Quantitative super-resolution single molecule microscopy dataset of YFP-tagged growth factor receptors
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29361123
PubMed Central
PMC5841371
DOI
10.1093/gigascience/giy002
PII: 4817540
Knihovny.cz E-zdroje
- MeSH
- algoritmy MeSH
- bakteriální proteiny chemie MeSH
- fluorescenční barviva chemie MeSH
- lidé MeSH
- luminescentní proteiny chemie MeSH
- receptory růstových faktorů chemie izolace a purifikace MeSH
- zobrazení jednotlivé molekuly metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriální proteiny MeSH
- fluorescenční barviva MeSH
- luminescentní proteiny MeSH
- receptory růstových faktorů MeSH
- yellow fluorescent protein, Bacteria MeSH Prohlížeč
BACKGROUND: Super-resolution single molecule localization microscopy (SMLM) is a method for achieving resolution beyond the classical limit in optical microscopes (approx. 200 nm laterally). Yellow fluorescent protein (YFP) has been used for super-resolution single molecule localization microscopy, but less frequently than other fluorescent probes. Working with YFP in SMLM is a challenge because a lower number of photons are emitted per molecule compared with organic dyes, which are more commonly used. Publically available experimental data can facilitate development of new data analysis algorithms. FINDINGS: Four complete, freely available single molecule super-resolution microscopy datasets on YFP-tagged growth factor receptors expressed in a human cell line are presented, including both raw and analyzed data. We report methods for sample preparation, for data acquisition, and for data analysis, as well as examples of the acquired images. We also analyzed the SMLM datasets using a different method: super-resolution optical fluctuation imaging (SOFI). The 2 modes of analysis offer complementary information about the sample. A fifth single molecule super-resolution microscopy dataset acquired with the dye Alexa 532 is included for comparison purposes. CONCLUSIONS: This dataset has potential for extensive reuse. Complete raw data from SMLM experiments have typically not been published. The YFP data exhibit low signal-to-noise ratios, making data analysis a challenge. These datasets will be useful to investigators developing their own algorithms for SMLM, SOFI, and related methods. The data will also be useful for researchers investigating growth factor receptors such as ErbB3.
Zobrazit více v PubMed
Huang B, Bates M, Zhuang X. Super-resolution fluorescence microscopy. Annu Rev Biochem 2009;78:993–1016. PubMed PMC
Hell SW, Sahl SJ, Bates M et al. . The 2015 super-resolution microscopy roadmap. J Phys D Appl Phys 2015;48:443001.
Betzig E, Patterson GH, Sougrat R et al. . Imaging intracellular fluorescent proteins at nanometer resolution. Science 2006;313:1642–5. PubMed
Wiedenmann J, Ivanchenko S, Oswald F et al. . EosFP, a fluorescent marker protein with UV-inducible green-to-red fluorescence conversion. Proc Natl Acad Sci U S A 2004;101:15905–10. PubMed PMC
Rust MJ, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 2006;3:793–6. PubMed PMC
Huang B, Wang W, Bates M et al. . Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 2008;319:810–3. PubMed PMC
Heilemann M, van de Linde S, Schüttpelz M et al. . Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew Chem Int Ed 2008;47:6172–6. PubMed
Dempsey GT, Vaughan JC, Chen KH et al. . Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging. Nat Methods 2011;8:1027–36. PubMed PMC
Ovesný M, Křížek P, Borkovec J et al. . ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging. Bioinformatics 2014;30(16):2389–90. PubMed PMC
Sage D, Kirshner H, Pengo T et al. . Quantitative evaluation of software packages for single-molecule localization microscopy. Nat Methods 2015;12:717–24. PubMed
Thompson RE, Larson DR, Webb WW. Precise nanometer localization analysis for individual fluorescent probes. Biophys J 2002;82:2775–83. PubMed PMC
Fox-Roberts P, Marsh R, Pfisterer K et al. . Local dimensionality determines imaging speed in localization microscopy. Nat Commun 2017;8:13558. PubMed PMC
Dickson RM, Cubitt AB, Tsien RY et al. . On/off blinking and switching behaviour of single molecules of green fluorescent protein. Nature 1997;388:355–8. PubMed
Lemmer P, Gunkel M, Baddeley D et al. . SPDM: light microscopy with single-molecule resolution at the nanoscale. Appl Phys B 2008;93:1–12.
Lemmer P, Gunkel M, Weiland Y et al. . Using conventional fluorescent markers for far-field fluorescence localization nanoscopy allows resolution in the 10-nm range. J Microsc 2009;235:163–71. PubMed
Biteen JS, Thompson MA, Tselentis NK et al. . Super-resolution imaging in live Caulobacter crescentus cells using photoswitchable EYFP. Nat Methods 2008;5:947–9. PubMed PMC
Lew MD, Lee SF, Ptacin JL et al. . Three-dimensional superresolution colocalization of intracellular protein superstructures and the cell surface in live Caulobacter crescentus. Proc Natl Acad Sci U S A 2011;108:E1102–10. PubMed PMC
Jusuk I, Vietz C, Raab M et al. . Super-resolution imaging conditions for enhanced yellow fluorescent protein (eYFP) demonstrated on DNA origami nanorulers. Sci Rep 2015;5:14075. PubMed PMC
Křížek P, Raška I, Hagen GM. Minimizing detection errors in single molecule localization microscopy. Opt Express 2011;19:3226–35. PubMed
Kaufmann R, Piontek J, Grüll F et al. . Visualization and quantitative analysis of reconstituted tight junctions using localization microscopy. PLoS One 2012;7:e31128. PubMed PMC
Griesbeck O, Baird GS, Campbell RE et al. . Reducing the environmental sensitivity of yellow fluorescent protein. J Biol Chem 2001;276:29188–94. PubMed
Pennacchietti F, Gould TJ, Hess ST. The role of probe photophysics in localization-based superresolution microscopy. Biophys J 2017;113:2037–54. PubMed PMC
Shcherbakova DM, Sengupta P, Lippincott-Schwartz J et al. . Photocontrollable fluorescent proteins for superresolution imaging. Annu Rev Biophys 2014;43:303–29. PubMed PMC
Nagy P, Arndt-Jovin DJ, Jovin TM. Small interfering RNAs suppress the expression of endogenous and GFP-fused epidermal growth factor receptor (erbB1) and induce apoptosis in erbB1-overexpressing cells. Exp Cell Res 2003;285:39–49. PubMed
Hagen GM, Caarls W, Lidke KA et al. . Fluorescence recovery after photobleaching and photoconversion in multiple arbitrary regions of interest using a programmable array microscope. Microsc Res Tech 2009;72:431–40. PubMed PMC
Yarden Y, Sliwkowski MX. Untangling the ErbB signaling network. Nat Rev Mol Cell Biol 2001;2:127–37. PubMed
Naidu R, Yadav M, Nair S et al. . Expression of c-erbB3 protein in primary breast carcinomas. Br J Cancer 1998;78:1385–90. PubMed PMC
Steinkamp MP, Low-Nam ST, Yang S et al. . ErbB3 is an active tyrosine kinase capable of homo- and heterointeractions. Mol Cell Biol 2014;34:965–77. PubMed PMC
Holbro T, Beerli RR, Maurer F et al. . The ErbB2/ErbB3 heterodimer functions as an oncogenic unit: ErbB2 requires ErbB3 to drive breast tumor cell proliferation. Proc Natl Acad Sci U S A 2003;100:8933–8. PubMed PMC
Sithanandam G, Anderson LM. The ErbB3 receptor in cancer and cancer gene therapy. Cancer Gene Ther 2008;15:413–48. PubMed PMC
Williamson DJ, Owen DM, Rossy J et al. . Pre-existing clusters of the adaptor lat do not participate in early T cell signaling events. Nat Immunol 2011;12:655–62. PubMed
Heilemann M, van de Linde S, Mukherjee A et al. . Super-resolution imaging with small organic fluorophores. Angew Chem Int Ed 2009;48:6903–8. PubMed
Smirnov E, Borkovec J, Kováčik L et al. . Separation of replication and transcription domains in nucleoli. J Struct Biol 2014;188:259–66. PubMed
Křížek P, Raška I, Hagen GM. Flexible structured illumination microscope with a programmable illumination array. Opt Express 2012;20:24585–99. PubMed
Ovesný M, Křížek P, Borkovec J et al. . Image analysis for single-molecule localization microscopy. In: Diaspro A, van Zandvoort MAMJ, eds. Super-Resolution Imaging Biomed. Boca Raton, FL: CRC Press; 2016:79–97.
Izeddin I, Boulanger J, Racine V et al. . Wavelet analysis for single molecule localization microscopy. Opt Express 2012;20:2081–95. PubMed
Huang F, Schwartz SL, Byars JM et al. . Simultaneous multiple-emitter fitting for single molecule super-resolution imaging. Biomed Opt Express 2011;2:1377–93. PubMed PMC
Mortensen KI, Churchman LS, Spudich JA et al. . Optimized localization analysis for single-molecule tracking and super-resolution microscopy. Nat Methods 2010;7:377–81. PubMed PMC
Stallinga S, Rieger B. Accuracy of the gaussian point spread function model in 2D localization microscopy. Opt Express 2010;18:24461–76. PubMed
Scott DW. Averaged shifted histograms: effective nonparametric density estimators in several dimensions. Ann Statist 1985;13:1024–40.
Smith CS, Joseph N, Rieger B et al. . Fast, single-molecule localization that achieves theoretically minimum uncertainty. Nat Methods 2010;7:373–5. PubMed PMC
Rieger B, Stallinga S. The lateral and axial localization uncertainty in super-resolution light microscopy. Chemphyschem 2014;15:664–70. PubMed
Quan T, Zeng S, Huang Z-L. Localization capability and limitation of electron-multiplying charge-coupled, scientific complementary metal-oxide semiconductor, and charge-coupled devices for superresolution imaging. J Biomed Opt 2010;15:66005. PubMed
Dertinger T, Colyer R, Iyer G et al. . Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI). Proc Natl Acad Sci U S A 2009;106:22287–92. PubMed PMC
Dertinger T, Colyer R, Vogel R et al. . Achieving increased resolution and more pixels with superresolution optical fluctuation imaging (SOFI). Opt Express 2010;18:18875–85. PubMed PMC
Heintzmann R. Band-limit and appropriate sampling in microscopy. In: Celis Julio E, ed. Cell Biology. 3rd ed.Elsevier Academic Press, Cambridge, MA; 2006:29–36.
Geissbuehler S, Dellagiacoma C, Lasser T. Comparison between SOFI and STORM. Biomed Opt Express 2011;2:408–20. PubMed PMC
Geissbuehler S, Sharipov A, Godinat A et al. . Live-cell multiplane three-dimensional super-resolution optical fluctuation imaging. Nat Commun 2014;5:5830. PubMed PMC
Deschout H, Lukes T, Sharipov A et al. . Complementarity of PALM and SOFI for super-resolution live-cell imaging of focal adhesions. Nat Commun 2016;7:13693. PubMed PMC
Geissbuehler S, Bocchio NL, Dellagiacoma C et al. . Mapping molecular statistics with balanced super-resolution optical fluctuation imaging (bSOFI). Opt Nanoscopy 2012;1:4.
Girsault A, Lukeš T, Sharipov A et al. . SOFI simulation tool: a software package for simulating and testing super-resolution optical fluctuation imaging. PLoS One 2016;11:e0161602. PubMed PMC
Peeters Y, Vandenberg W, Duwé S et al. . Correcting for photodestruction in super-resolution optical fluctuation imaging. Sci Rep 2017;7(1):10470. PubMed PMC
Lukeš T, Pospíšil J, Fliegel K et al. . Supporting data for “Quantitative super-resolution single molecule microscopy dataset of YFP-tagged growth factor receptors.” GigaScience Database 2018. http://dx.doi.org/10.5524/100400. PubMed DOI PMC