Objective comparison of particle tracking methods
Language English Country United States Media print-electronic
Document type Comparative Study, Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't
Grant support
MH064070
NIMH NIH HHS - United States
R01 NS076709
NINDS NIH HHS - United States
R01 MH071739
NIMH NIH HHS - United States
R21 AR062359
NIAMS NIH HHS - United States
MH071739
NIMH NIH HHS - United States
R01 AG020961
NIA NIH HHS - United States
R01 AG009521
NIA NIH HHS - United States
R01 HL096113
NHLBI NIH HHS - United States
R01NS076709
NINDS NIH HHS - United States
R37 MH071739
NIMH NIH HHS - United States
R56 MH064070
NIMH NIH HHS - United States
U01 HL100397
NHLBI NIH HHS - United States
R01 MH064070
NIMH NIH HHS - United States
PubMed
24441936
PubMed Central
PMC4131736
DOI
10.1038/nmeth.2808
PII: nmeth.2808
Knihovny.cz E-resources
- MeSH
- Microscopy, Fluorescence methods standards MeSH
- Image Interpretation, Computer-Assisted * standards MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Comparative Study MeSH
Particle tracking is of key importance for quantitative analysis of intracellular dynamic processes from time-lapse microscopy image data. Because manually detecting and following large numbers of individual particles is not feasible, automated computational methods have been developed for these tasks by many groups. Aiming to perform an objective comparison of methods, we gathered the community and organized an open competition in which participating teams applied their own methods independently to a commonly defined data set including diverse scenarios. Performance was assessed using commonly defined measures. Although no single method performed best across all scenarios, the results revealed clear differences between the various approaches, leading to notable practical conclusions for users and developers.
Cell and Tissue Imaging Facility Institut Curie Paris France
Center for Applied Medical Research University of Navarra Pamplona Spain
Compunetix Inc Monroeville Pennsylvania USA
Department of Biomedical Engineering Chung Yuan Christian University Chung Li City Taiwan China
Department of Biomedical Engineering Zhejiang University Hangzhou China
Department of Cell Biology Yale University New Haven Connecticut USA
Department of Electrical and Computer Engineering Drexel University Philadelphia Pennsylvania USA
Department of Electrical Engineering Yale University New Haven Connecticut USA
Inria Rennes Bretagne Atlantique Rennes France
Molecular Biotechnology Group Institute of Biology Leiden University Leiden The Netherlands
MOSAIC Group Max Planck Institute of Molecular Cell Biology and Genetics Dresden Germany
Plateforme d'Imagerie Dynamique Imagopole Institut Pasteur Paris France
See more in PubMed
Saxton MJ, Jacobson K. Single-particle tracking: applications to membrane dynamics. Annu. Rev. Biophys. Biomol. Struct. 1997;26:373–399. doi: 10.1146/annurev.biophys.26.1.373. PubMed DOI
Akhmanova A, Steinmetz MO. Tracking the ends: a dynamic protein network controls the fate of microtubule tips. Nat. Rev. Mol. Cell Biol. 2008;9:309–322. doi: 10.1038/nrm2369. PubMed DOI
Berginski ME, Vitriol EA, Hahn KM, Gomez SM. High-resolution quantification of focal adhesion spatiotemporal dynamics in living cells. PLoS ONE. 2011;6:e22025. doi: 10.1371/journal.pone.0022025. PubMed DOI PMC
Brandenburg B, Zhuang X. Virus trafficking–learning from single-virus tracking. Nat. Rev. Microbiol. 2007;5:197–208. doi: 10.1038/nrmicro1615. PubMed DOI PMC
Jandt U, Zeng A-P. Modeling of intracellular transport and compartmentation. Adv. Biochem. Eng. Biotechnol. 2012;127:221–249. PubMed
Sinha B, et al. Dynamic organization of chromatin assembly and transcription factories in living cells. Methods Cell Biol. 2010;98:57–78. doi: 10.1016/S0091-679X(10)98003-5. PubMed DOI
Agarwal S, et al. ATP-dependent and independent functions of Rad54 in genome maintenance. J. Cell Biol. 2011;192:735–750. doi: 10.1083/jcb.201011025. PubMed DOI PMC
Stephens DJ, Allan VJ. Light microscopy techniques for live cell imaging. Science. 2003;300:82–86. doi: 10.1126/science.1082160. PubMed DOI
Ji N, Shroff H, Zhong H, Betzig E. Advances in the speed and resolution of light microscopy. Curr. Opin. Neurobiol. 2008;18:605–616. doi: 10.1016/j.conb.2009.03.009. PubMed DOI
Shaner NC, Steinbach PA, Tsien RY. A guide to choosing fluorescent proteins. Nat. Methods. 2005;2:905–909. doi: 10.1038/nmeth819. PubMed DOI
Giepmans BNG, Adams SR, Ellisman MH, Tsien RY. The fluorescent toolbox for assessing protein location and function. Science. 2006;312:217–224. doi: 10.1126/science.1124618. PubMed DOI
Saxton MJ. Single-particle tracking: connecting the dots. Nat. Methods. 2008;5:671–672. doi: 10.1038/nmeth0808-671. PubMed DOI
Genovesio A, et al. Multiple particle tracking in 3-D+t microscopy: method and application to the tracking of endocytosed quantum dots. IEEE Trans. Image Process. 2006;15:1062–1070. doi: 10.1109/TIP.2006.872323. PubMed DOI
Smal I, Draegestein K, Galjart N, Niessen W, Meijering E. Particle filtering for multiple object tracking in dynamic fluorescence microscopy images: application to microtubule growth analysis. IEEE Trans. Med. Imaging. 2008;27:789–804. doi: 10.1109/TMI.2008.916964. PubMed DOI
Kalaidzidis Y. Multiple objects tracking in fluorescence microscopy. J. Math. Biol. 2009;58:57–80. doi: 10.1007/s00285-008-0180-4. PubMed DOI PMC
Meijering E, Dzyubachyk O, Smal I. Methods for cell and particle tracking. Methods Enzymol. 2012;504:183–200. doi: 10.1016/B978-0-12-391857-4.00009-4. PubMed DOI
Meijering E, Smal I, Danuser G. Tracking in molecular bioimaging. IEEE Signal Process. Mag. 2006;23:46–53. doi: 10.1109/MSP.2006.1628877. DOI
Kalaidzidis Y. Intracellular objects tracking. Eur. J. Cell Biol. 2007;86:569–578. doi: 10.1016/j.ejcb.2007.05.005. PubMed DOI
Dorn JF, Danuser G, Yang G. Computational processing and analysis of dynamic fluorescence image data. Methods Cell Biol. 2008;85:497–538. doi: 10.1016/S0091-679X(08)85022-4. PubMed DOI
Meijering E, Dzyubachyk O, Smal I, van Cappellen WA. Tracking in cell and developmental biology. Semin. Cell Dev. Biol. 2009;20:894–902. doi: 10.1016/j.semcdb.2009.07.004. PubMed DOI
Jaqaman K, Danuser G. Computational image analysis of cellular dynamics: a case study based on particle tracking. Cold Spring Harb. Protoc. 2009;2009:pdb.top65. doi: 10.1101/pdb.top65. PubMed DOI PMC
Rohr K, et al. Tracking and quantitative analysis of dynamic movements of cells and particles. Cold Spring Harb. Protoc. 2010;2010:pdb.top80. doi: 10.1101/pdb.top80. PubMed DOI
Blackman, S. & Popoli, R. Design and Analysis of Modern Tracking Systems (Artech House, Norwood, Massachusetts, USA, 1999).
Sonka, M., Hlavac, V. & Boyle, R. Image Processing, Analysis, and Machine Vision 3rd edn. (Cengage Learning, Florence, Kentucky, USA, 2007).
Cheezum MK, Walker WF, Guilford WH. Quantitative comparison of algorithms for tracking single fluorescent particles. Biophys. J. 2001;81:2378–2388. doi: 10.1016/S0006-3495(01)75884-5. PubMed DOI PMC
Carter BC, Shubeita GT, Gross SP. Tracking single particles: a user-friendly quantitative evaluation. Phys. Biol. 2005;2:60–72. doi: 10.1088/1478-3967/2/1/008. PubMed DOI
Smal I, Loog M, Niessen W, Meijering E. Quantitative comparison of spot detection methods in fluorescence microscopy. IEEE Trans. Med. Imaging. 2010;29:282–301. doi: 10.1109/TMI.2009.2025127. PubMed DOI
Ruusuvuori P, et al. Evaluation of methods for detection of fluorescence labeled subcellular objects in microscope images. BMC Bioinformatics. 2010;11:248. doi: 10.1186/1471-2105-11-248. PubMed DOI PMC
Godinez WJ, et al. Deterministic and probabilistic approaches for tracking virus particles in time-lapse fluorescence microscopy image sequences. Med. Image Anal. 2009;13:325–342. doi: 10.1016/j.media.2008.12.004. PubMed DOI
Gillette TA, Brown KM, Svoboda K, Liu Y, Ascoli GA. DIADEMchallenge.org: a compendium of resources fostering the continuous development of automated neuronal reconstruction. Neuroinformatics. 2011;9:303–304. doi: 10.1007/s12021-011-9104-3. DOI
Anonymous. Going for algorithm gold. Nat. Methods5, 659 (2008). PubMed
Sbalzarini IF, Koumoutsakos P. Feature point tracking and trajectory analysis for video imaging in cell biology. J. Struct. Biol. 2005;151:182–195. doi: 10.1016/j.jsb.2005.06.002. PubMed DOI
Coraluppi S, Carthel C. Recursive track fusion for multi-sensor surveillance. Inf. Fusion. 2004;5:23–33. doi: 10.1016/j.inffus.2003.03.003. DOI
Coraluppi S, Carthel C. Multi-stage multiple-hypothesis tracking. J. Adv. Inf. Fusion. 2011;6:57–67.
Olivo-Marin J-C. Extraction of spots in biological images using multiscale products. Pattern Recognit. 2002;35:1989–1996. doi: 10.1016/S0031-3203(01)00127-3. DOI
Chenouard, N., Bloch, I. & Olivo-Marin, J.-C. Multiple hypothesis tracking in cluttered condition. in Proc. Int. Conf. Image Proc. 3621–3624 (IEEE, 2009).
Chenouard, N., Bloch, I. & Olivo-Marin, J.-C. Multiple hypothesis tracking in microscopy images. in Proc. IEEE Int. Symp. Biomed. Imaging 1346–1349 (IEEE, 2009).
Winter MR, Fang C, Banker G, Roysam B, Cohen AR. Axonal transport analysis using Multitemporal Association Tracking. Int. J. Comput. Biol. Drug Des. 2012;5:35–48. doi: 10.1504/IJCBDD.2012.045950. PubMed DOI PMC
Winter M, et al. Vertebrate neural stem cell segmentation, tracking and lineaging with validation and editing. Nat. Protoc. 2011;6:1942–1952. doi: 10.1038/nprot.2011.422. PubMed DOI PMC
Godinez, W.J., Lampe, M., Eils, R., Müller, B. & Rohr, K. Tracking multiple particles in fluorescence microscopy images via probabilistic data association. in Proc. IEEE Int. Symp. Biomed. Imaging 1925–1928 (IEEE, 2011). PubMed
Rink J, Ghigo E, Kalaidzidis Y, Zerial M. Rab conversion as a mechanism of progression from early to late endosomes. Cell. 2005;122:735–749. doi: 10.1016/j.cell.2005.06.043. PubMed DOI
Liang L, Shen H, De Camilli P, Duncan JS. Tracking clathrin coated pits with a multiple hypothesis based method. Med. Image Comput. Comput. Assist. Interv. 2010;6362:315–322. PubMed PMC
Yin Z, Kanade T, Chen M. Understanding the phase contrast optics to restore artifact-free microscopy images for segmentation. Med. Image Anal. 2012;16:1047–1062. doi: 10.1016/j.media.2011.12.006. PubMed DOI PMC
Magnusson, K.E.G. & Jaldén, J. A batch algorithm using iterative application of the Viterbi algorithm to track cells and construct cell lineages. in Proc. IEEE Int. Symp. Biomed. Imaging 382–385 (IEEE, 2012).
Husain M, Boudier T, Paul-Gilloteaux P, Casuso I, Scheuring S. Software for drift compensation, particle tracking and particle analysis of high-speed atomic force microscopy image series. J. Mol. Recognit. 2012;25:292–298. doi: 10.1002/jmr.2187. PubMed DOI
Casuso I, et al. Characterization of the motion of membrane proteins using high-speed atomic force microscopy. Nat. Nanotechnol. 2012;7:525–529. doi: 10.1038/nnano.2012.109. PubMed DOI
Rao AR, Schunck BG. Computing oriented texture fields. CVGIP: Graph. Models Image Process. 1991;53:157–185.
Hager, G.D., Dewan, M. & Stewart, C.V. Multiple kernel tracking with SSD. in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 790–797 (IEEE, 2004).
Rousseeuw, P.J. & Leroy, A.M. Robust Regression and Outlier Detection (Wiley, Hoboken, New Jersey, USA, 2003).
Thompson RE, Larson DR, Webb WW. Precise nanometer localization analysis for individual fluorescent probes. Biophys. J. 2002;82:2775–2783. doi: 10.1016/S0006-3495(02)75618-X. PubMed DOI PMC
Shafique K, Shah M. A noniterative greedy algorithm for multiframe point correspondence. IEEE Trans. Pattern Anal. Mach. Intell. 2005;27:51–65. doi: 10.1109/TPAMI.2005.1. PubMed DOI
Jaqaman K, et al. Robust single-particle tracking in live-cell time-lapse sequences. Nat. Methods. 2008;5:695–702. doi: 10.1038/nmeth.1237. PubMed DOI PMC
Lowe DG. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004;60:91–110. doi: 10.1023/B:VISI.0000029664.99615.94. DOI
Crocker JC, Grier DG. Methods of digital video microscopy for colloidal studies. J. Colloid Interface Sci. 1996;179:298–310. doi: 10.1006/jcis.1996.0217. DOI
Celler K, van Wezel GP, Willemse J. Single particle tracking of dynamically localizing TatA complexes in Streptomyces coelicolor. Biochem. Biophys. Res. Commun. 2013;438:38–42. doi: 10.1016/j.bbrc.2013.07.016. PubMed DOI
Ku T-C, et al. An automated tracking system to measure the dynamic properties of vesicles in living cells. Microsc. Res. Tech. 2007;70:119–134. doi: 10.1002/jemt.20392. PubMed DOI
Ku T-C, Kao L-S, Lin C-C, Tsai Y-S. Morphological filter improve the efficiency of automated tracking of secretory vesicles with various dynamic properties. Microsc. Res. Tech. 2009;72:639–649. doi: 10.1002/jemt.20711. PubMed DOI
Huth J, et al. Significantly improved precision of cell migration analysis in time-lapse video microscopy through use of a fully automated tracking system. BMC Cell Biol. 2010;11:24. doi: 10.1186/1471-2121-11-24. PubMed DOI PMC
Munkres J. Algorithms for the assignment and transportation problems. J. Soc. Ind. Appl. Math. 1957;5:32–38. doi: 10.1137/0105003. DOI
Saxton MJ. Wanted: a positive control for anomalous subdiffusion. Biophys. J. 2012;103:2411–2422. doi: 10.1016/j.bpj.2012.10.038. PubMed DOI PMC
de Chaumont F, et al. Icy: an open bioimage informatics platform for extended reproducible research. Nat. Methods. 2012;9:690–696. doi: 10.1038/nmeth.2075. PubMed DOI
Schindelin J, et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC
Optimized molecule detection in localization microscopy with selected false positive probability
Metrics reloaded: recommendations for image analysis validation
The ImageJ ecosystem: Open-source software for image visualization, processing, and analysis
BIAS: Transparent reporting of biomedical image analysis challenges
BIAFLOWS: A Collaborative Framework to Reproducibly Deploy and Benchmark Bioimage Analysis Workflows
CytoPacq: a web-interface for simulating multi-dimensional cell imaging
Why rankings of biomedical image analysis competitions should be interpreted with care
An objective comparison of cell-tracking algorithms
Cell Tracking Accuracy Measurement Based on Comparison of Acyclic Oriented Graphs
Crowdsourcing the creation of image segmentation algorithms for connectomics