Patients With Common Variable Immunodeficiency (CVID) Show Higher Gut Bacterial Diversity and Levels of Low-Abundance Genes Than the Healthy Housemates
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34054845
PubMed Central
PMC8163231
DOI
10.3389/fimmu.2021.671239
Knihovny.cz E-zdroje
- Klíčová slova
- CVID, Hungatella hathewayi, common variable immunodeficiency, metabolome, metagenome, microbiome,
- MeSH
- adenosin metabolismus MeSH
- běžná variabilní imunodeficience genetika mikrobiologie MeSH
- biodiverzita MeSH
- Clostridiaceae fyziologie MeSH
- dysbióza genetika mikrobiologie MeSH
- feces mikrobiologie MeSH
- homeostáza MeSH
- lidé MeSH
- metabolomika MeSH
- metagenom MeSH
- RNA ribozomální 16S genetika MeSH
- střevní mikroflóra genetika MeSH
- výpočetní biologie metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adenosin MeSH
- RNA ribozomální 16S MeSH
Common variable immunodeficiency (CVID) is a clinically and genetically heterogeneous disorder with inadequate antibody responses and low levels of immunoglobulins including IgA that is involved in the maintenance of the intestinal homeostasis. In this study, we analyzed the taxonomical and functional metagenome of the fecal microbiota and stool metabolome in a cohort of six CVID patients without gastroenterological symptomatology and their healthy housemates. The fecal microbiome of CVID patients contained higher numbers of bacterial species and altered abundance of thirty-four species. Hungatella hathewayi was frequent in CVID microbiome and absent in controls. Moreover, the CVID metagenome was enriched for low-abundance genes likely encoding nonessential functions, such as bacterial motility and metabolism of aromatic compounds. Metabolomics revealed dysregulation in several metabolic pathways, mostly associated with decreased levels of adenosine in CVID patients. Identified features have been consistently associated with CVID diagnosis across the patients with various immunological characteristics, length of treatment, and age. Taken together, this initial study revealed expansion of bacterial diversity in the host immunodeficient conditions and suggested several bacterial species and metabolites, which have potential to be diagnostic and/or prognostic CVID markers in the future.
Centre for Cardiovascular Surgery and Transplantation Brno Czechia
Department of Biology Faculty of Medicine Masaryk University Brno Czechia
Department of Clinical Immunology and Allergology St Anne's University Hospital in Brno Brno Czechia
Faculty of Informatics Masaryk University Brno Czechia
RECETOX Center Faculty of Science Masaryk University Brno Czechia
Zobrazit více v PubMed
Guarner F, Malagelada JR. Gut Flora in Health and Disease. Lancet (2003) 361:512–9. 10.1016/S0140-6736(03)12489-0 PubMed DOI
Quigley EMM. Gut Bacteria in Health and Disease. Gastroenterol Hepatol (NY) (2013) 9:560–9. PubMed PMC
Pascale A, Marchesi N, Marelli C, Coppola A, Luzi L, Govoni S, et al. . Microbiota and Metabolic Diseases. Endocrine (2018) 61:357–71. 10.1007/s12020-018-1605-5 PubMed DOI
Zheng D, Liwinski T, Elinav E. Interaction Between Microbiota and Immunity in Health and Disease. Cell Res (2020) 30:492–506. 10.1038/s41422-020-0332-7 PubMed DOI PMC
Bogaert DJA, Dullaers M, Lambrecht BN, Vermaelen KY, De Baere E, Haerynck F. Genes Associated With Common Variable Immunodeficiency: One Diagnosis to Rule Them All? J Med Genet (2016) 53:575–90. 10.1136/jmedgenet-2015-103690 PubMed DOI
Ameratunga R. Assessing Disease Severity in Common Variable Immunodeficiency Disorders (CVID) and CVID-like Disorders. Front Immunol (2018) 9:2130. 10.3389/fimmu.2018.02130 PubMed DOI PMC
Ameratunga R, Woon ST. Perspective: E Evolving Concepts in the Diagnosis and Understanding of Common Variable Immunodeficiency Disorders (CVID). Clin Rev Allergy Immunol (2020) 59:109–21. 10.1007/s12016-019-08765-6 PubMed DOI
Ho HE, Cunningham-Rundles C. Non-Infectious Complications of Common Variable Immunodeficiency: Updated Clinical Spectrum, Sequelae, and Insights to Pathogenesis. Front Immunol (2020) 11:149. 10.3389/fimmu.2020.00149 PubMed DOI PMC
Yazdani R, Habibi S, Sharifi L, Azizi G, Abolhassani H, Olbrich P, et al. . Common Variable Immunodeficiency: Epidemiology, Pathogenesis, Clinical Manifestations, Diagnosis, Classification, and Management. J Investig Allergol Clin Immunol (2020) 30:14–34. 10.18176/jiaci.0388 PubMed DOI
Mantis NJ, Rol N, Corthésy B. Secretory Iga’s Complex Roles in Immunity and Mucosal Homeostasis in the Gut. Mucosal Immunol (2011) 4:603–11. 10.1038/mi.2011.41 PubMed DOI PMC
Jørgensen SF, Trøseid M, Kummen M, Anmarkrud JA, Michelsen AE, Osnes LT, et al. . Altered Gut Microbiota Profile in Common Variable Immunodeficiency Associates With Levels of Lipopolysaccharide and Markers of Systemic Immune Activation. Mucosal Immunol (2016) 9:1455–65. 10.1038/mi.2016.18 PubMed DOI
Shulzhenko N, Dong X, Vyshenska D, Greer RL, Gurung M, Vasquez-Perez S, et al. . CVID Enteropathy is Characterized by Exceeding Low Mucosal IgA Levels and Interferon-Driven Inflammation Possibly Related to the Presence of a Pathobiont. Clin Immunol (2018) 197:139–53. 10.1016/j.clim.2018.09.008 PubMed DOI PMC
Fiedorová K, Radvanský M, Bosák J, Grombiříková H, Němcová E, Králíčková P, et al. . Bacterial But Not Fungal Gut Microbiota Alterations are Associated With Common Variable Immunodeficiency (CVID) Phenotype. Front Immunol (2019) 10:1914. 10.3389/fimmu.2019.01914 PubMed DOI PMC
van Schewick CM, Nöltner C, Abel S, Burns SO, Workman S, Symes A, et al. . Altered Microbiota, Impaired Quality of Life, Malabsorption, Infection, and Inflammation in CVID Patients With Diarrhoea. Front Immunol (2020) 11:1654. 10.3389/fimmu.2020.01654 PubMed DOI PMC
Fadlallah J, El Kafsi H, Sterlin D, Juste C, Parizot C, Dorgham K, et al. . Microbial Ecology Perturbation in Human IgA Deficiency. Sci Transl Med (2018) 10:eaan1217. 10.1126/scitranslmed.aan1217 PubMed DOI
Bonilla FA, Barlan I, Chapel H, Costa-Carvalho BT, Cunningham-Rundles C, de la Morena MT, et al. . International Consensus Document (ICON): Common Variable Immunodeficiency Disorders. J Allergy Clin Immunol Pract (2016) 4:38–59. 10.1016/j.jaip.2015.07.025 PubMed DOI PMC
Wehr C, Kivioja T, Schmitt C, Ferry B, Witte T, Eren E, et al. . The EUROclass Trial: Defining Subgroups in Common Variable Immunodeficiency. Blood (2008) 111:77–85. 10.1182/blood-2007-06-091744 PubMed DOI
Andrews S. (2010). Available at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/.
Zerbino DR, Birney E. Velvet: Algorithms for De Novo Short Read Assembly Using De Bruijn Graphs. Genome Res (2008) 18:821–9. 10.1101/gr.074492.107 PubMed DOI PMC
Afiahayati, Sato K, Sakakibara Y. Metavelvet-SL: An Extension of the Velvet Assembler to a De Novo Metagenomic Assembler Utilizing Supervised Learning. DNA Res (2015) 22:69–77. 10.1093/dnares/dsu041 PubMed DOI PMC
Buchfink B, Xie C, Huson DH. Fast and Sensitive Protein Alignment Using DIAMOND. Nat Methods (2014) 12:59–60. 10.1038/nmeth.3176 PubMed DOI
Huson DH, Albrecht B, Bağci C, Bessarab I, Górska A, Jolic D, et al. . Megan-Lr: New Algorithms Allow Accurate Binning and Easy Interactive Exploration of Metagenomic Long Reads and Contigs. Biol Direct (2018) 13:e6. 10.1186/s13062-018-0208-7 PubMed DOI PMC
Huson DH, Mitra S, Ruscheweyh HJ, Weber N, Schuster SC. Integrative Analysis of Environmental Sequences Using MEGAN4. Genome Res (2011) 21:1552–60. 10.1101/gr.120618.111 PubMed DOI PMC
Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, et al. . The SEED and the Rapid Annotation of Microbial Genomes Using Subsystems Technology (Rast). Nucleic Acids Res (2014) 42:D206–14. 10.1093/nar/gkt1226 PubMed DOI PMC
McMurdie PJ, Holmes S. Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PloS One (2013) 8:e61217. 10.1371/journal.pone.0061217 PubMed DOI PMC
Oksanen J, Guillaume BF, Friendly M, Kindt R, Legendre P, McGlinn D, et al. . (2019). Available at: https://cran.r-project.org/web/packages/vegan/index.html.
Love MI, Huber W, Anders S. Moderated Estimation of Fold Change and Dispersion for RNA-seq Data With Deseq2. Genome Biol (2014) 15:e550. 10.1186/s13059-014-0550-8 PubMed DOI PMC
Gloor GB, Macklaim JM, Fernandes AD. Displaying Variation in Large Datasets: Plotting a Visual Summary of Effect Sizes. J Comput Graph Stat (2016) 25:971–9. 10.1080/10618600.2015.1131161 DOI
Fernandes AD, Reid JNS, Macklaim JM, McMurrough TA, Edgell DR, Gloor GB. Unifying the Analysis of High-Throughput Sequencing Datasets: Characterizing RNA-Seq, 16S rRNA Gene Sequencing and Selective Growth Experiments by Compositional Data Analysis. Microbiome (2014) 2:e15. 10.1186/2049-2618-2-15 PubMed DOI PMC
Xia J, Wishart DS. Msea: A Web-Based Tool to Identify Biologically Meaningful Patterns in Quantitative Metabolomic Data. Nucleic Acids Res (2010) 38:W71–77. 10.1093/nar/gkq329 PubMed DOI PMC
Goeman JJ, Van de Geer S, De Kort F, van Houwellingen HC. A Global Test for Groups Fo Genes: Testing Association With a Clinical Outcome. Bioinformatics (2004) 20:93–9. 10.1093/bioinformatics/btg382 PubMed DOI
Mohammed AD, Khan MAW, Chatzistamou I, Chamseddine D, Williams-Kang K, Perry M, et al. . Gut Antibody Deficiency in a Mouse Model of Cvid Results in Spontaneous Development of a Gluten-Sensitive Enteropathy. Front Immunol (2019) 10:2484. 10.3389/fimmu.2019.02484 PubMed DOI PMC
Jiang H, Ling Z, Zhang Y, Mao H, Ma Z, Yin Y, et al. . Altered Fecal Microbiota Composition in Patients With Major Depressive Disorder. Brain Behav Immun (2015) 48:186–94. 10.1016/j.bbi.2015.03.016 PubMed DOI
Finegold SM, Dowd SE, Gontcharova V, Liu C, Henley KE, Wolcott RD, et al. . Pyrosequencing Study of Fecal Microflora of Autistic and Control Children. Anaerobe (2010) 16:444–53. 10.1016/j.anaerobe.2010.06.008 PubMed DOI
Yin J, Liao SX, He Y, Wang S, Xia GH, Liu FT, et al. . Dysbiosis of Gut Microbiota With Reduced Trimethylamine-N-oxide Level in Patients With Large-Artery Atherosclerotic Stroke or Transient Ischemic Attack. J Am Heart Assoc (2015) 4:e002699. 10.1161/JAHA.115.002699 PubMed DOI PMC
Feng Q, Liang S, Jia H, Stadlmayr A, Tang L, Lan Z, et al. . Gut Microbiome Development Along the Colorectal Adenoma-Carcinoma Sequence. Nat Commun (2015) 6:e6528. 10.1038/ncomms7528 PubMed DOI
Sanapareddy N, Legge RM, Jovov B, McCoy A, Burcal L, Araujo-Perez F, et al. . Increased Rectal Microbial Richness is Associated With the Presence of Colorectal Adenomas in Humans. ISME J (2012) 6:1858–68. 10.1038/ismej.2012.43 PubMed DOI PMC
Bao S, Hu R, Hambly BD. Il-34, IL-36 and IL-38 in Colorectal Cancer—Key Immunoregulators of Carcinogenesis. Biophys Rev (2020) 12:925–30. 10.1007/s12551-020-00726-0 PubMed DOI PMC
Wolf D, Ley K. Immunity and Inflammation in Atherosclerosis. Circ Res (2019) 124:315–27. 10.1161/CIRCRESAHA.118.313591 PubMed DOI PMC
Berbers RM, Mohamed Hoesein FAA, Ellerbroek PM, van Montfrans JM, Dalm VASH, van Hagen PM, et al. . Low IgA Associated With Oropharyngeal Microbiota Changes and Lung Disease in Primary Antibody Deficiency. Front Immunol (2020) 11:1245. 10.3389/fimmu.2020.01245 PubMed DOI PMC
Baron EJ. Bilophila wadsworthia: A Unique Gram-negative Anaerobic Rod. Anaerobe (1997) 3:83–6. 10.1006/anae.1997.0075 PubMed DOI
Parker BJ, Wearsch PA, Veloo ACM, Rodriguez-Palacios A. The Genus Alistipes: Gut Bacteria With Emerging Implications to Inflammation, Cancer, and Mental Health. Front Immunol (2020) 11:906. 10.3389/fimmu.2020.00906 PubMed DOI PMC
Tamanai-Shacoori Z, Smida I, Bousarghin L, Loreal O, Meuric V, Fong SB, et al. . Roseburia spp. A Marker of Health? Future Microbiol (2017) 12:157–70. 10.2217/fmb-2016-0130 PubMed DOI
Steer T, Collins MD, Gibson GR, Hippe H, Lawson PA. Clostridium hathewayi sp. nov., From Human Faeces. Syst Appl Microbiol (2001) 24:353–7. 10.1078/0723-2020-00044 PubMed DOI
Jørgensen SF, Holm K, Macpherson ME, Storm-Larsen C, Kummen M, Fevang B, et al. . Selective IgA Deficiency in Humans is Associated With Reduced Gut Microbial Diversity. J Allergy Clin Immunol (2019) 143:1969–71. 10.1016/j.jaci.2019.01.019 PubMed DOI
Kaur S, Yawar M, Kumar PA, Suresh K. Hungatella effluvii gen. nov., sp. nov., an Obligately Anaerobic Bacterium Isolated From an Effluent Treatment Plant, and Reclassification of Clostridium hathewayi as Hungatella hathewayi gen. nov., comb. nov. Int J Syst Evol Microbiol (2014) 64:710–8. 10.1099/ijs.0.056986-0 PubMed DOI
Manzoor SE, McNulty CAM, Nakiboneka-Ssenabulya D, Lecky DM, Hardy KJ, Hawkey PM. Investigation of Community Carriage Rates of Clostridium difficile and Hungatella hathewayi in Healthy Volunteers From Four Regions of England. J Hosp Infect (2017) 97:153–5. 10.1016/j.jhin.2017.05.014 PubMed DOI
Woo PCY, Lau SKP, Woo GKS, Fung AMY, Yiu VPY, Yuen KY. Bacteremia Due to Clostridium hathewayi in a Patient With Acute Appendicitis. J Clin Microbiol (2004) 42:5947–9. 10.1128/JCM.42.12.5947-5949.2004 PubMed DOI PMC
Randazzo A, Kornreich A, Lissoir B. A Clostridium hathewayi Isolate in Blood Culture of a Patient With an Acute Appendicitis. Anaerobe (2015) 35:44–7. 10.1016/j.anaerobe.2015.07.003 PubMed DOI
Elsayed S, Zhang K. Human Infection Caused by Clostridium hatheawayi . Emerg Infect Dis (2004) 10:1950–2. 10.3201/eid1011.040006 PubMed DOI PMC
Fouhy F, Ronan NJ, O’Sullivan O, McCarthy Y, Walsh AM, Murphy DM, et al. . A Pilot Study Demonstrating the Altered Gut Microbiota Functionality in Stable Adults With Cystic Fibrosis. Sci Rep (2017) 7:e6685. 10.1038/s41598-017-06880-y PubMed DOI PMC
Hu X, Du J, Xie Y, Huang Q, Xiao Y, Chen J, et al. . Fecal Microbiota Characteristics of Chinese Patients With Primary IgA Nephropathy: A Cross-Sectional Study. BMC Nephrol (2020) 21:e97. 10.1186/s12882-020-01741-9 PubMed DOI PMC
Hu X, Ouyang S, Xie Y, Gong Z, Du J. Characterizing the Gut Microbiota in Patients With Chronic Kidney Disease. Postgrad Med (2020) 132:495–505. 10.1080/00325481.2020.1744335 PubMed DOI
Liang Q, Chiu J, Chen Y, Huang Y, Higashimori A, Fang J, et al. . Fecal Bacteria Act as Novel Biomarkers for Noninvasive Diagnosis of Colorectal Cancer. Clin Cancer Res (2017) 23:2061–70. 10.1158/1078-0432.CCR-16-1599 PubMed DOI
Wirbel J, Pyl PT, Kartal E, Zych K, Kashani A, Milanese A, et al. . Meta-Analysis of Fecal Metagenomes Reveals Global Microbial Signatures That are Specific for Colorectal Cancer. Nat Med (2019) 25:679–89. 10.1038/s41591-019-0406-6 PubMed DOI PMC
Xia X, Wu WKK, Wong SH, Liu D, Kwong TNY, Nakatsu G, et al. . Bacteria Pathogens Drive Host Colonic Epithelial Cell Promoter Hypermethylation of Tumor Suppressor Genes in Colorectal Cancer. Microbiome (2020) 8:e108. 10.1186/s40168-020-00847-4 PubMed DOI PMC
Janzon A, Goodrich JK, Koren O, Waters JL, Ley RE. Interactions Between the Gut Microbiome and Mucosal Immunoglobulins A, M, and G in the Developing Infant Gut. mSystems (2019) 4:e00612–19. 10.1128/msystems.00612-19 PubMed DOI PMC
Mancabelli L, Milani C, Lugli GA, Turroni F, Cocconi D, Van Sinderen D, et al. . Identification of Universal Gut Microbial Biomarkers of Common Human Intestinal Diseases by Meta-Analysis. FEMS Microbiol Ecol (2017) 93:153. 10.1093/femsec/fix153 PubMed DOI
Shade A. Diversity is the Question, Not the Answer. ISME J (2017) 11:1–6. 10.1038/ismej.2016.118 PubMed DOI PMC
Kriss M, Hazleton KZ, Nusbacher NM, Martin CG, Lozupone CA. Low Diversity Gut Microbiota Dysbiosis: Drivers, Functional Implications and Recovery. Curr Opin Microbiol (2018) 44:34–40. 10.1016/j.mib.2018.07.003 PubMed DOI PMC
Falony G, Vieira-Silva S, Raes J. Richness and Ecosystem Development Across Faecal Snapshots of the Gut Microbiota. Nat Microbiol (2018) 3:526–8. 10.1038/s41564-018-0143-5 PubMed DOI
Cullender TC, Chassaing B, Janzon A, Kumar K, Muller CE, Werner JJ, et al. . Innate and Adaptive Immunity Interact to Quench Microbiome Flagellar Motility in the Gut. Cell Host Microbe (2013) 14:571–81. 10.1016/j.chom.2013.10.009 PubMed DOI PMC
Koch MA, Barton GM. TLR5 Stops Commensals in Their Tracks. Cell Host Microbe (2013) 14:488–90. 10.1016/j.chom.2013.10.015 PubMed DOI
Welihinda AA, Kaur M, Greene K, Zhai Y, Amento EP. The Adenosine Metabolite Inosine is a Functional Agonist of the Adenosine A2A Receptor With a Unique Signaling Bias. Cell Signal (2016) 28:552–60. 10.1016/j.cellsig.2016.02.010 PubMed DOI PMC
He B, Hoang TK, Wang T, Ferris M, Taylor CM, Tian X, et al. . Resetting Microbiota by Lactobacillus reuteri Inhibits T Reg Deficiency-Induced Autoimmunity Via Adenosine A2A Receptors. J Exp Med (2017) 214:107–23. 10.1084/jem.20160961 PubMed DOI PMC
Callery EL, Morais CLM, Paraskevaidi M, Brusic V, Vijayadurai P, Anantharachagan A, et al. . New Approach to Investigate Common Variable Immunodeficiency Patients Using Spectrochemical Analysis of Blood. Sci Rep (2019) 9:e7239. 10.1038/s41598-019-43196-5 PubMed DOI PMC
Shao T, Shao L, Li H, Xie Z, He Z, Wen C. Combined Signature of the Fecal Microbiome and Metabolome in Patients With Gout. Front Microbiol (2017) 8:268. 10.3389/fmicb.2017.00268 PubMed DOI PMC
Liu X, Lv Q, Ren H, Gao L, Zhao P, Yang X, et al. . The Altered Gut Microbiota of High- Purine-Induced Hyperuricemia Rats and its Correlation With Hyperuricemia. PeerJ (2020) 3:e8554. 10.7717/peerj.8664 PubMed DOI PMC
Macpherson ME, Hov JR, Ueland T, Dahl TB, Kummen M, Otterdal K, et al. . Gut Microbiota-Dependent Trimethylamine N-oxide Associates With Inflammation in Common Variable Immunodeficiency. Front Immunol (2020) 11:574500. 10.3389/fimmu.2020.574500 PubMed DOI PMC
Ding L, Yang L, Wang Z, Huang W. Bile Acid Nuclear Receptor FXR and Digestive System Diseases. Acta Pharm Sin B (2015) 5:135–44. 10.1016/j.apsb.2015.01.004 PubMed DOI PMC
Fiorucci S, Biagioli M, Zampella A, Distrutti E. Bile Acids Activated Receptors Regulate Innate Immunity. Front Immunol (2018) 9:1853. 10.3389/fimmu.2018.01853 PubMed DOI PMC
Zheng X, Huang F, Zhao A, Lei S, Zhang Y, Xie G, et al. . Bile Acid is a Significant Host Factor Shaping the Gut Microbiome of Diet-Induced Obese Mice. BMC Biol (2017) 15:e120. 10.1186/s12915-017-0462-7 PubMed DOI PMC
Wang Y, Gao X, Zhang X, Xiao Y, Huang J, Yu D, et al. . Gut Microbiota Dysbiosis is Associated With Altered Bile Acid Metabolism in Infantile Cholestasis. mSystems (2019) 4:e00463–19. 10.1128/msystems.00463-19 PubMed DOI PMC
Resnick ES, Moshier EL, Godbold JH, Cunningham-Rundles C. Morbidity and Mortality in Common Variable Immune Deficiency Over 4 Decades. Blood (2012) 119:1650–7. 10.1182/blood-2011-09-377945 PubMed DOI PMC
Crotty R, Taylor MS, Farmer JR, Kakar S, Yilmaz F, Ardeniz Ö, et al. . Spectrum of Hepatic Manifestations of Common Variable Immunodeficiency. Am J Surg Pathol (2020) 44:617–25. 10.1097/PAS.0000000000001452 PubMed DOI
Pecoraro A, Crescenzi L, Varricchi G, Marone G, Spadaro G. Eterogeneity of Liver Disease in Common Variable Immunodeficiency Disorders. Front Immunol (2020) 11:338. 10.3389/fimmu.2020.00338 PubMed DOI PMC
Li H, Xu H, Li Y, Jiang Y, Hu Y, Liu T, et al. . Alterations of Gut Microbiota Contribute to the Progression of Unruptured Intracranial Aneurysms. Nat Commun (2020) 11:e3218. 10.1038/s41467-020-16990-3 PubMed DOI PMC
Naviaux RK. Metabolic Features of the Cell Danger Response. Mitochondrion (2014) 16:7–17. 10.1016/j.mito.2013.08.006 PubMed DOI
Bierwirth J, Ulbricht KU, Schmidt RE, Witte T. Association of Common Variable Immunodeficiency With Vitamin B6 Deficiency. Eur J Clin Nutr (2008) 62:332–5. 10.1038/sj.ejcn.1602694 PubMed DOI