Optimized molecule detection in localization microscopy with selected false positive probability

. 2025 Jan 11 ; 16 (1) : 601. [epub] 20250111

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39799127

Grantová podpora
LQ200402101 Akademie Věd České Republiky (Academy of Sciences of the Czech Republic)
LQ200402101 Akademie Věd České Republiky (Academy of Sciences of the Czech Republic)
LQ200402101 Akademie Věd České Republiky (Academy of Sciences of the Czech Republic)
LM2023066 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
21-17847M Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
21-17847M Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
21-17847M Grantová Agentura České Republiky (Grant Agency of the Czech Republic)

Odkazy

PubMed 39799127
PubMed Central PMC11724879
DOI 10.1038/s41467-025-55952-5
PII: 10.1038/s41467-025-55952-5
Knihovny.cz E-zdroje

Single-molecule localization microscopy (SMLM) allows imaging beyond the diffraction limit. Detection of molecules is a crucial initial step in SMLM. False positive detections, which are not quantitatively controlled in current methods, are a source of artifacts that affect the entire SMLM analysis pipeline. Furthermore, current methods lack standardization, which hinders reproducibility. Here, we present an optimized molecule detection method which combines probabilistic thresholding with theoretically optimal filtering. The probabilistic thresholding enables control over false positive detections while optimal filtering minimizes false negatives. A theoretically optimal Poisson matched filter is used as a performance benchmark to evaluate existing filtering methods. Overall, our approach allows the detection of molecules in a robust, single-parameter and user-unbiased manner. This will minimize artifacts and enable data reproducibility in SMLM.

Zobrazit více v PubMed

Lelek, M. et al. Single-molecule localization microscopy. Nat. Rev. Methods Prim.1, 1–27 (2021). PubMed PMC

Fazel, M. & Wester, M. J. Analysis of super-resolution single-molecule localization microscopy data: a tutorial, AIP Advances, 12, 1, (2022).

Khater, I. M., Nabi, I. R. & Hamarneh, G. A review of super-resolution single-molecule localization microscopy cluster analysis and quantification methods, Patterns, 1, 3 (2020). PubMed PMC

Culley, S. et al. Quantitative mapping and minimization of super-resolution optical imaging artifacts. Nat. Methods15, 263–266 (2018). PubMed PMC

Sage, D. et al. Quantitative evaluation of software packages for single-molecule localization microscopy. Nat. Methods12, 717–724 (2015). PubMed

Sage, D. et al. Super-resolution fight club: assessment of 2D and 3D single-molecule localization microscopy software. Nat. Methods16, 387–395 (2019). PubMed PMC

Ruusuvuori, P. et al. Evaluation of methods for detection of fluorescence-labeled subcellular objects in microscope images. BMC Bioinforma.11, 1–17 (2010). PubMed PMC

Sage, D., Neumann, F. R., Hediger, F., Gasser, S. M. & Unser, M. Automatic tracking of individual fluorescence particles: application to the study of chromosome dynamics. IEEE Trans. Image Process.14, 1372–1383 (2005). PubMed

Starck, J.-L. & Murtagh, F. Astronomical Image and Data Analysis (Springer, 2007).

Smal, I., Loog, M., Niessen, W. & Meijering, E. Quantitative comparison of spot detection methods in fluorescence microscopy. IEEE Trans. Med. Imaging, 29, 2 (2010). PubMed

Chenouard, N. et al. Objective comparison of particle tracking methods. Nat. Methods11, 281–289 (2014). PubMed PMC

Gonzales, R. & Woods, R. Digital Image Processing (Pearson, 2018).

Sonka, M., Hlavac, V. & Boyle, R. Image Processing, Analysis and Machine Vision (Springer, 2013).

Minaee, S. et al. Image segmentation using deep learning: a survey. IEEE Trans. Pattern Anal. Mach. Intell.44, 3523–3542 (2021). PubMed

Zou, Z., Chen, K., Shi, Z., Guo, Y. & Ye, J. Object detection in 20 years: a survey, Proc. IEEE (2023).

Kay, S. Fundamentals of Statistical Signal Processing: Detection Theory (Prentice Hall, 1998).

Abbott, B. P. et al. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett.116, 061102 (2016). PubMed

Richards, M. A. Fundamentals of Radar Signal Processing (McGraw-Hill Education, 2014).

Ofek, E. O. and Zackay, B. Optimal matched filter in the low-number count Poisson noise regime and implications for X-ray source detection. Astronom. J.155, no. 4, (2018).

Reiffen, B. & Sherman, H. An optimum demodulator for Poisson processes: photon source detectors. Proc. IEEE51, 1316–1320 (1963).

Levy, B. C. Principles of Signal Detection and Parameter Estimation (Springer Science & Business Media, 2008).

Křížek, P., Raška, I. & Hagen, G. M. Minimizing detection errors in single-molecule localization microscopy. Opt. Express19, 3226–3235 (2011). PubMed

Ober, R. J., Ward, E. S. & Chao, J. Quantitative Bioimaging: An Introduction to Biology, Instrumentation, Experiments, and Data Analysis for Scientists and Engineers (CRC Press, 2020).

Swets, J. A., Dawes, R. M. & Monahan, J. Better decisions through science. Sci. Am.283, 82–87 (2000). PubMed

Sergé, A., Bertaux, N., Rigneault, H. & Marguet, D. Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes. Nat. Methods5, 687–694 (2008). PubMed

Köthe, U., Herrmannsdörfer, F., Kats, I. & Hamprecht, F. A. SimpleSTORM: a fast, self-calibrating reconstruction algorithm for localization microscopy. Histochem. Cell Biol.141, 613–627 (2014). PubMed

Smith, C. S., Stallinga, S., Lidke, K. A., Rieger, B. & Grunwald, D. Probability-based particle detection that enables threshold-free and robust in vivo single-molecule tracking. Mol. Biol. Cell26, 4057–4062 (2015). PubMed PMC

Hoogendoorn, E. et al. The fidelity of stochastic single-molecule super-resolution reconstructions critically depends upon robust background estimation. Sci. Rep.4, 3854 (2014). PubMed PMC

Cheng, C.-Y. & Hsieh, C.-L. Background estimation and correction for high-precision localization microscopy. ACS Photonics4, 1730–1739 (2017).

Möckl, L., Roy, A. R., Petrov, P. N. & Moerner, W. Accurate and rapid background estimation in single-molecule localization microscopy using the deep neural network BGnet. Proc. Natl. Acad. Sci. USA117, 60–67 (2020). PubMed PMC

Abrahamsson, S. et al. Fast multicolor 3D imaging using aberration-corrected multifocus microscopy. Nat. Methods10, 60–63 (2013). PubMed PMC

Juette, M. F. et al. Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples. Nat. Methods5, 527–529 (2008). PubMed

von Diezmann, L., Shechtman, Y. & Moerner, W. Three-dimensional localization of single molecules for super-resolution imaging and single-particle tracking. Chem. Rev.117, 7244–7275 (2017). PubMed PMC

Hajj, B., El Beheiry, M., Izeddin, I., Darzacq, X. & Dahan, M. Accessing the third dimension in localization-based super-resolution microscopy. Phys. Chem. Chem. Phys.16, 16 340–16 348 (2014). PubMed

Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett.27, 8 (2006).

Maier-Hein, L. et al. Metrics reloaded: recommendations for image analysis validation. Nat. Methods21, 195–212 (2024). PubMed PMC

Szeliski, R. Computer Vision: Algorithms and Applications (Springer Nature, 2022).

Falk, T. et al. U-Net: deep learning for cell counting, detection, and morphometry. Nat. Methods16, 67–70 (2019). PubMed

Kirillov, A. et al. Segment anything. In Proc. IEEE/CVF International Conference on Computer Vision, pp. 4015–4026 (IEEE, 2023).

Ouyang, W., Aristov, A., Lelek, M., Hao, X. & Zimmer, C. Deep learning massively accelerates super-resolution localization microscopy. Nat. Biotechnol.36, 460–468 (2018). PubMed

Nehme, E., Weiss, L. E., Michaeli, T. & Shechtman, Y. Deep-STORM: super-resolution single-molecule microscopy by deep learning. Optica5, 458–464 (2018).

Young, I. T., Gerbrands, J. J. & Van Vliet, L. J. Fundamentals of Image Processing. Delft University of Technology Delft, 841 (2007).

Van Vliet, L. J., Boddeke, F. R., Sudar, D. & Young, I. T. Image detectors for digital image microscopy, Digital image analysis of microbes; Imaging, morphometry, fluorometry and motility techniques and applications, modern microbiological methods. pp. 37–64 (1998).

Neubeck, A. & Van Gool, L. Efficient non-maximum suppression. In Proc.18th International Conference on Pattern Recognition (ICPR’06), 3, pp. 850–855 (IEEE, 2006).

Zhang, B., Zerubia, J. & Olivo-Marin, J.-C. Gaussian approximations of fluorescence microscope point-spread function models. Appl. Opt.46, 1819–1829 (2007). PubMed

Boyd, S. & Vandenberghe, L. Convex Optimization (Cambridge University Press, 2004).

Kay, S. Fundamentals of Statistical Signal Processing: Estimation Theory (Prentice Hall, 1993).

Huang, T., Yang, G. & Tang, G. A fast two-dimensional median filtering algorithm. IEEE Trans. Acoust. Speech Signal Process.27, 13–18 (1979).

Perreault, S. & Hébert, P. Median filtering in constant time. IEEE Trans. Image Process.16, 2389–2394 (2007). PubMed

Rousseeuw, P. J. & Croux, C. Alternatives to the median absolute deviation. J. Am. Stat. Assoc.88, 1273–1283 (1993).

Donoho, D. L. & Johnstone, I. M. Ideal spatial adaptation by wavelet shrinkage. Biometrika81, 425–455 (1994).

Izeddin, I. et al. Wavelet analysis for single molecule localization microscopy. Opt. Express20, 2081–2095 (2012). PubMed

Huang, F., Schwartz, S. L., Byars, J. M. & Lidke, K. A. Simultaneous multiple-emitter fitting for single molecule super-resolution imaging, Biomed. Optics Express, 2, 5 (2011). PubMed PMC

Huang, F. et al. Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms. Nat. Methods10, 653–658 (2013). PubMed PMC

Ries, J. SMAP: a modular super-resolution microscopy analysis platform for SMLM data. Nat. Methods17, 870–872 (2020). PubMed

Henriques, R. et al. QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ. Nat. Methods7, 339–340 (2010). PubMed

Martens, K. J., Turkowyd, B. & Endesfelder, U. Raw data to results: a hands-on introduction and overview of computational analysis for single-molecule localization microscopy. Front. Bioinforma.1, 91 (2022). PubMed PMC

Tinevez, J.-Y. et al. TrackMate: an open and extensible platform for single-particle tracking. Methods115, 80–90 (2017). PubMed

Holden, S. J., Uphoff, S. & Kapanidis, A. N. DAOSTORM: an algorithm for high-density super-resolution microscopy. Nat. Methods8, 279–280 (2011). PubMed

Schnitzbauer, J., Strauss, M. T., Schlichthaerle, T., Schueder, F. & Jungmann, R. Super-resolution microscopy with DNA-PAINT. Nat. Protoc.12, 1198–1228 (2017). PubMed

Ovesný, M., Křížek, P., Borkovec, J., Švindrych, Z. & Hagen, G. M. ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging. Bioinformatics30, 2389–2390 (2014). PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace