Complementarity of PALM and SOFI for super-resolution live-cell imaging of focal adhesions
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27991512
PubMed Central
PMC5187410
DOI
10.1038/ncomms13693
PII: ncomms13693
Knihovny.cz E-zdroje
- MeSH
- barvení a značení MeSH
- buněčná adheze fyziologie MeSH
- časové faktory MeSH
- fibroblasty fyziologie MeSH
- krysa rodu Rattus MeSH
- mikroskopie metody MeSH
- myši MeSH
- paxilin chemie genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- paxilin MeSH
Live-cell imaging of focal adhesions requires a sufficiently high temporal resolution, which remains a challenge for super-resolution microscopy. Here we address this important issue by combining photoactivated localization microscopy (PALM) with super-resolution optical fluctuation imaging (SOFI). Using simulations and fixed-cell focal adhesion images, we investigate the complementarity between PALM and SOFI in terms of spatial and temporal resolution. This PALM-SOFI framework is used to image focal adhesions in living cells, while obtaining a temporal resolution below 10 s. We visualize the dynamics of focal adhesions, and reveal local mean velocities around 190 nm min-1. The complementarity of PALM and SOFI is assessed in detail with a methodology that integrates a resolution and signal-to-noise metric. This PALM and SOFI concept provides an enlarged quantitative imaging framework, allowing unprecedented functional exploration of focal adhesions through the estimation of molecular parameters such as fluorophore densities and photoactivation or photoswitching kinetics.
Zobrazit více v PubMed
Geiger B., Spatz J. P. & Bershadsky A. D. Environmental sensing through focal adhesions. Nat. Rev. Mol. Cell Biol. 10, 21–33 (2009). PubMed
Zaidel-Bar R., Itzkovitz S., Ma'ayan A., Iyengar R. & Geiger B. Functional atlas of the integrin adhesome. Nat. Cell Biol. 9, 858–868 (2007). PubMed PMC
Franz C. M. & Muller D. J. Analyzing focal adhesion structure by atomic force microscopy. J. Cell Sci. 118, 5315–5323 (2005). PubMed
Tabarin T. et al.. Insights into adhesion biology using single-molecule localization microscopy. Chemphyschem 15, 606–618 (2014). PubMed
Betzig E. et al.. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006). PubMed
Shroff H., Galbraith C. G., Galbraith J. A. & Betzig E. Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics. Nat. Methods 5, 417–423 (2008). PubMed PMC
Smilenov L. B., Mikhailov A., Pelham R. J., Marcantonio E. E. & Gundersen G. G. Focal adhesion motility revealed in stationary fibroblasts. Science 286, 1172–1174 (1999). PubMed
Huang F. et al.. Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms. Nat. Methods 10, 653–658 (2013). PubMed PMC
Carlini L. & Manley S. Live intracellular super-resolution imaging using site-specific stains. ACS Chem. Biol. 8, 2643–2648 (2013). PubMed
Shim S. H. et al.. Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes. Proc. Natl Acad. Sci. USA 109, 13978–13983 (2012). PubMed PMC
Hennig S. et al.. Instant live-cell super-resolution imaging of cellular structures by nanoinjection of fluorescent probes. Nano Lett 15, 1374–1381 (2015). PubMed
Annibale P., Vanni S., Scarselli M., Rothlisberger U. & Radenovic A. Identification of clustering artifacts in photoactivated localization microscopy. Nat. Methods 8, 527–528 (2011). PubMed
Annibale P., Vanni S., Scarselli M., Rothlisberger U. & Radenovic A. Quantitative photo activated localization microscopy: unraveling the effects of photoblinking. PLoS ONE 6, e22678 (2011). PubMed PMC
Lee S. H., Shin J. Y., Lee A. & Bustamante C. Counting single photoactivatable fluorescent molecules by photoactivated localization microscopy (PALM). Proc. Natl Acad. Sci. USA 109, 17436–17441 (2012). PubMed PMC
Sengupta P. & Lippincott-Schwartz J. Quantitative analysis of photoactivated localization microscopy (PALM) datasets using pair-correlation analysis. Bioessays 34, 396–405 (2012). PubMed PMC
Durisic N., Laparra-Cuervo L., Sandoval-Alvarez A., Borbely J. S. & Lakadamyali M. Single-molecule evaluation of fluorescent protein photoactivation efficiency using an in vivo nanotemplate. Nat. Methods 11, 156–162 (2014). PubMed
Vandenberg W., Leutenegger M., Lasser T., Hofkens J. & Dedecker P. Diffraction-unlimited imaging: from pretty pictures to hard numbers. Cell Tissue Res. 360, 151–178 (2015). PubMed
Dertinger T., Colyer R., Iyer G., Weiss S. & Enderlein J. Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI). Proc. Natl Acad. Sci. USA 106, 22287–22292 (2009). PubMed PMC
Geissbuehler S., Dellagiacoma C. & Lasser T. Comparison between SOFI and STORM. Biomed Opt. Express 2, 408–420 (2011). PubMed PMC
Geissbuehler S. et al.. Live-cell multiplane three-dimensional super-resolution optical fluctuation imaging. Nat. Commun. 5, 5830 (2014). PubMed PMC
Geissbuehler S. et al.. Mapping molecular statistics with balanced super-resolution optical fluctuation imaging (bSOFI). Opt. Nanosc. 1, 4 (2012).
Demmerle J., Wegel E., Schermelleh L. & Dobbie I. M. Assessing resolution in super-resolution imaging. Methods 88, 3–10 (2015). PubMed
Li D. et al.. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics. Science 349, aab3500 (2015). PubMed PMC
Banterle N., Bui K. H., Lemke E. A. & Beck M. Fourier ring correlation as a resolution criterion for super-resolution microscopy. J. Struct. Biol. 183, 363–367 (2013). PubMed
Nieuwenhuizen R. P. J. et al.. Measuring image resolution in optical nanoscopy. Nat. Methods 10, 557–562 (2013). PubMed PMC
Shroff H. et al.. Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes. Proc. Natl Acad. Sci. USA 104, 20308–20313 (2007). PubMed PMC
Vandenberg W. et al.. Model-free uncertainty estimation in stochastical optical fluctuation imaging (SOFI) leads to a doubled temporal resolution. Biomed. Opt. Express 7, 467–480 (2016). PubMed PMC
Gross H., Zügge H., Peschka M. & Blechinger F. Handbook of Optical Systems, Volume 3, Aberration Theory and Correction of Optical Systems Wiley (2006).
Cox S. et al.. Bayesian localization microscopy reveals nanoscale podosome dynamics. Nat. Methods 9, 195–200 (2012). PubMed PMC
Ovesny M., Krizek P., Svindrych Z. & Hagen G. M. High density 3D localization microscopy using sparse support recovery. Opt. Express 22, 31263–31276 (2014). PubMed
Wang Y., Quan T. W., Zeng S. Q. & Huang Z. L. PALMER: a method capable of parallel localization of multiple emitters for high-density localization microscopy. Opt. Express 20, 16039–16049 (2012). PubMed
Rossier O. et al.. Integrins beta(1) and beta(3) exhibit distinct dynamic nanoscale organizations inside focal adhesions. Nat. Cell Biol. 14, 1057–1067 (2012). PubMed
Stehbens S. J. et al.. CLASPs link focal-adhesion-associated microtubule capture to localized exocytosis and adhesion site turnover. Nat. Cell Biol. 16, 558–570 (2014). PubMed PMC
Annibale P., Scarselli M., Greco M. & Radenovic A. Identification of the factors affecting co-localization precision for quantitative multicolor localization microscopy. Opt. Nanosc. 1, 9 (2012).
Mortensen K. I., Churchman L. S., Spudich J. A. & Flyvbjerg H. Optimized localization analysis for single-molecule tracking and super-resolution microscopy. Nat. Methods 7, 377–381 (2010). PubMed PMC
Ober R. J., Ram S. & Ward E. S. Localization accuracy in single-molecule microscopy. Biophys. J. 86, 1185–1200 (2004). PubMed PMC
Min J. H. et al.. FALCON: fast and unbiased reconstruction of high-density super-resolution microscopy data. Sci. Rep. 4, 4577 (2014). PubMed PMC