Minimizing detection errors in single molecule localization microscopy
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
21369145
DOI
10.1364/oe.19.003226
PII: 209922
Knihovny.cz E-zdroje
- MeSH
- aktiny metabolismus MeSH
- algoritmy * MeSH
- faloidin metabolismus MeSH
- lidé MeSH
- metoda Monte Carlo MeSH
- mikroskopie metody MeSH
- nádorové buněčné linie MeSH
- nelineární dynamika MeSH
- počítačová simulace MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aktiny MeSH
- faloidin MeSH
Fluorescence microscopy using single molecule imaging and localization (PALM, STORM, and similar approaches) has quickly been adopted as a convenient method for obtaining multicolor, 3D superresolution images of biological samples. Using an approach based on extensive Monte Carlo simulations, we examined the performance of various noise reducing filters required for the detection of candidate molecules. We determined a suitable noise reduction method and derived an optimal, nonlinear threshold which minimizes detection errors introduced by conventional algorithms. We also present a new technique for visualization of single molecule localization microscopy data based on adaptively jittered 2D histograms. We have used our new methods to image both Atto565-phalloidin labeled actin in fibroblast cells, and mCitrine-erbB3 expressed in A431 cells. The enhanced methods developed here were crucial in processing the data we obtained from these samples, as the overall signal to noise ratio was quite low.
Citace poskytuje Crossref.org
Optimized molecule detection in localization microscopy with selected false positive probability