Housing Systems Influence Gut Microbiota Composition of Sows but Not of Their Piglets

. 2017 ; 12 (1) : e0170051. [epub] 20170113

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu srovnávací studie, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28085934

Different housing systems can be used in pig production and little is known about their effect on gut microbiota composition. In this study we characterized fecal microbiota by sequencing the rRNA genes in sows kept during gestation in conventional pens with a slatted floor and in enriched pens with a floor covered with deep straw. After farrowing, microbiota of 1- and 4-day-old piglets were also monitored. Microbiota of sows from the enriched system contained significantly more Prevotella, Parabacteroides, CF231, Phascolarctobacterium, Fibrobacter, Anaerovibrio and YRC22 and significantly less Lactobacillus, Bulleidia, Lachnospira, Dorea, Ruminococcus and Oscillospira than microbiota of sows from the conventional system. The Firmicutes to Bacteroidetes ratio was 0.96 in the microbiota of sows kept in the enriched pens and this increased to 1.66 in the microbiota of sows kept in the conventional system. The production system therefore influenced microbiota composition, most likely due the ingestion of the straw. The microbiota of 1- and 4-day-old piglets differed from the microbiota of sows and sows therefore did not represent the most important source for their colonization in early days of life.

Zobrazit více v PubMed

Fleming SE, Fitch MD, DeVries S, Liu ML, Kight C. Nutrient utilization by cells isolated from rat jejunum, cecum and colon. J Nutr. 1991;121:869–78. PubMed

Berry D, Mader E, Lee TK, Woebken D, Wang Y, Zhu D, et al. Tracking heavy water (D2O) incorporation for identifying and sorting active microbial cells. Proc Natl Acad Sci U S A. 2015;112:E194–203. 10.1073/pnas.1420406112 PubMed DOI PMC

Levast B, Berri M, Wilson HL, Meurens F, Salmon H. Development of gut immunoglobulin A production in piglet in response to innate and environmental factors. Dev Comp Immunol. 2014;44:235–44. 10.1016/j.dci.2013.12.012 PubMed DOI

Arnal ME, Zhang J, Messori S, Bosi P, Smidt H, Lalles JP. Early changes in microbial colonization selectively modulate intestinal enzymes, but not inducible heat shock proteins in young adult Swine. PLoS One. 2014;9:e87967 10.1371/journal.pone.0087967 PubMed DOI PMC

Hermann-Bank ML, Skovgaard K, Stockmarr A, Strube ML, Larsen N, Kongsted H, et al. Characterization of the bacterial gut microbiota of piglets suffering from new neonatal porcine diarrhoea. BMC Vet Res 2015;11:139 10.1186/s12917-015-0419-4 PubMed DOI PMC

Starke IC, Pieper R, Neumann K, Zentek J, Vahjen W. Individual responses of mother sows to a probiotic Enterococcus faecium strain lead to different microbiota composition in their offspring. Benef Microbes. 2013;4:345–56. 10.3920/BM2013.0021 PubMed DOI

Thompson CL, Wang B, Holmes AJ. The immediate environment during postnatal development has long-term impact on gut community structure in pigs. ISME J. 2008;2:739–48. 10.1038/ismej.2008.29 PubMed DOI

Gerzova L, Babak V, Sedlar K, Faldynova M, Videnska P, Cejkova D, et al. Characterization of antibiotic resistance gene abundance and microbiota composition in feces of organic and conventional pigs from four EU countries. PLoS One. 2015;10:e0132892 10.1371/journal.pone.0132892 PubMed DOI PMC

Mulder IE, Schmidt B, Stokes CR, Lewis M, Bailey M, Aminov RI et al. (2009) Environmentally-acquired bacteria influence microbial diversity and natural innate immune responses at gut surfaces. BMC Biol 7: 79 10.1186/1741-7007-7-79 PubMed DOI PMC

Passlack N, Vahjen W, Zentek J. Dietary inulin affects the intestinal microbiota in sows and their suckling piglets. BMC Vet Res. 2015;11:51 10.1186/s12917-015-0351-7 PubMed DOI PMC

Umu OC, Frank JA, Fangel JU, Oostindjer M, da Silva CS, Bolhuis EJ, et al. Resistant starch diet induces change in the swine microbiome and a predominance of beneficial bacterial populations. Microbiome. 2015;3:16 10.1186/s40168-015-0078-5 PubMed DOI PMC

Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6. 10.1038/nmeth.f.303 PubMed DOI PMC

Slifierz MJ, Friendship RM, Weese JS. Longitudinal study of the early-life fecal and nasal microbiotas of the domestic pig. BMC Microbiol. 2015;15:184 10.1186/s12866-015-0512-7 PubMed DOI PMC

Videnska P, Sedlar K, Lukac M, Faldynova M, Gerzova L, Cejkova D, et al. Succession and replacement of bacterial populations in the caecum of egg laying hens over their whole life. PLoS One. 2014;9:e115142 10.1371/journal.pone.0115142 PubMed DOI PMC

Lowe BA, Marsh TL, Isaacs-Cosgrove N, Kirkwood RN, Kiupel M, Mulks MH. Defining the "core microbiome" of the microbial communities in the tonsils of healthy pigs. BMC Microbiol. 2012;12:20 10.1186/1471-2180-12-20 PubMed DOI PMC

Lowe BA, Marsh TL, Isaacs-Cosgrove N, Kirkwood RN, Kiupel M, Mulks MH. Microbial communities in the tonsils of healthy pigs. Vet Microbiol. 2011;147:346–57. 10.1016/j.vetmic.2010.06.025 PubMed DOI

Leser TD, Amenuvor JZ, Jensen TK, Lindecrona RH, Boye M, Moller K. Culture-independent analysis of gut bacteria: the pig gastrointestinal tract microbiota revisited. Appl Environ Microbiol. 2002;68:673–90. 10.1128/AEM.68.2.673-690.2002 PubMed DOI PMC

Durmic Z, Pethick DW, Pluske JR, Hampson DJ. Changes in bacterial populations inthe colon of pigs fed different sources of dietary fibre, and the development of swine dysentery after experimental infection. J Appl Microbiol. 1998;85:574–82. PubMed

Jacobson M, Fellstrom C, Lindberg R, Wallgren P, Jensen-Waern M. Experimental swine dysentery: comparison between infection models. J Med Microbiol. 2004;53:273–80. 10.1099/jmm.0.05323-0 PubMed DOI

Mach N, Berri M, Estelle J, Levenez F, Lemonnier G, Denis C, et al. Early-life establishment of the swine gut microbiome and impact on host phenotypes. Environ Microbiol Rep. 2015;7:554–69. 10.1111/1758-2229.12285 PubMed DOI

Holmen Larsson JM, Thomsson KA, Rodriguez-Pineiro AM, Karlsson H, Hansson GC. Studies of mucus in mouse stomach, small intestine, and colon. III. Gastrointestinal Muc5ac and Muc2 mucin O-glycan patterns reveal a regiospecific distribution. Am J Physiol Gastrointest Liver Physiol. 2013;305:G357–63. 10.1152/ajpgi.00048.2013 PubMed DOI PMC

Niu Q, Li P, Hao S, Zhang Y, Kim SW, Li H, et al. Dynamic distribution of the gut microbiota and the relationship with apparent crude fiber digestibility and growth stages in pigs. Sci Rep. 2015;5:9938 10.1038/srep09938 PubMed DOI PMC

Pajarillo EAB, Chae JP, Balolong MP, Kim HB, Kang DK. Assessment of fecal bacterial diversity among healthy piglets during the weaning transition. J Gen Appl Microbiol. 2014;60:140–6. PubMed

Zhao W, Wang Y, Liu S, Huang J, Zhai Z, He C, et al. The dynamic distribution of porcine microbiota across different ages and gastrointestinal tract segments. PLoS One. 2015;10:e0117441 10.1371/journal.pone.0117441 PubMed DOI PMC

Burrough ER, Arruda BL, Patience JF, Plummer PJ. Alterations in the colonic microbiota of pigs associated with feeding distillers dried grains with solubles. PLoS One. 2015;10:e0141337 10.1371/journal.pone.0141337 PubMed DOI PMC

Ivarsson E, Roos S, Liu HY, Lindberg JE. Fermentable non-starch polysaccharides increases the abundance of Bacteroides-Prevotella-Porphyromonas in ileal microbial community of growing pigs. Animal. 2014;8:1777–87. 10.1017/S1751731114001827 PubMed DOI

Polansky O, Sekelova Z, Faldynova M, Sebkova A, Sisak F, Rychlik I. Important metabolic pathways and biological processes expressed by chicken cecal microbiota. Appl Environ Microbiol. 2016;82:1569–76. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace