The Impact of DNA Extraction Methods on Stool Bacterial and Fungal Microbiota Community Recovery

. 2019 ; 10 () : 821. [epub] 20190417

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31057522

Our understanding of human gut microbiota in health and disease depends on accurate and reproducible microbial data acquisition. The critical step in this process is to apply an appropriate methodology to extract microbial DNA, since biases introduced during the DNA extraction process may result in inaccurate microbial representation. In this study, we attempted to find a DNA extraction protocol which could be effectively used to analyze both the bacterial and fungal community. We evaluated the effect of five DNA extraction methods (QIAamp DNA Stool Mini Kit, PureLinkTM Microbiome DNA Purification Kit, ZR Fecal DNA MiniPrepTM Kit, NucleoSpin® DNA Stool Kit, and IHMS protocol Q) on bacterial and fungal gut microbiome recovery using (i) a defined system of germ-free mice feces spiked with bacterial or fungal strains, and (ii) non-spiked human feces. In our experimental setup, we confirmed that the examined methods significantly differed in efficiency and quality, which affected the identified stool microbiome composition. In addition, our results indicated that fungal DNA extraction might be prone to be affected by reagent/kit contamination, and thus an appropriate blank control should be included in mycobiome research. Overall, standardized IHMS protocol Q, recommended by the International Human Microbiome Consortium, performed the best when considering all the parameters analyzed, and thus could be applied not only in bacterial, but also in fungal microbiome research.

Zobrazit více v PubMed

Angebault C., Ghozlane A., Volant S., Botterel F., d’Enfert C., Bougnoux M.-E. (2018). Combined bacterial and fungal intestinal microbiota analyses: impact of storage conditions and DNA extraction protocols. PLoS One 13:e0201174. 10.1371/journal.pone.0201174 PubMed DOI PMC

Bokulich N. A., Subramanian S., Faith J. J., Gevers D., Gordon J. I., Knight R., et al. (2013). Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 10 57–59. 10.1038/nmeth.2276 PubMed DOI PMC

Cani P. D. (2017). Gut microbiota - at the intersection of everything? Nat. Rev. Gastroenterol. Hepatol. 14 321–322. 10.1038/nrgastro.2017.54 PubMed DOI

Caporaso J. G., Kuczynski J., Stombaugh J., Bittinger K., Bushman F. D., Costello E. K., et al. (2010). QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7 335–336. 10.1038/nmeth.f.303 PubMed DOI PMC

Clemente J. C., Ursell L. K., Parfrey L. W., Knight R. (2012). The impact of the gut microbiota on human health: an integrative view. Cell 148 1258–1270. 10.1016/j.cell.2012.01.035 PubMed DOI PMC

Costea P. I., Zeller G., Sunagawa S., Pelletier E., Alberti A., Levenez F., et al. (2017). Towards standards for human fecal sample processing in metagenomic studies. Nat. Biotechnol. 35 1069–1076. 10.1038/nbt.3960 PubMed DOI

Doré J., Ehrlich S. D., Levenez P., Pelletier E., Alberti A., Bertrand L., et al. (2015). IHMS_SOP 06 V1: Standard Operating Procedure for Fecal Samples DNA Extraction, Protocol Q. Available at: http://www.microbiome-standards.org (accessed January 27 2016).

Edgar R. C. (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26 2460–2461. 10.1093/bioinformatics/btq461 PubMed DOI

El Mouzan M., Wang F., Al Mofarreh M., Menon R., Al Barrag A., Korolev K. S., et al. (2017). Fungal microbiota profile in newly diagnosed treatment-naïve children with crohn’s disease. J. Crohns Colitis 11 586–592. 10.1093/ecco-jcc/jjw197 PubMed DOI

Fontaine C. A., Skorupski A. M., Vowles C. J., Anderson N. E., Poe S. A., Eaton K. A. (2015). How free of germs is germ-free? Detection of bacterial contamination in a germ free mouse unit. Gut Microbes 6 225–233. 10.1080/19490976.2015.1054596 PubMed DOI PMC

Fredricks D. N., Smith C., Meier A. (2005). Comparison of six DNA extraction methods for recovery of fungal DNA as assessed by quantitative PCR. J. Clin. Microbiol. 43 5122–5128. 10.1128/JCM.43.10.5122-5128.2005 PubMed DOI PMC

Hallen-Adams H. E., Suhr M. J. (2016). Fungi in the healthy human gastrointestinal tract. Virulence 8 352–358. 10.1080/21505594.2016.1247140 PubMed DOI PMC

Halwachs B., Madhusudhan N., Krause R., Nilsson R. H., Moissl-Eichinger C., Högenauer C., et al. (2017). Critical issues in mycobiota analysis. Front. Microbiol. 8:180. 10.3389/fmicb.2017.00180 PubMed DOI PMC

Huseyin C. E., Rubio R. C., O’Sullivan O., Cotter P. D., Scanlan P. D. (2017). The fungal frontier: a comparative analysis of methods used in the study of the human gut mycobiome. Front. Microbiol. 8:1432. 10.3389/fmicb.2017.01432 PubMed DOI PMC

Hynson N. A., Bruns T. D. (2009). Evidence of a myco-heterotroph in the plant family Ericaceae that lacks mycorrhizal specificity. Proc. R. Soc. Lond. B Biol. Sci. 276 4053–4059. 10.1098/rspb.2009.1190 PubMed DOI PMC

Kim D., Hofstaedter C. E., Zhao C., Mattei L., Tanes C., Clarke E., et al. (2017). Optimizing methods and dodging pitfalls in microbiome research. Microbiome 5:52. 10.1186/s40168-017-0267-5 PubMed DOI PMC

Knudsen B. E., Bergmark L., Munk P., Lukjancenko O., Priemé A., Aarestrup F. M., et al. (2016). Impact of sample type and DNA isolation procedure on genomic inference of microbiome composition. mSystems 1:e95–16. 10.1128/mSystems.00095-16 PubMed DOI PMC

Kozakova H., Schwarzer M., Tuckova L., Srutkova D., Czarnowska E., Rosiak I., et al. (2016). Colonization of germ-free mice with a mixture of three lactobacillus strains enhances the integrity of gut mucosa and ameliorates allergic sensitization. Cell. Mol. Immunol. 13 251–262. 10.1038/cmi.2015.09 PubMed DOI PMC

Kubasova T., Davidova-Gerzova L., Merlot E., Medvecky M., Polansky O., Gardan-Salmon D., et al. (2017). Housing systems influence gut microbiota composition of sows but not of their piglets. PLoS One 12:e0170051. 10.1371/journal.pone.0170051 PubMed DOI PMC

Lamprinaki D., Beasy G., Zhekova A., Wittmann A., James S., Dicks J., et al. (2017). LC3-associated phagocytosis is required for dendritic cell inflammatory cytokine response to gut commensal yeast saccharomyces cerevisiae. Front. Immunol. 8:1397. 10.3389/fimmu.2017.01397 PubMed DOI PMC

Lim M. Y., Song E.-J., Kim S. H., Lee J., Nam Y.-D. (2018). Comparison of DNA extraction methods for human gut microbial community profiling. Syst. Appl. Microbiol. 41 151–157. 10.1016/j.syapm.2017.11.008 PubMed DOI

Louis P., Hold G. L., Flint H. J. (2014). The gut microbiota, bacterial metabolites and colorectal cancer. Nat. Rev. Microbiol. 12 661–672. 10.1038/nrmicro3344 PubMed DOI

Lozupone C. A., Stombaugh J. I., Gordon J. I., Jansson J. K., Knight R. (2012). Diversity, stability and resilience of the human gut microbiota. Nature 489 220–230. 10.1038/nature11550 PubMed DOI PMC

Maloy K. J., Powrie F. (2011). Intestinal homeostasis and its breakdown in inflammatory bowel disease. Nature 474 298–306. 10.1038/nature10208 PubMed DOI

Mandarano A. H., Giloteaux L., Keller B. A., Levine S. M., Hanson M. R. (2018). Eukaryotes in the gut microbiota in myalgic encephalomyelitis/chronic fatigue syndrome. PeerJ 6:e4282. 10.7717/peerj.4282 PubMed DOI PMC

Mattill H. A., Hawk P. B. (1911). A method for the quantitative determination of fecal bacteria. J. Exp. Med. 14 433–444. 10.1084/jem.14.4.433 PubMed DOI PMC

Maukonen J., Simões C., Saarela M. (2012). The currently used commercial DNA-extraction methods give different results of clostridial and actinobacterial populations derived from human fecal samples. FEMS Microbiol. Ecol. 79 697–708. 10.1111/j.1574-6941.2011.01257.x PubMed DOI

McOrist A. L., Jackson M., Bird A. R. (2002). A comparison of five methods for extraction of bacterial DNA from human faecal samples. J. Microbiol. Methods 50 131–139. 10.1016/S0167-7012(02)00018-0 PubMed DOI

Miyoshi J., Sofia M. A., Pierre J. F. (2018). The evidence for fungus in Crohn’s disease pathogenesis. Clin. J. Gastroenterol. 11 449–456. 10.1007/s12328-018-0886-9 PubMed DOI

Nemcova E., Cernochova M., Ruzicka F., Malisova B., Freiberger T., Nemec P. (2015). Rapid identification of medically important Candida isolates using high resolution melting analysis. PLoS One 10:e0116940. 10.1371/journal.pone.0116940 PubMed DOI PMC

Pascale A., Marchesi N., Marelli C., Coppola A., Luzi L., Govoni S., et al. (2018). Microbiota and metabolic diseases. Endocrine 61 357–371. 10.1007/s12020-018-1605-5 PubMed DOI

Qin J., Li R., Raes J., Arumugam M., Burgdorf K. S., Manichanh C., et al. (2010). A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464 59–65. 10.1038/nature08821 PubMed DOI PMC

Qin J., Li Y., Cai Z., Li S., Zhu J., Zhang F., et al. (2012). A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490 55–60. 10.1038/nature11450 PubMed DOI

Rintala A., Pietilä S., Munukka E., Eerola E., Pursiheimo J.-P., Laiho A., et al. (2017). Gut microbiota analysis results are highly dependent on the 16S rRNA gene target region, whereas the impact of DNA extraction is minor. J. Biomol. Tech. 28 19–30. 10.7171/jbt.17-2801-003 PubMed DOI PMC

Rittenour W. R., Park J.-H., Cox-Ganser J. M., Beezhold D. H., Green B. J. (2012). Comparison of DNA extraction methodologies used for assessing fungal diversity via ITS sequencing. J. Environ. Monit. 14 766–774. 10.1039/c2em10779a PubMed DOI PMC

Rogers L. A., Clark W. M., Lubs H. A. (1918). The characteristics of bacteria of the colon type occurring in human feces. J. Bacteriol. 3 231–252. PubMed PMC

Rognes T., Flouri T., Nichols B., Quince C., Mahé F. (2016). VSEARCH: a versatile open source tool for metagenomics. PeerJ 4:e2584. 10.7717/peerj.2584 PubMed DOI PMC

Salem I., Ramser A., Isham N., Ghannoum M. A. (2018). The gut microbiome as a major regulator of the gut-skin axis. Front. Microbiol. 9:1459. 10.3389/fmicb.2018.01459 PubMed DOI PMC

Salonen A., Nikkilä J., Jalanka-Tuovinen J., Immonen O., Rajilić-Stojanović M., Kekkonen R. A., et al. (2010). Comparative analysis of fecal DNA extraction methods with phylogenetic microarray: effective recovery of bacterial and archaeal DNA using mechanical cell lysis. J. Microbiol. Methods 81 127–134. 10.1016/j.mimet.2010.02.007 PubMed DOI

Salter S. J., Cox M. J., Turek E. M., Calus S. T., Cookson W. O., Moffatt M. F., et al. (2014). Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 12:87. 10.1186/s12915-014-0087-z PubMed DOI PMC

Santiago A., Panda S., Mengels G., Martinez X., Azpiroz F., Dore J., et al. (2014). Processing faecal samples: a step forward for standards in microbial community analysis. BMC Microbiol. 14:112. 10.1186/1471-2180-14-112 PubMed DOI PMC

Schwarzer M., Makki K., Storelli G., Machuca-Gayet I., Srutkova D., Hermanova P., et al. (2016). Lactobacillus plantarum strain maintains growth of infant mice during chronic undernutrition. Science 351 854–857. 10.1126/science.aad8588 PubMed DOI

Schwarzer M., Srutkova D., Hermanova P., Leulier F., Kozakova H., Schabussova I. (2017). Diet matters: endotoxin in the diet impacts the level of allergic sensitization in germ-free mice. PLoS One 12:e0167786. 10.1371/journal.pone.0167786 PubMed DOI PMC

Sokol H., Leducq V., Aschard H., Pham H.-P., Jegou S., Landman C., et al. (2017). Fungal microbiota dysbiosis in IBD. Gut 66 1039–1048. 10.1136/gutjnl-2015-310746 PubMed DOI PMC

Turnbaugh P. J., Ley R. E., Mahowald M. A., Magrini V., Mardis E. R., Gordon J. I. (2006). An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444 1027–1031. 10.1038/nature05414 PubMed DOI

Underhill D. M., Iliev I. D. (2014). The mycobiota: interactions between commensal fungi and the host immune system. Nat. Rev. Immunol. 14 405–416. 10.1038/nri3684 PubMed DOI PMC

Velásquez-Mejía E. P., de la Cuesta-Zuluaga J., Escobar J. S. (2018). Impact of DNA extraction, sample dilution, and reagent contamination on 16S rRNA gene sequencing of human feces. Appl. Microbiol. Biotechnol. 102 403–411. 10.1007/s00253-017-8583-z PubMed DOI

Wesolowska-Andersen A., Bahl M. I., Carvalho V., Kristiansen K., Sicheritz-Pontén T., Gupta R., et al. (2014). Choice of bacterial DNA extraction method from fecal material influences community structure as evaluated by metagenomic analysis. Microbiome 2:19. 10.1186/2049-2618-2-19 PubMed DOI PMC

Wheeler M. L., Limon J. J., Bar A. S., Leal C. A., Gargus M., Tang J., et al. (2016). Immunological consequences of intestinal fungal dysbiosis. Cell Host Microbe 19 865–873. 10.1016/j.chom.2016.05.003 PubMed DOI PMC

Yu Z., Morrison M. (2004). Improved extraction of PCR-quality community DNA from digesta and fecal samples. BioTechniques 36 808–812. 10.2144/04365ST04 PubMed DOI

Zakrzewski M., Proietti C., Ellis J. J., Hasan S., Brion M.-J., Berger B., et al. (2017). Calypso: a user-friendly web-server for mining and visualizing microbiome-environment interactions. Bioinformatics 33 782–783. 10.1093/bioinformatics/btw725 PubMed DOI PMC

Zheng P., Zeng B., Zhou C., Liu M., Fang Z., Xu X., et al. (2016). Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Mol. Psychiatry 21 786–796. 10.1038/mp.2016.44 PubMed DOI

Zuo T., Wong S. H., Cheung C. P., Lam K., Lui R., Cheung K., et al. (2018). Gut fungal dysbiosis correlates with reduced efficacy of fecal microbiota transplantation in Clostridium difficile infection. Nat. Commun. 9:3663. 10.1038/s41467-018-06103-6 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...