Bacterial but Not Fungal Gut Microbiota Alterations Are Associated With Common Variable Immunodeficiency (CVID) Phenotype
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31456808
PubMed Central
PMC6700332
DOI
10.3389/fimmu.2019.01914
Knihovny.cz E-zdroje
- Klíčová slova
- CVID, IgA, fungal microbiome, fungal microbiota, gut microbiome, gut microbiota, gut mycobiome, gut mycobiota,
- MeSH
- Bacteria klasifikace genetika imunologie MeSH
- běžná variabilní imunodeficience imunologie mikrobiologie MeSH
- biodiverzita MeSH
- dospělí MeSH
- feces mikrobiologie MeSH
- houby klasifikace genetika imunologie MeSH
- imunoglobulin A krev imunologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mykobiom * MeSH
- senioři MeSH
- střevní mikroflóra * imunologie MeSH
- studie případů a kontrol MeSH
- zdraví rodiny MeSH
- zdravotní stav MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- imunoglobulin A MeSH
Common Variable Immunodeficiency (CVID) is the most frequent symptomatic immune disorder characterized by reduced serum immunoglobulins. Patients often suffer from infectious and serious non-infectious complications which impact their life tremendously. The monogenic cause has been revealed in a minority of patients so far, indicating the role of multiple genes and environmental factors in CVID etiology. Using 16S and ITS rRNA amplicon sequencing, we analyzed the bacterial and fungal gut microbiota, respectively, in a group of 55 participants constituting of CVID patients and matched healthy controls including 16 case-control pairs living in the same household, to explore possible associations between gut microbiota composition and disease phenotype. We revealed less diverse and significantly altered bacterial but not fungal gut microbiota in CVID patients, which additionally appeared to be associated with a more severe disease phenotype. The factor of sharing the same household impacted both bacterial and fungal microbiome data significantly, although not as strongly as CVID diagnosis in bacterial assessment. Overall, our results suggest that gut bacterial microbiota is altered in CVID patients and may be one of the missing environmental drivers contributing to some of the symptoms and disease severity. Paired samples serving as controls will provide a better resolution between disease-related dysbiosis and other environmental confounders in future studies.
Central European Institute of Technology Masaryk University Brno Czechia
Centre for Cardiovascular Surgery and Transplantation Brno Czechia
Department of Biology Faculty of Medicine Masaryk University Brno Czechia
Department of Clinical Immunology and Allergology St Anne's University Hospital in Brno Brno Czechia
Zobrazit více v PubMed
Ameratunga R. Assessing disease severity in common variable immunodeficiency disorders (CVID) and CVID-like disorders. Front Immunol. (2018) 9:2130. 10.3389/fimmu.2018.02130 PubMed DOI PMC
Odnoletkova I, Kindle G, Quinti I, Grimbacher B, Knerr V, Gathmann B, et al. . The burden of common variable immunodeficiency disorders: a retrospective analysis of the European Society for Immunodeficiency (ESID) registry data. Orphanet J Rare Dis. (2018) 13:201. 10.1186/s13023-018-0941-0 PubMed DOI PMC
Bonilla FA, Barlan I, Chapel H, Costa-Carvalho BT, Cunningham-Rundles C, de la Morena MT, et al. . International consensus document (ICON): common variable immunodeficiency disorders. J Allergy Clin Immunol Pract. (2016) 4:38–59. 10.1016/j.jaip.2015.07.025 PubMed DOI PMC
Salzer U, Warnatz K, Peter HH. Common variable immunodeficiency - an update. Arthritis Res Ther. (2012) 14:223. 10.1186/ar4032 PubMed DOI PMC
Mayor PC, Eng KH, Singel KL, Abrams SI, Odunsi K, Moysich KB, et al. . Cancer in primary immunodeficiency diseases: cancer incidence in the United States Immune Deficiency Network Registry. J Allergy Clin Immunol. (2018) 141:1028–35. 10.1016/j.jaci.2017.05.024 PubMed DOI PMC
Conley ME, Notarangelo LD, Etzioni A. Diagnostic criteria for primary immunodeficiencies. Representing PAGID (Pan-American Group for Immunodeficiency) and ESID (European Society for Immunodeficiencies). Clin Immunol. (1999) 93:190–7. 10.1006/clim.1999.4799 PubMed DOI
Seidel MG, Kindle G, Gathmann B, Quinti I, Buckland M, van Montfrans J, et al. . The European Society for Immunodeficiencies (ESID) registry working definitions for the clinical diagnosis of inborn errors of immunity. J Allergy Clin Immunol Pract. (2019) 7:1763–70. 10.1016/j.jaip.2019.02.004 PubMed DOI
Bogaert DJA, Dullaers M, Lambrecht BN, Vermaelen KY, De Baere E, Haerynck F. Genes associated with common variable immunodeficiency: one diagnosis to rule them all? J Med Genet. (2016) 53:575–90. 10.1136/jmedgenet-2015-103690 PubMed DOI
Gilbert JA, Blaser MJ, Caporaso JG, Jansson JK, Lynch SV, Knight R. Current understanding of the human microbiome. Nat Med. (2018) 24:392–400. 10.1038/nm.4517 PubMed DOI PMC
Knight R. Expanding our Understanding of the Role of the Microbiome in Health and Disease. Arch Med Res. (2017) 48:663–5. 10.1016/j.arcmed.2018.02.002 PubMed DOI
Gilbert JA, Quinn RA, Debelius J, Xu ZZ, Morton J, Garg N, et al. . Microbiome-wide association studies link dynamic microbial consortia to disease. Nature. (2016) 535:94–103. 10.1038/nature18850 PubMed DOI
Planer JD, Peng Y, Kau AL, Blanton LV, Ndao IM, Tarr PI, et al. . Development of the gut microbiota and mucosal IgA responses in twins and gnotobiotic mice. Nature. (2016) 534:263–6. 10.1038/nature17940 PubMed DOI PMC
Schirmer M, Smeekens SP, Vlamakis H, Jaeger M, Oosting M, Franzosa EA, et al. Linking the human gut microbiome to inflammatory cytokine production capacity. Cell. (2016) 167:1125–36.e8. 10.1016/j.cell.2016.10.020 PubMed DOI PMC
Shulzhenko N, Morgun A, Hsiao W, Battle M, Yao M, Gavrilova O, et al. . Crosstalk between B lymphocytes, microbiota and the intestinal epithelium governs immunity versus metabolism in the gut. Nat Med. (2011) 17:1585–93. 10.1038/nm.2505 PubMed DOI PMC
Levy M, Kolodziejczyk AA, Thaiss CA, Elinav E. Dysbiosis and the immune system. Nat Rev Immunol. (2017) 17:219–32. 10.1038/nri.2017.7 PubMed DOI
Petta I, Fraussen J, Somers V, Kleinewietfeld M. Interrelation of diet, gut microbiome, and autoantibody production. Front Immunol. (2018) 9:439. 10.3389/fimmu.2018.00439 PubMed DOI PMC
Kelly C, Salinas I. Under pressure: interactions between commensal microbiota and the teleost immune system. Front Immunol. (2017) 8:559. 10.3389/fimmu.2017.00559 PubMed DOI PMC
Li Z, Quan G, Jiang X, Yang Y, Ding X, Zhang D, et al. . Effects of metabolites derived from gut microbiota and hosts on pathogens. Front Cell Infect Microbiol. (2018) 8:314. 10.3389/fcimb.2018.00314 PubMed DOI PMC
Bunker JJ, Bendelac A. IgA responses to microbiota. Immunity. (2018) 49:211–24. 10.1016/j.immuni.2018.08.011 PubMed DOI PMC
Schofield WB, Palm NW. Gut microbiota: IgA protects the pioneers. Curr Biol. (2018) 28:R1117–9. 10.1016/j.cub.2018.08.019 PubMed DOI
Kubinak JL, Round JL. Do antibodies select a healthy microbiota? Nat Rev Immunol. (2016) 16:767–74. 10.1038/nri.2016.114 PubMed DOI PMC
Kawamoto S, Maruya M, Kato LM, Suda W, Atarashi K, Doi Y, et al. . Foxp3(+) T cells regulate immunoglobulin a selection and facilitate diversification of bacterial species responsible for immune homeostasis. Immunity. (2014) 41:152–65. 10.1016/j.immuni.2014.05.016 PubMed DOI
Suzuki K, Meek B, Doi Y, Muramatsu M, Chiba T, Honjo T, et al. . Aberrant expansion of segmented filamentous bacteria in IgA-deficient gut. Proc Natl Acad Sci USA. (2004) 101:1981–6. 10.1073/pnas.0307317101 PubMed DOI PMC
Berbers R-M, Nierkens S, van Laar JM, Bogaert D, Leavis HL. Microbial dysbiosis in common variable immune deficiencies: evidence, causes, and consequences. Trends Immunol. (2017) 38:206–16. 10.1016/j.it.2016.11.008 PubMed DOI
Fadlallah J, El Kafsi H, Sterlin D, Juste C, Parizot C, Dorgham K, et al. . Microbial ecology perturbation in human IgA deficiency. Sci Transl Med. (2018) 10:eaan1217. 10.1126/scitranslmed.aan1217 PubMed DOI
Jørgensen SF, Trøseid M, Kummen M, Anmarkrud JA, Michelsen AE, Osnes LT, et al. . Altered gut microbiota profile in common variable immunodeficiency associates with levels of lipopolysaccharide and markers of systemic immune activation. Mucosal Immunol. (2016) 9:1455–65. 10.1038/mi.2016.18 PubMed DOI
Jørgensen SF, Holm K, Macpherson ME, Storm-Larsen C, Kummen M, Fevang B, et al. . Selective IgA deficiency in humans is associated with reduced gut microbial diversity. J Allergy Clin Immunol. (2019) 143:1969–71.e11. 10.1016/j.jaci.2019.01.019 PubMed DOI
Shulzhenko N, Dong X, Vyshenska D, Greer RL, Gurung M, Vasquez-Perez S, et al. . CVID enteropathy is characterized by exceeding low mucosal IgA levels and interferon-driven inflammation possibly related to the presence of a pathobiont. Clin Immunol. (2018) 197:139–53. 10.1016/j.clim.2018.09.008 PubMed DOI PMC
Lai GC, Tan TG, Pavelka N. The mammalian mycobiome: a complex system in a dynamic relationship with the host. Wiley Interdiscip Rev Syst Biol Med. (2019) 11:e1438. 10.1002/wsbm.1438 PubMed DOI PMC
Underhill DM, Iliev ID. The mycobiota: interactions between commensal fungi and the host immune system. Nat Rev Immunol. (2014) 14:405–16. 10.1038/nri3684 PubMed DOI PMC
Limon JJ, Skalski JH, Underhill DM. Commensal fungi in health and disease. Cell Host Microbe. (2017) 22:156–65. 10.1016/j.chom.2017.07.002 PubMed DOI PMC
Paterson MJ, Oh S, Underhill DM. Host-microbe interactions: commensal fungi in the gut. Curr Opin Microbiol. (2017) 40:131–7. 10.1016/j.mib.2017.11.012 PubMed DOI PMC
Human Microbiome Project Consortium Structure, function and diversity of the healthy human microbiome. Nature. (2012) 486:207–14. 10.1038/nature11234 PubMed DOI PMC
Chapel H, Lucas M, Lee M, Bjorkander J, Webster D, Grimbacher B, et al. . Common variable immunodeficiency disorders: division into distinct clinical phenotypes. Blood. (2008) 112:277–86. 10.1182/blood-2007-11-124545 PubMed DOI
Doré J, Ehrlich SD, Levenez P, Pelletier E, Alberti A, Bertrand L, et al. IHMS_SOP 03 V1: standard operating procedure for fecal samples self-collection, laboratory analysis handled within 4 to 24 hours (4 hours < x ≤ 24 hours) (2015).
Doré J, Ehrlich SD, Levenez P, Pelletier E, Alberti A, Bertrand L, et al. IHMS_SOP 06 V1: Standard Operating Procedure for Fecal Samples DNA Extraction, Protocol Q. (2015). Available online at: http://www.microbiome-standards.org (accessed January 27, 2016).
Illumina I. 16S Metagenomic sequencing library preparation. Preparing 16S Ribosomal RNA Gene Amplicons for the Illumina MiSeq System. (2013) 1–28.
Fiedorová K, Radvanský M, Němcová E, Grombiríková H, Bosák J, Cernochová M, et al. . The impact of DNA extraction methods on stool bacterial and fungal microbiota community recovery. Front Microbiol. (2019) 10:821. 10.3389/fmicb.2019.00821 PubMed DOI PMC
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. . QIIME allows analysis of high-throughput community sequencing data. Nat Methods. (2010) 7:335–6. 10.1038/nmeth.f.303 PubMed DOI PMC
Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open source tool for metagenomics. PeerJ. (2016) 4:e2584. 10.7717/peerj.2584 PubMed DOI PMC
DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, et al. . Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol. (2006) 72:5069–72. 10.1128/AEM.03006-05 PubMed DOI PMC
Nilsson RH, Tedersoo L, Ryberg M, Kristiansson E, Hartmann M, Unterseher M, et al. . A comprehensive, automatically updated fungal ITS sequence dataset for reference-based chimera control in environmental sequencing efforts. Microbes Environ. (2015) 30:145–50. 10.1264/jsme2.ME14121 PubMed DOI PMC
Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. (2010) 26:2460–1. 10.1093/bioinformatics/btq461 PubMed DOI
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. (1990) 215:403–10. 10.1016/S0022-2836(05)80360-2 PubMed DOI
Bokulich NA, Subramanian S, Faith JJ, Gevers D, Gordon JI, Knight R, et al. . Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat Methods. (2013) 10:57–9. 10.1038/nmeth.2276 PubMed DOI PMC
Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R. PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics. (2010) 26:266–7. 10.1093/bioinformatics/btp636 PubMed DOI PMC
Price MN, Dehal PS, Arkin AP. FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS ONE. (2010) 5:e9490. 10.1371/journal.pone.0009490 PubMed DOI PMC
Zakrzewski M, Proietti C, Ellis JJ, Hasan S, Brion M-J, Berger B, et al. . Calypso: a user-friendly web-server for mining and visualizing microbiome-environment interactions. Bioinformatics. (2017) 33:782–3. 10.1093/bioinformatics/btw725 PubMed DOI PMC
R Core Team . R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing; (2018). Available online at: http://www.R-project.org (accessed February 14, 2019).
Lozupone CA, Knight R. Species divergence and the measurement of microbial diversity. FEMS Microbiol Rev. (2008) 32:557–78. 10.1111/j.1574-6976.2008.00111.x PubMed DOI PMC
Opazo MC, Ortega-Rocha EM, Coronado-Arrázola I, Bonifaz LC, Boudin H, Neunlist M, et al. . Intestinal microbiota influences non-intestinal related autoimmune diseases. Front Microbiol. (2018) 9:432. 10.3389/fmicb.2018.00432 PubMed DOI PMC
Mancabelli L, Milani C, Lugli GA, Turroni F, Cocconi D, van Sinderen D, et al. . Identification of universal gut microbial biomarkers of common human intestinal diseases by meta-analysis. FEMS Microbiol Ecol. (2017) 93:fix153. 10.1093/femsec/fix153 PubMed DOI
Kriss M, Hazleton KZ, Nusbacher NM, Martin CG, Lozupone CA. Low diversity gut microbiota dysbiosis: drivers, functional implications and recovery. Curr Opin Microbiol. (2018) 44:34–40. 10.1016/j.mib.2018.07.003 PubMed DOI PMC
Shade A. Diversity is the question, not the answer. ISME J. (2017) 11:1–6. 10.1038/ismej.2016.118 PubMed DOI PMC
Giloteaux L, Goodrich JK, Walters WA, Levine SM, Ley RE, Hanson MR. Reduced diversity and altered composition of the gut microbiome in individuals with myalgic encephalomyelitis/chronic fatigue syndrome. Microbiome. (2016) 4:30. 10.1186/s40168-016-0171-4 PubMed DOI PMC
Duvallet C, Gibbons SM, Gurry T, Irizarry RA, Alm EJ. Meta-analysis of gut microbiome studies identifies disease-specific and shared responses. Nat Commun. (2017) 8:1784. 10.1038/s41467-017-01973-8 PubMed DOI PMC
Janssen R, Krogfelt KA, Cawthraw SA, van Pelt W, Wagenaar JA, Owen RJ. Host-pathogen interactions in campylobacter infections: the host perspective. Clin Microbiol Rev. (2008) 21:505–18. 10.1128/CMR.00055-07 PubMed DOI PMC
Bunker JJ, Erickson SA, Flynn TM, Henry C, Koval JC, Meisel M, et al. . Natural polyreactive IgA antibodies coat the intestinal microbiota. Science. (2017) 358:eaan6619. 10.1126/science.aan6619 PubMed DOI PMC
Fadlallah J, Sterlin D, Fieschi C, Parizot C, Dorgham K, El Kafsi H, et al. . Synergistic convergence of microbiota-specific systemic IgG and secretory IgA. J Allergy Clin Immunol. (2019) 143:1575–85.e4. 10.1016/j.jaci.2018.09.036 PubMed DOI
Dill-McFarland KA, Tang Z-Z, Kemis JH, Kerby RL, Chen G, Palloni A, et al. . Close social relationships correlate with human gut microbiota composition. Sci Rep. (2019) 9:703. 10.1038/s41598-018-37298-9 PubMed DOI PMC
Song SJ, Lauber C, Costello EK, Lozupone CA, Humphrey G, Berg-Lyons D, et al. . Cohabiting family members share microbiota with one another and with their dogs. Elife. (2013) 2:e00458. 10.7554/eLife.00458 PubMed DOI PMC
Nash AK, Auchtung TA, Wong MC, Smith DP, Gesell JR, Ross MC, et al. . The gut mycobiome of the Human Microbiome Project healthy cohort. Microbiome. (2017) 5:153. 10.1186/s40168-017-0373-4 PubMed DOI PMC
Richard ML, Sokol H. The gut mycobiota: insights into analysis, environmental interactions and role in gastrointestinal diseases. Nat Rev Gastroenterol Hepatol. (2019) 16:331–345. 10.1038/s41575-019-0121-2 PubMed DOI
Hallen-Adams HE, Suhr MJ. Fungi in the healthy human gastrointestinal tract. Virulence. (2017) 8:352–8. 10.1080/21505594.2016.1247140 PubMed DOI PMC
Peay KG, Kennedy PG, Talbot JM. Dimensions of biodiversity in the Earth mycobiome. Nat Rev Microbiol. (2016) 14:434–47. 10.1038/nrmicro.2016.59 PubMed DOI
Hoffmann C, Dollive S, Grunberg S, Chen J, Li H, Wu GD, et al. . Archaea and fungi of the human gut microbiome: correlations with diet and bacterial residents. PLoS ONE. (2013) 8:e66019. 10.1371/journal.pone.0066019 PubMed DOI PMC
Hallen-Adams HE, Kachman SD, Kim J, Legge RM, Martínez I. Fungi inhabiting the healthy human gastrointestinal tract: a diverse and dynamic community. Fungal Ecol. (2015) 15:9–17. 10.1016/j.funeco.2015.01.006 DOI
Hoggard M, Vesty A, Wong G, Montgomery JM, Fourie C, Douglas RG, et al. . Characterizing the human mycobiota: a comparison of small subunit rRNA, ITS1, ITS2, and large subunit rRNA genomic targets. Front Microbiol. (2018) 9:2208. 10.3389/fmicb.2018.02208 PubMed DOI PMC
Nilsson RH, Larsson K-H, Taylor AFS, Bengtsson-Palme J, Jeppesen TS, Schigel D, et al. . The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. (2019) 47:D259–64. 10.1093/nar/gky1022 PubMed DOI PMC
Taylor JW. One fungus = one name: DNA and fungal nomenclature twenty years after PCR. IMA Fungus. (2011) 2:113–20. 10.5598/imafungus.2011.02.02.01 PubMed DOI PMC
Gupta VK, Paul S, Dutta C. Geography, ethnicity or subsistence-specific variations in human microbiome composition and diversity. Front Microbiol. (2017) 8:1162. 10.3389/fmicb.2017.01162 PubMed DOI PMC
Miyoshi J, Sofia MA, Pierre JF. The evidence for fungus in Crohn's disease pathogenesis. Clin J Gastroenterol. (2018) 11:449–56. 10.1007/s12328-018-0886-9 PubMed DOI
Kumar A, Babu R, Bijulal S, Abraham M, Sasidharan P, Kathuria S, et al. . Invasive mycosis due to species of blastobotrys in immunocompromised patients with reduced susceptibility to antifungals. J Clin Microbiol. (2014) 52:4094–9. 10.1128/JCM.01977-14 PubMed DOI PMC
Dollive S, Chen Y-Y, Grunberg S, Bittinger K, Hoffmann C, Vandivier L, et al. . Fungi of the murine gut: episodic variation and proliferation during antibiotic treatment. PLoS ONE. (2013) 8:e71806. 10.1371/journal.pone.0071806 PubMed DOI PMC
Schei K, Avershina E, Øien T, Rudi K, Follestad T, Salamati S, et al. . Early gut mycobiota and mother-offspring transfer. Microbiome. (2017) 5:107. 10.1186/s40168-017-0319-x PubMed DOI PMC
Auchtung TA, Fofanova TY, Stewart CJ, Nash AK, Wong MC, Gesell JR, et al. . Investigating colonization of the healthy adult gastrointestinal tract by fungi. mSphere. (2018) 3:e00092-18. 10.1128/mSphere.00092-18 PubMed DOI PMC