Correcting for photodestruction in super-resolution optical fluctuation imaging
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28874717
PubMed Central
PMC5585228
DOI
10.1038/s41598-017-09666-4
PII: 10.1038/s41598-017-09666-4
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Super-resolution optical fluctuation imaging overcomes the diffraction limit by analyzing fluctuations in the fluorophore emission. A key assumption of the imaging is that the fluorophores are independent, though this is invalidated in the presence of photodestruction. In this work, we evaluate the effect of photodestruction on SOFI imaging using theoretical considerations and computer simulations. We find that photodestruction gives rise to an additional signal that does not present an easily interpretable view of the sample structure. This additional signal is strong and the resulting images typically exhibit less noise. Accordingly, these images may be mis-interpreted as being more visually pleasing or more informative. To address this uncertainty, we develop a procedure that can robustly estimate to what extent any particular experiment is affected by photodestruction. We also develop a detailed assessment methodology and use it to evaluate the performance of several correction algorithms. We identify two approaches that can correct for the presence of even strong photodestruction, one of which can be implemented directly in the SOFI calculation software.
Zobrazit více v PubMed
Abbe E. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Archiv. 1873;9:413–418.
Yamanaka M, Smith NI, Fujita K. Introduction to super-resolution microscopy. Microsc. 2014;63:177–192. doi: 10.1093/jmicro/dfu007. PubMed DOI
Huang B, Bates M, Zhuang X. Super-resolution fluorescence microscopy. Annu. Rev. Biochem. 2009;78:993–1016. doi: 10.1146/annurev.biochem.77.061906.092014. PubMed DOI PMC
Huang B, Babcock H, Zhuang X. Breaking the diffraction barrier: super-resolution imaging of cells. Cell. 2010;143:1047–1058. doi: 10.1016/j.cell.2010.12.002. PubMed DOI PMC
Turkowyd B, Virant D, Endesfelder U. From single molecules to life: microscopy at the nanoscale. Anal Bioanal Chem. 2016;408:6885–6911. doi: 10.1007/s00216-016-9781-8. PubMed DOI PMC
Hess ST, Girirajan TP, Mason MD. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J. 2006;91:4258–4272. doi: 10.1529/biophysj.106.091116. PubMed DOI PMC
Betzig E, et al. Imaging intracellular fluorescent proteins at nanometer resolution. Sci. 2006;313:1642–1645. doi: 10.1126/science.1127344. PubMed DOI
Rust MJ, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) Nat. Methods. 2006;3:793–795. doi: 10.1038/nmeth929. PubMed DOI PMC
Gustafsson MG. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc. 2000;198:82–87. doi: 10.1046/j.1365-2818.2000.00710.x. PubMed DOI
Muller CB, Enderlein J. Image scanning microscopy. Phys. Rev. Lett. 2010;104 doi: 10.1103/PhysRevLett.104.198101. PubMed DOI
Hell SW, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett. 1994;19:780–782. doi: 10.1364/OL.19.000780. PubMed DOI
Klar TA, Jakobs S, Dyba M, Egner A, Hell SW. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc. Natl. Acad. Sci. USA. 2000;97:8206–8210. doi: 10.1073/pnas.97.15.8206. PubMed DOI PMC
Hofmann M, Eggeling C, Jakobs S, Hell S. Breaking the diffraction barrier in fluorescence microscopy at low intensities by using reversible photoswitchable proteins. Proc. Natl. Acad. Sci. USA. 2005;102:17565–17569. doi: 10.1073/pnas.0506010102. PubMed DOI PMC
Dedecker P, et al. Subdiffraction imaging through the selective donut-mode depletion of thermally stable photoswitchable fluorophores: numerical analysis and application to the fluorescent protein Dronpa. J. Am. Chem. Soc. 2007;129:16132–16141. doi: 10.1021/ja076128z. PubMed DOI
Gustafsson, M. G. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Natl. Acad. Sci. USA102, 13081–13086 (2005). PubMed PMC
Dertinger T, Colyer R, Iyer G, Weiss S, Enderlein J. Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI) Proc. Natl. Acad. Sci. USA. 2009;106:22287–22292. doi: 10.1073/pnas.0907866106. PubMed DOI PMC
Dertinger T, Colyer R, Vogel R, Enderlein J, Weiss S. Achieving increased resolution and more pixels with Superresolution Optical Fluctuation Imaging (SOFI) Opt Express. 2010;18:18875–18885. doi: 10.1364/OE.18.018875. PubMed DOI PMC
Dedecker P, Mo GC, Dertinger T, Zhang J. Widely accessible method for superresolution fluorescence imaging of living systems. Proc. Natl. Acad. Sci. USA. 2012;109:10909–10914. doi: 10.1073/pnas.1204917109. PubMed DOI PMC
Moeyaert B, Dedecker P. PcSOFI as a smart label-based superresolution microscopy technique. Methods Mol. Biol. 2014;1148:261–276. doi: 10.1007/978-1-4939-0470-9_17. PubMed DOI
Duwe S, Moeyaert B, Dedecker P. Diffraction-unlimited fluorescence microscopy of living biological samples using pcSOFI. Curr Protoc Chem Biol. 2015;7:27–41. doi: 10.1002/9780470559277.ch140025. PubMed DOI
Geissbuehler S, Dellagiacoma C, Lasser T. Comparison between SOFI and STORM. Biomed Opt Express. 2011;2:408–420. doi: 10.1364/BOE.2.000408. PubMed DOI PMC
Vandenberg W, Dedecker P. Effect of probe diffusion on the SOFI imaging accuracy. Sci Rep. 2017;7 doi: 10.1038/srep44665. PubMed DOI PMC
Geissbuehler, S. et al. Mapping molecular statistics with balanced super-resolution optical fluctuation imaging (bSOFI). Opt. Nanoscopy4 (2012).
Geissbuehler S, et al. Live-cell multiplane three-dimensional super-resolution optical fluctuation imaging. Nat Commun. 2014;5 doi: 10.1038/ncomms6830. PubMed DOI PMC
Vandenberg W, Leutenegger M, Lasser T, Hofkens J, Dedecker P. Diffraction-unlimited imaging: from pretty pictures to hard numbers. Cell Tissue Res. 2015;360:151–178. doi: 10.1007/s00441-014-2109-0. PubMed DOI
Dertinger T, Heilemann M, Vogel R, Sauer M, Weiss S. Superresolution optical fluctuation imaging with organic dyes. Angew. Chem. Int. Ed. Engl. 2010;49:9441–9443. doi: 10.1002/anie.201004138. PubMed DOI PMC
Moeyaert B, et al. Green-to-red photoconvertible Dronpa mutant for multimodal super-resolution fluorescence microscopy. ACS Nano. 2014;8:1664–1673. doi: 10.1021/nn4060144. PubMed DOI
Duwe S, et al. Expression-Enhanced Fluorescent Proteins Based on Enhanced Green Fluorescent Protein for Super-resolution Microscopy. ACS Nano. 2015;9:9528–9541. doi: 10.1021/acsnano.5b04129. PubMed DOI
Hertel F, Mo GC, Duwe S, Dedecker P, Zhang J. RefSOFI for Mapping Nanoscale Organization of Protein-Protein Interactions in Living Cells. Cell Rep. 2016;14:390–400. doi: 10.1016/j.celrep.2015.12.036. PubMed DOI PMC
Mo, G. C. et al. Genetically encoded biosensors for visualizing live-cell biochemical activity at super-resolution. Nat. Methods (2017). PubMed PMC
Donnert G, Eggeling C, Hell SW. Major signal increase in fluorescence microscopy through dark-state relaxation. Nat. Methods. 2007;4:81–86. doi: 10.1038/nmeth986. PubMed DOI
De AK, Goswami D. Exploring the nature of photo-damage in two-photon excitation by fluorescence intensity modulation. J. Fluoresc. 2009;19:381–386. doi: 10.1007/s10895-008-0405-3. PubMed DOI
Stein SC, Huss A, Hahnel D, Gregor I, Enderlein J. Fourier interpolation stochastic optical fluctuation imaging. Opt Express. 2015;23:16154–16163. doi: 10.1364/OE.23.016154. PubMed DOI
Vandenberg W, et al. Model-free uncertainty estimation in stochastical optical fluctuation imaging (SOFI) leads to a doubled temporal resolution. Biomed Opt Express. 2016;7:467–480. doi: 10.1364/BOE.7.000467. PubMed DOI PMC
Deschout H, et al. Complementarity of PALM and SOFI for super-resolution live-cell imaging of focal adhesions. Nat Commun. 2016;7 doi: 10.1038/ncomms13693. PubMed DOI PMC
Ries J, Chiantia S, Schwille P. Accurate determination of membrane dynamics with line-scan FCS. Biophys. J. 2009;96:1999–2008. doi: 10.1016/j.bpj.2008.12.3888. PubMed DOI PMC
Vicente N, Zamboni J, Adur J, Paravani E, Casco V. Photobleaching corrections in fluorescence microscopy images. J. Phys. Conf series. 2007;90 doi: 10.1088/1742-6596/90/1/012068. DOI
Stuart, A. & Ord, K. Kendall’s Advanced Theory of Statistics: Volume 1: Distribution Theory (Wiley, 2009).
Dedecker P, Duwe S, Neely RK, Zhang J. Localizer: fast, accurate, open-source, and modular software package for superresolution microscopy. J Biomed Opt. 2012;17 doi: 10.1117/1.JBO.17.12.126008. PubMed DOI PMC