummins C., Clapham P., et al. Ensembl 2017. Nucleic Acids Res. 2017;45:635–642. doi: 10.1093/nar/gkw1104. PubMed DOI PMC

R Core Team R: A Language and Environment for Statistical Computing. [(accessed on 20 May 2021)]. Available online: https://www.R-project.org/

Liao Y., Smyth G.K., Shi W. The Subread aligner: Fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Res. 2013;41:108. doi: 10.1093/nar/gkt214. PubMed DOI PMC

Robinson M.D., McCarthy D.J., Smyth G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–140. doi: 10.1093/bioinformatics/btp616. PubMed DOI PMC

McCarthy D.J., Che Y., Smyth G.K. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 2012;40:4288–4297. doi: 10.1093/nar/gks042. PubMed DOI PMC

Richie M.E., Phipson B., Wu D., Hu Y., Law C.W., Shi W., Smyth G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:47. doi: 10.1093/nar/gkv007. PubMed DOI PMC

Spizzo R., Almeida M.I., Colombatti A., Calin G.A. Long non-coding RNAs and cancer: A new frontier of translational research? Oncogene. 2012;31:4577–4587. doi: 10.1038/onc.2011.621. PubMed DOI PMC

Jiang M.C., Ni J.J., Ciu W.Y., Wang B.Y., Zhuo W. Emerging roles of lncRNA in cancer and therapeutic opportunities. Am. J. Cancer Res. 2019;9:1354–1366. doi: 10.18632/oncotarget.22840. PubMed DOI PMC

Carlevaro-Fita J., Lanzós A., Feuerbach L., Hong C., Mas-Ponte D., Pedersen J.S., PCAWG Drivers and Functional Interpretation Group. Johnson R., PCAWG Consortium Cancer LncRNA Census reveals evidence for deep functional conservation of long noncoding RNAs in tumorigenesis. Commun. Biol. 2020;3:56. doi: 10.1038/s42003-019-0741-7. PubMed DOI PMC

Taniue K., Akimitsu N. The functions and unique features of LncRNAs in cancer development and tumorigenesis. Int. J. Mol. Sci. 2021;22:632. doi: 10.3390/ijms22020632. PubMed DOI PMC

Morelli E., Gullà A., Rocca R., Federico C., Raimondi L., Malvestiti S., Agosti V., Rossi M., Costa G., Giavaresi G., et al. The non-coding RNA landscape of plasma cell dyscrasias. Cancers. 2020;12:320. doi: 10.3390/cancers12020320. PubMed DOI PMC

Sedlarikova L., Besse L., Novosadova S., Kubaczkova V., Radova L., Stanik M., Krejci M., Hajek R., Sevcikova S. MicroRNAs in urine are not biomarkers of multiple myeloma. J. Negat. Results Biomed. 2015;14:1–6. doi: 10.1186/s12952-015-0035-7. PubMed DOI PMC

Chauhan S., Jaisinghani P., Rathore J., Tariq H., Galan Y., Madhavan A., Rana H., Frenia D. Plasma cell leukemia. JFMPC. 2018;7:461–465. doi: 10.4103/jfmpc.jfmpc_310_17. PubMed DOI PMC

Ravi P., Kumar S.K., Roeker L., Gonsalves W., Buadi F., Lacy M.Q., Go R.S., Dispenzieri A., Kapoor P., Lust J.A., et al. Revised diagnostic criteria for plasma cell leukemia: Results of a Mayo Clinic study with comparison of outcomes to multiple myeloma. Blood Cancer J. 2018;8:116. doi: 10.1038/s41408-018-0140-1. PubMed DOI PMC

Fulwyler M.J. Electronic separation of biological cells by volume. Science. 1965;150:910–911. doi: 10.1126/science.150.3698.910. PubMed DOI

Shtalrid M., Shvidel L., Vorst E. Polyclonal reactive peripheral blood plasmacytosis mimicking plasma cell leukemia in a patient with Staphylococcal sepsis. Leuk. Lymphoma. 2003;44:379–380. doi: 10.1080/1042819021000029713. PubMed DOI

Touzeau C., Pellat-Deceunynck C., Gastinne T., Accard F., Jego G., Avet-Loiseau H., Robillard N., Harousseau J.L., Bataille R., Moreau P. Reactive plasmacytoses can mimick plasma cell leukemia: Therapeutical implications. Leuk. Lymphoma. 2007;48:207–208. doi: 10.1080/10428190601016159. PubMed DOI

Bezdekova R., Penka M., Hajek R., Rihova L. Circulating plasma cells in monoclonal gammopathies. Klin. Onkol. 2017;30:29–34. doi: 10.14735/amko20172S29. PubMed DOI

Naeem A., Amar S., Mehta D., Malik M.N. Thrombocytosis as an initial presentation of plasma cell neoplasm: A case report. Cureus. 2019;11:4286. doi: 10.7759/cureus.4286. PubMed DOI PMC

Li T., Gu M., Liu P., Liu Y., Guo J., Zhang W., Deng A., Qian C. Abnormal expression of long noncoding RNAs in primary immune thrombocytopenia: A microarray related study. Cell Physiol. Biochem. 2018;48:618–632. doi: 10.1159/000491890. PubMed DOI

Saeidi L., Ghaedi H., Sadatamini M. Long non-coding RNA LY86-AS1 and HCG27_201 expression in type 2 diabetes mellitus. Mol. Biol. Rep. 2018;45:2601–2608. doi: 10.1007/s11033-018-4429-8. PubMed DOI

Cao M., Li H., Zhao J., Cui J., Hu G. Identification of age- and gender-associated long noncoding RNAs in the human brain with Alzheimer’s disease. Neurobiol. Aging. 2019;81:116–126. doi: 10.1016/j.neurobiolaging.2019.05.023. PubMed DOI PMC

EBI Search. [(accessed on 30 May 2021)]. Available online: https://www.ebi.ac.uk/ebisearch/search.ebi?db=allebi&query=LY86-AS1&FormsButton3=Go.

Salviano-Silva A., Farias T.D.J., Bumiller-Bini V., de Sousa Castro M., Lobo-Alves S.C., Busch H., Pföhler C., Worm M., Goebeler M., van Beek N., et al. Genetic variability of immune-related lncRNAs: Polymorphisms in LINC-PINT and LY86-AS1 are associated with pemphigus foliaceus susceptibility. Exp. Dermatol. 2021;30:831–840. doi: 10.1111/exd.14275. PubMed DOI

Omidvar M.E., Ghaedi H., Kazerouni F., Kalbasi S., Shanaki M., Miraalamy G., Zare A., Rahimipour A. Clinical significance of long noncoding RNA VIM-AS1 and CTBP1-AS2 expression in type 2 diabetes. J. Cell Biochem. 2019;120:9315–9323. doi: 10.1002/jcb.28206. PubMed DOI

Sun J.G., Li X.B., Yin R.H., Li X.F. lncRNA VIM-AS1 promotes cell proliferation, metastasis and epithelial-mesenchymal transition by activating the Wnt/β-catenin pathway in gastric cancer. Mol. Med. Rep. 2020;22:4567–4578. doi: 10.3892/mmr.2020.11577. PubMed DOI PMC

Zhang Y., Zhang J., Liang S., Lang G., Liu G., Deng X. Long non-coding RNA VIM-AS1 promotes prostate cancer growth and invasion by regulating epithelial–mesenchymal transition. J BUON. 2019;24:2090–2098. PubMed

Mohebi M., Ghafouri-Fard S., Modarressi M.H., Dashti S., Zekri A., Kholghi-Oskooei V., Taheri M. Expression analysis of vimentin and the related lncRNA network in breast cancer. Exp. Mol. Pathol. 2020;115:104439. doi: 10.1016/j.yexmp.2020.104439. PubMed DOI

Kollinerova S., Vassanelli S., Modriansky M. The role of miR-29 family members in malignant haematopoiesis. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech. Repub. 2014;158:489–501. doi: 10.5507/bp.2014.029. PubMed DOI

Zeng F., Luo G., Lu Y., Zhang Z., Zhou Y., Chen Y., Zhou Z. Long non-coding RNA VIM Antisense RNA 1 (VIM-AS1) sponges mikroRNA-29 to participate in diabetic retinopathy. Acta Diabetol. 2020;57:1111–1116. doi: 10.1007/s00592-020-01536-2. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...