Dual Role of CD4 in Peripheral T Lymphocytes
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
31001252
PubMed Central
PMC6454155
DOI
10.3389/fimmu.2019.00618
Knihovny.cz E-zdroje
- Klíčová slova
- CD4, Lck, T lymphocytes, TCR coreceptor, cell-cell adhesion, microvilli,
- MeSH
- aktivace lymfocytů * MeSH
- CD4-pozitivní T-lymfocyty cytologie imunologie MeSH
- CD8-pozitivní T-lymfocyty cytologie metabolismus MeSH
- histokompatibilní antigeny imunologie MeSH
- lidé MeSH
- receptory antigenů T-buněk imunologie MeSH
- signální transdukce imunologie MeSH
- tyrosinkinasa p56(lck), specifická pro lymfocyty imunologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- histokompatibilní antigeny MeSH
- receptory antigenů T-buněk MeSH
- tyrosinkinasa p56(lck), specifická pro lymfocyty MeSH
The interaction of T-cell receptors (TCRs) with self- and non-self-peptides in the major histocompatibility complex (MHC) stimulates crucial signaling events, which in turn can activate T lymphocytes. A variety of accessory molecules further modulate T-cell signaling. Of these, the CD4 and CD8 coreceptors make the most critical contributions to T cell sensitivity in vivo. Whereas, CD4 function in T cell development is well-characterized, its role in peripheral T cells remains incompletely understood. It was originally suggested that CD4 stabilizes weak interactions between TCRs and peptides in the MHC and delivers Lck kinases to that complex. The results of numerous experiments support the latter role, indicating that the CD4-Lck complex accelerates TCR-triggered signaling and controls the availability of the kinase for TCR in the absence of the ligand. On the other hand, extremely low affinity of CD4 for MHC rules out its ability to stabilize the receptor-ligand complex. In this review, we summarize the current knowledge on CD4 in T cells, with a special emphasis on the spatio-temporal organization of early signaling events and the relevance for CD4 function. We further highlight the capacity of CD4 to interact with the MHC in the absence of TCR. It drives the adhesion of T cells to the cells that express the MHC. This process is facilitated by the CD4 accumulation in the tips of microvilli on the surface of unstimulated T cells. Based on these observations, we suggest an alternative model of CD4 role in T-cell activation.
Zobrazit více v PubMed
Garcillan B, Marin AV, Jimenez-Reinoso A, Briones AC, Munoz-Ruiz M, Garcia-Leon MJ, et al. . gammadelta T Lymphocytes in the diagnosis of human T cell receptor immunodeficiencies. Front Immunol. (2015) 6:20. 10.3389/fimmu.2015.00020 PubMed DOI PMC
Chakraborty AK, Weiss A. Insights into the initiation of TCR signaling. Nat Immunol. (2014) 15:798–807. 10.1038/ni.2940 PubMed DOI PMC
Lo WL, Shah NH, Ahsan N, Horkova V, Stepanek O, Salomon AR, et al. . Lck promotes Zap70-dependent LAT phosphorylation by bridging Zap70 to LAT. Nat Immunol. (2018) 19:733–41. 10.1038/s41590-018-0131-1 PubMed DOI PMC
Malissen B, Aguado E, Malissen M. Role of the LAT adaptor in T-cell development and Th2 differentiation. Adv Immunol. (2005) 87:1–25. 10.1016/S0065-2776(05)87001-4 PubMed DOI
Courtney AH, Lo WL, Weiss A. TCR Signaling: mechanisms of initiation and propagation. Trends Biochem Sci. (2018) 43:108–23. 10.1016/j.tibs.2017.11.008 PubMed DOI PMC
Van Laethem F, Sarafova SD, Park JH, Tai X, Pobezinsky L, Guinter TI, et al. . Deletion of CD4 and CD8 coreceptors permits generation of alphabetaT cells that recognize antigens independently of the MHC. Immunity. (2007) 27:735–50. 10.1016/j.immuni.2007.10.007 PubMed DOI
Ballek O, Valecka J, Manning J, Filipp D. The pool of preactivated Lck in the initiation of T-cell signaling: a critical re-evaluation of the Lck standby model. Immunol Cell Biol. (2015) 93:384–95. 10.1038/icb.2014.100 PubMed DOI
Dustin ML, Bromley SK, Kan Z, Peterson DA, Unanue ER. Antigen receptor engagement delivers a stop signal to migrating T lymphocytes. Proc Natl Acad Sci USA. (1997) 94:3909–13. 10.1073/pnas.94.8.3909 PubMed DOI PMC
Drbal K, Angelisova P, Cerny J, Pavlistova D, Cebecauer M, Novak P, et al. . Human leukocytes contain a large pool of free forms of CD18. Biochem Biophys Res Commu. (2000) 275:295–9. 10.1006/bbrc.2000.3299 PubMed DOI
Monks CR, Freiberg BA, Kupfer H, Sciaky N, Kupfer A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature. (1998) 395:82–6. 10.1038/25764 PubMed DOI
Grakoui A, Bromley SK, Sumen C, Davis MM, Shaw AS, Allen PM, et al. . The immunological synapse: a molecular machine controlling T cell activation. Science. (1999) 285:221–7. 10.1126/science.285.5425.221 PubMed DOI
Dustin ML, Tseng SY, Varma R, Campi G. T cell-dendritic cell immunological synapses. Curr Opin Immunol. (2006) 18:512–6. 10.1016/j.coi.2006.05.017 PubMed DOI
Brossard C, Feuillet V, Schmitt A, Randriamampita C, Romao M, Raposo G, et al. . Multifocal structure of the T cell - dendritic cell synapse. Eur J Immunol. (2005) 35:1741–53. 10.1002/eji.200425857 PubMed DOI
Mempel TR, Henrickson SE, Von Andrian UH. T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature. (2004) 427:154–9. 10.1038/nature02238 PubMed DOI
Varma R, Campi G, Yokosuka T, Saito T, Dustin ML. T cell receptor-proximal signals are sustained in peripheral microclusters and terminated in the central supramolecular activation cluster. Immunity. (2006) 25:117–27. 10.1016/j.immuni.2006.04.010 PubMed DOI PMC
Friedman RS, Beemiller P, Sorensen CM, Jacobelli J, Krummel MF. (2010). Real-time analysis of T cell receptors in naive cells in vitro and in vivo reveals flexibility in synapse and signaling dynamics. J Exp Med. 207:2733–49. 10.1084/jem.20091201 PubMed DOI PMC
Moreau HD, Lemaitre F, Garrod KR, Garcia Z, Lennon-Dumenil AM, Bousso P. Signal strength regulates antigen-mediated T-cell deceleration by distinct mechanisms to promote local exploration or arrest. Proc Natl Acad Sci USA. (2015) 112:12151–6. 10.1073/pnas.1506654112 PubMed DOI PMC
Dustin ML. Cell adhesion molecules and actin cytoskeleton at immune synapses and kinapses. Curr Opin Cell Biol. (2007) 19:529–33. 10.1016/j.ceb.2007.08.003 PubMed DOI PMC
Mayya V, Judokusumo E, Abu Shah E, Peel CG, Neiswanger W, Depoil D, et al. . Durable Interactions of T Cells with T cell receptor stimuli in the absence of a stable immunological synapse. Cell Rep. (2018) 22:340–9. 10.1016/j.celrep.2017.12.052 PubMed DOI PMC
Dustin ML. Supported bilayers at the vanguard of immune cell activation studies. J Struct Biol. (2009) 168:152–60. 10.1016/j.jsb.2009.05.007 PubMed DOI PMC
Owen DM, Gaus K, Magee AI, Cebecauer M. Dynamic organization of lymphocyte plasma membrane: lessons from advanced imaging methods. Immunology. (2010) 131:1–8. 10.1111/j.1365-2567.2010.03319.x PubMed DOI PMC
Campi G, Varma R, Dustin ML. Actin and agonist MHC-peptide complex-dependent T cell receptor microclusters as scaffolds for signaling. J Exp Med. (2005) 202:1031–6. 10.1084/jem.20051182 PubMed DOI PMC
Yokosuka T, Sakata-Sogawa K, Kobayashi W, Hiroshima M, Hashimoto-Tane A, Tokunaga M, et al. . Newly generated T cell receptor microclusters initiate and sustain T cell activation by recruitment of Zap70 and SLP-76. Nat Immunol. (2005) 6:1253–62. 10.1038/ni1272 PubMed DOI
Hashimoto-Tane A, Sakuma M, Ike H, Yokosuka T, Kimura Y, Ohara O, et al. . Micro-adhesion rings surrounding TCR microclusters are essential for T cell activation. J Exp Med. (2016) 213:1609–25. 10.1084/jem.20151088 PubMed DOI PMC
Lillemeier BF, Mortelmaier MA, Forstner MB, Huppa JB, Groves JT, Davis M, et al. . TCR and Lat are expressed on separate protein islands on T cell membranes and concatenate during activation. Nat Immunol. (2010) 11:90–6. 10.1038/ni.1832 PubMed DOI PMC
Williamson DJ, Owen DM, Rossy J, Magenau A, Wehrmann M, Gooding JJ, et al. Pre-existing clusters of the adaptor Lat do not participate in early T cell signaling events. Nat Immunol. (2011) 12:655–62. 10.1038/ni.2049 PubMed DOI
Soares H, Henriques R, Sachse M, Ventimiglia L, Alonso MA, Zimmer C, et al. . Regulated vesicle fusion generates signaling nanoterritories that control T cell activation at the immunological synapse. J Exp Med. (2013) 210:2415–33. 10.1084/jem.20130150 PubMed DOI PMC
Crites TJ, Padhan K, Muller J, Krogsgaard M, Gudla PR, Lockett SJ, et al. . TCR microclusters pre-exist and contain molecules necessary for TCR signal transduction. J Immunol. (2014) 193:56–67. 10.4049/jimmunol.1400315 PubMed DOI PMC
Cebecauer M, Spitaler M, Serge A, Magee AI. Signalling complexes and clusters: functional advantages and methodological hurdles. J Cell Sci. (2010) 123:309–20. 10.1242/jcs.061739 PubMed DOI
Schamel WW, Arechaga I, Risueno RM, van Santen HM, Cabezas P, Risco C, et al. . Coexistence of multivalent and monovalent TCRs explains high sensitivity and wide range of response. J Exp Med. (2005) 202:493–503. 10.1084/jem.20042155 PubMed DOI PMC
Kumar R, Ferez M, Swamy M, Arechaga I, Rejas MT, Valpuesta JM, et al. . Increased sensitivity of antigen-experienced T cells through the enrichment of oligomeric T cell receptor complexes. Immunity. (2011) 35:375–87. 10.1016/j.immuni.2011.08.010 PubMed DOI
James JR, McColl J, Oliveira MI, Dunne PD, Huang E, Jansson A, et al. The T cell receptor triggering apparatus is composed of monovalent or monomeric proteins. J Biol Chem. (2011) 286:31993–2001. 10.1074/jbc.M111.219212 PubMed DOI PMC
Brameshuber M, Kellner F, Rossboth BK, Ta H, Alge K, Sevcsik E, et al. . Monomeric TCRs drive T cell antigen recognition. Nat Immunol. (2018) 19:487–96. 10.1038/s41590-018-0092-4 PubMed DOI PMC
Rossboth B, Arnold AM, Ta H, Platzer R, Kellner F, Huppa JB, et al. . TCRs are randomly distributed on the plasma membrane of resting antigen-experienced T cells. Nat Immunol. (2018) 19:821–7. 10.1038/s41590-018-0162-7 PubMed DOI PMC
Huse M, Klein LO, Girvin AT, Faraj JM, Li QJ, Kuhns MS, et al. . Spatial and temporal dynamics of T cell receptor signaling with a photoactivatable agonist. Immunity. (2007) 27:76–88. 10.1016/j.immuni.2007.05.017 PubMed DOI
Trickett A, Kwan YL. T cell stimulation and expansion using anti-CD3/CD28 beads. J Immunol Methods. (2003) 275:251–5. 10.1016/S0022-1759(03)00010-3 PubMed DOI
Van Laethem F, Tikhonova AN, Pobezinsky LA, Tai X, Kimura MY, Le Saout C, et al. . Lck availability during thymic selection determines the recognition specificity of the T cell repertoire. Cell. (2013) 154:1326–41. 10.1016/j.cell.2013.08.009 PubMed DOI PMC
Pennock ND, White JT, Cross EW, Cheney EE, Tamburini BA, Kedl R, et al. . T cell responses: naive to memory and everything in between. Adv Physiol Educ. (2013) 37:273–83. 10.1152/advan.00066.2013 PubMed DOI PMC
Itoh Y, Wang Z, Ishida H, Eichelberg K, Fujimoto N, Makino J, et al. . Decreased CD4 expression by polarized T helper 2 cells contributes to suboptimal TCR-induced phosphorylation and reduced Ca2+ signaling. Eur J Immunol. (2005) 35:3187–95. 10.1002/eji.200526064 PubMed DOI PMC
Cole DK, Laugel B, Clement M, Price DA, Wooldridge L, Sewell A, et al. . The molecular determinants of CD8 co-receptor function. Immunology. (2012) 137:139–48. 10.1111/j.1365-2567.2012.03625.x PubMed DOI PMC
Nakayama K, Nakayama K, Negishi I, Kuida K, Louie MC, Kanagawa O, et al. . Requirement for CD8 beta chain in positive selection of CD8-lineage T cells. Science. (1994) 263:1131–3. 10.1126/science.8108731 PubMed DOI
Gibbings DJ, Marcet-Palacios M, Sekar Y, Ng MC, Befus AD. CD8 alpha is expressed by human monocytes and enhances Fc gamma R-dependent responses. BMC Immunol. (2007) 8:12. 10.1186/1471-2172-8-12 PubMed DOI PMC
Schuster P, Thomann S, Werner M, Vollmer J, Schmidt B. A subset of human plasmacytoid dendritic cells expresses CD8alpha upon exposure to herpes simplex virus type 1. Front Microbiol. (2015) 6:557. 10.3389/fmicb.2015.00557 PubMed DOI PMC
Gangadharan D, Cheroutre H. The CD8 isoform CD8alphaalpha is not a functional homologue of the TCR co-receptor CD8alphabeta. Curr Opin Immunol. (2004) 16:264–70. 10.1016/j.coi.2004.03.015 PubMed DOI
Arcaro A, Gregoire C, Boucheron N, Stotz S, Palmer E, Malissen B, et al. . Essential role of CD8 palmitoylation in CD8 coreceptor function. J Immunol. (2000) 165:2068–76. 10.4049/jimmunol.165.4.2068 PubMed DOI
Janeway C. A., Jr. The T cell receptor as a multicomponent signalling machine: CD4/CD8 coreceptors and CD45 in T cell activation. Annu Rev Immunol. (1992) 10:645–74. 10.1146/annurev.iy.10.040192.003241 PubMed DOI
Lin H, Hutchcroft JE, Andoniou CE, Kamoun M, Band H, Bierer B, et al. . Association of p59(fyn) with the T lymphocyte costimulatory receptor CD2. Binding of the Fyn Src homology (SH) 3 domain is regulated by the Fyn SH2 domain. J Biol Chem. (1998) 273:19914–21. 10.1074/jbc.273.31.19914 PubMed DOI
Kim PW, Sun ZY, Blacklow SC, Wagner G, Eck MJ. A zinc clasp structure tethers Lck to T cell coreceptors CD4 and CD8. Science. (2003) 301:1725–8. 10.1126/science.1085643 PubMed DOI
Crise B, Rose JK. Identification of palmitoylation sites on CD4, the human immunodeficiency virus receptor. J Biol Chem. (1992) 267:13593–7. PubMed
Konig R, Huang LY, Germain RN. MHC class II interaction with CD4 mediated by a region analogous to the MHC class I binding site for CD8. Nature. (1992) 356:796–8. 10.1038/356796a0 PubMed DOI
Yin Y, Wang XX, Mariuzza RA. Crystal structure of a complete ternary complex of T-cell receptor, peptide-MHC, and CD4. Proc Natl Acad Sci USA. (2012) 109:5405–10. 10.1073/pnas.1118801109 PubMed DOI PMC
Wang J-H, Meijers R, Xiong Y, Liu J-H, Sakihama T, Zhang R, et al. . Crystal structure of the human CD4 N-terminal two-domain fragment complexed to a class II MHC molecule. PNAS. (2001) 98:10799–804. 10.1073/pnas.191124098 PubMed DOI PMC
Wilen CB, Tilton JC, Doms RW. HIV: cell binding and entry. Cold Spring Harb Perspect Med. (2012) 2:a006866. 10.1101/cshperspect.a006866 PubMed DOI PMC
Richmond J, Tuzova M, Cruikshank W, Center D. Regulation of cellular processes by interleukin-16 in homeostasis and cancer. J Cell Physiol. (2014) 229:139–47. 10.1002/jcp.24441 PubMed DOI
Balamuth F, Brogdon JL, Bottomly K. CD4 raft association and signaling regulate molecular clustering at the immunological synapse site. J Immunol. (2004) 172:5887–92. 10.4049/jimmunol.172.10.5887 PubMed DOI
Cymer F, Veerappan A, Schneider D. Transmembrane helix-helix interactions are modulated by the sequence context and by lipid bilayer properties. Biochim Biophys Acta. (2012) 1818:963–73. 10.1016/j.bbamem.2011.07.035 PubMed DOI
Parrish HL, Glassman CR, Keenen MM, Deshpande NR, Bronnimann MP, Kuhns M, et al. A transmembrane domain GGxxG motif in CD4 contributes to Its Lck-independent function but does not mediate CD4 dimerization. PLoS ONE. (2015) 10:e0132333 10.1371/journal.pone.0132333 PubMed DOI PMC
Bernstein HB, Plasterer MC, Schiff SE, Kitchen CM, Kitchen S, Zack J, et al. . CD4 expression on activated NK cells: ligation of CD4 induces cytokine expression and cell migration. J Immunol. (2006) 177:3669–76. 10.4049/jimmunol.177.6.3669 PubMed DOI
Zhen A, Krutzik SR, Levin BR, Kasparian S, Zack JA, Kitchen S, et al. . CD4 ligation on human blood monocytes triggers macrophage differentiation and enhances HIV infection. J Virol. (2014) 88:9934–46. 10.1128/JVI.00616-14 PubMed DOI PMC
Straus DB, Weiss A. Genetic evidence for the involvement of the lck tyrosine kinase in signal transduction through the T cell antigen receptor. Cell. (1992) 70:585–93. 10.1016/0092-8674(92)90428-F PubMed DOI
Straus DB, Weiss A. The CD3 chains of the T cell antigen receptor associate with the ZAP-70 tyrosine kinase and are tyrosine phosphorylated after receptor stimulation. J Exp Med. (1993) 178:1523–30. 10.1084/jem.178.5.1523 PubMed DOI PMC
Artyomov MN, Lis M, Devadas S, Davis MM, Chakraborty AK. CD4 and CD8 binding to MHC molecules primarily acts to enhance Lck delivery. Proc Natl Acad Sci U S A. (2010) 107:16916–21. 10.1073/pnas.1010568107 PubMed DOI PMC
van der Merwe PA, Dushek O. Mechanisms for T cell receptor triggering. Nat Rev Immunol. (2011) 11:47–55. 10.1038/nri2887 PubMed DOI
Marrack P, Endres R, Shimonkevitz R, Zlotnik A, Dialynas D, Fitch F, et al. . The major histocompatibility complex-restricted antigen receptor on T cells. II. Role of the L3T4 product. J Exp Med. (1983) 158:1077–91. 10.1084/jem.158.4.1077 PubMed DOI PMC
Hampl J, Chien YH, Davis MM. CD4 augments the response of a T cell to agonist but not to antagonist ligands. Immunity. (1997) 7:379–85. 10.1016/S1074-7613(00)80359-3 PubMed DOI
Janeway CA, Chervonsky AV, Sant'Angelo D. T-cell receptors: is the repertoire inherently MHC-specific? Curr Biol. (1997) 7:R299–300. 10.1016/S0960-9822(06)00142-4 PubMed DOI
Madrenas J, Chau LA, Smith J, Bluestone JA, Germain RN. The efficiency of CD4 recruitment to ligand-engaged TCR controls the agonist/partial agonist properties of peptide-MHC molecule ligands. Journal of Experimental Medicine. (1997) 185:219–29. 10.1084/jem.185.2.219 PubMed DOI PMC
Li QJ, Dinner AR, Qi S, Irvine DJ, Huppa JB, Davis MM, et al. . CD4 enhances T cell sensitivity to antigen by coordinating Lck accumulation at the immunological synapse. Nat Immunol. (2004) 5:791–9. 10.1038/ni1095 PubMed DOI
Li Y, Yin Y, Mariuzza RA. Structural and biophysical insights into the role of CD4 and CD8 in T cell activation. Front Immunol. (2013) 4:206. 10.3389/fimmu.2013.00206 PubMed DOI PMC
Irvine DJ, Purbhoo MA, Krogsgaard M, Davis MM. Direct observation of ligand recognition by T cells. Nature. (2002) 419:845–9. 10.1038/nature01076 PubMed DOI
Krogsgaard M, Li QJ, Sumen C, Huppa JB, Huse M, Davis M, et al. . Agonist/endogenous peptide-MHC heterodimers drive T cell activation and sensitivity. Nature. (2005) 434:238–43. 10.1038/nature03391 PubMed DOI
Bozzacco L, Yu H, Zebroski HA, Dengjel J, Deng H, Mojsov S, et al. . Mass spectrometry analysis and quantitation of peptides presented on the MHC II molecules of mouse spleen dendritic cells. J Proteome Res. (2011) 10:5016–30. 10.1021/pr200503g PubMed DOI PMC
Birnbaum ME, Mendoza JL, Sethi DK, Dong S, Glanville J, Dobbins J, et al. . Deconstructing the peptide-MHC specificity of T cell recognition. Cell. (2014) 157:1073–87. 10.1016/j.cell.2014.03.047 PubMed DOI PMC
Sibener LV, Fernandes RA, Kolawole EM, Carbone CB, Liu F, McAffee D, et al. . Isolation of a structural mechanism for uncoupling T cell receptor signaling from peptide-MHC binding. Cell. (2018) 174:672–87 e627. 10.1016/j.cell.2018.06.017 PubMed DOI PMC
Jonsson P, Southcombe JH, Santos AM, Huo J, Fernandes RA, McColl J, et al. . Remarkably low affinity of CD4/peptide-major histocompatibility complex class II protein interactions. Proc Natl Acad Sci U S A. (2016) 113:5682–7. 10.1073/pnas.1513918113 PubMed DOI PMC
Huppa JB, Axmann M, Mortelmaier MA, Lillemeier BF, Newell EW, Brameshuber M, et al. . TCR-peptide-MHC interactions in situ show accelerated kinetics and increased affinity. Nature. (2010) 463:963–7. 10.1038/nature08746 PubMed DOI PMC
Hong J, Persaud SP, Horvath S, Allen PM, Evavold BD, Zhu C. Force-regulated in situ TCR-peptide-bound MHC class II kinetics determine functions of CD4+ T cells. J Immunol. (2015) 195:3557–64. 10.4049/jimmunol.1501407 PubMed DOI PMC
Krummel MF. Differential clustering of CD4 and CD3zeta During T cell recognition. Science. (2000) 289:1349–52. 10.1126/science.289.5483.1349 PubMed DOI
Zal T, Zal MA, Gascoigne NR. Inhibition of T cell receptor-coreceptor interactions by antagonist ligands visualized by live FRET imaging of the T-hybridoma immunological synapse. Immunity. (2002) 16:521–34. 10.1016/S1074-7613(02)00301-1 PubMed DOI
Kao H, Lin J, Littman DR, Shaw AS, Allen PM. Regulated movement of CD4 in and out of the immunological synapse. J Immunol. (2008) 181:8248–57. 10.4049/jimmunol.181.12.8248 PubMed DOI PMC
Glassman CR, Parrish HL, Deshpande NR, Kuhns MS. The CD4 and CD3deltaepsilon Cytosolic Juxtamembrane Regions Are Proximal within a Compact TCR-CD3-pMHC-CD4 Macrocomplex. J Immunol. (2016) 196:4713–22. 10.4049/jimmunol.1502110 PubMed DOI PMC
Veillette A, Bookman MA, Horak EM, Bolen JB. The CD4 and CD8 T-cell surface-antigens are associated with the internal membrane tyrosine-protein kinase P56LCK. Cell. (1988) 55:301–8. 10.1016/0092-8674(88)90053-0 PubMed DOI
Holdorf AD, Lee KH, Burack WR, Allen PM, Shaw AS. Regulation of Lck activity by CD4 and CD28 in the immunological synapse. Nat Immunol. (2002) 3:259–64 10.1038/ni761 PubMed DOI
Danielian S, Fagard R, Alcover A, Acuto O, Fischer S. The lymphocyte-specific protein tyrosine kinase p56lck is hyperphosphorylated on serine and tyrosine residues within minutes after activation via T cell receptor or CD2. Eur J Immunol. (1989) 19:2183–9. 10.1002/eji.1830191202 PubMed DOI
Soula M, Rothhut B, Camoin L, Guillaume JL, Strosberg D, Vorherr T, et al. . Anti-CD3 and phorbol ester induce distinct phosphorylated sites in the SH2 domain of p56lck. J Biol Chem. (1993) 268:27420–7. PubMed
Doyle C, Strominger JL. Interaction between CD4 and class II MHC molecules mediates cell adhesion. Nature. (1987) 330:256–9. 10.1038/330256a0 PubMed DOI
Kinch MS, Strominger JL, Doyle C. Cell-adhesion mediated by Cd4 and Mhc class-Ii proteins requires active cellular processes. J Immunol. (1993) 151:4552–61. PubMed
Hoerter JA, Brzostek J, Artyomov MN, Abel SM, Casas J, Rybakin V, et al. . Coreceptor affinity for MHC defines peptide specificity requirements for TCR interaction with coagonist peptide-MHC. J Exp Med. (2013) 210:1807–21. 10.1084/jem.20122528 PubMed DOI PMC
Altman JD, Moss PAH, Goulder PJR, Barouch DH, McHeyzer-Williams MG, Bell JI, et al. . Phenotypic analysis of antigen-specific T lymphocytes. Science. (1996) 274:94–6. 10.1126/science.274.5284.94 PubMed DOI
Cochran JR, Cameron TO, Stern LJ. The relationship of MHC-peptide binding and T cell activation probed using chemically defined MHC class II oligomers. Immunity. (2000) 12:241–50. 10.1016/S1074-7613(00)80177-6 PubMed DOI
Cebecauer M, Guillaume P, Hozak P, Mark S, Everett H, Schneider P, et al. . Soluble MHC-peptide complexes induce rapid death of CD8+ CTL. J Immunol. (2005) 174:6809–19. 10.4049/jimmunol.174.11.6809 PubMed DOI
Sevcsik E, Schutz GJ. With or without rafts? alternative views on cell membranes. Bioessays. (2015) 38:129–39. 10.1002/bies.201500150 PubMed DOI PMC
Bernardino de la Serna J, Schutz GJ, Eggeling C, Cebecauer M. There is no simple model of the plasma membrane organization. Front Cell Develop Biol. (2016) 4:106. 10.3389/fcell.2016.00106 PubMed DOI PMC
Sakihama T, Smolyar A, Reinherz EL. Oligomerization of CD4 is required for stable binding to class II major histocompatibility complex proteins but not for interaction with human immunodeficiency virus gp120. Proc Natl Acad Sci USA. (1995) 92:6444–8. 10.1073/pnas.92.14.6444 PubMed DOI PMC
Lynch GW, Sloane AJ, Raso V, Lai A, Cunningham AL. Direct evidence for native CD4 oligomers in lymphoid and monocytoid cells. Eur J Immunol. (1999) 29:2590–602. 10.1002/(SICI)1521-4141(199908)29:08<2590::AID-IMMU2590>3.0.CO;2-R PubMed DOI
Matthias LJ, Yam PT, Jiang XM, Vandegraaff N, Li P, Poumbourios P, et al. . Disulfide exchange in domain 2 of CD4 is required for entry of HIV-1. Nat Immunol. (2002) 3:727–32. 10.1038/ni815 PubMed DOI
Moldovan M-C, Yachou A, Levesque K, Wu H, Hendrickson WA, Cohen EA, et al. . CD4 dimers constitute the functional component required for T cell activation. J Immunol. (2002) 169:6261–8. 10.4049/jimmunol.169.11.6261 PubMed DOI
King C, Sarabipour S, Byrne P, Leahy DJ, Hristova K. The FRET signatures of noninteracting proteins in membranes: simulations and experiments. Biophys J. (2014) 106:1309–17. 10.1016/j.bpj.2014.01.039 PubMed DOI PMC
Roh KH, Lillemeier BF, Wang F, Davis MM. The coreceptor CD4 is expressed in distinct nanoclusters and does not colocalize with T-cell receptor and active protein tyrosine kinase p56lck. Proc Natl Acad Sci USA. (2015) 112:E1604–13. 10.1073/pnas.1503532112 PubMed DOI PMC
Lukes T, Glatzova D, Kvicalova Z, Levet F, Benda A, Letschert S, et al. . Quantifying protein densities on cell membranes using super-resolution optical fluctuation imaging. Nat Commun. (2017) 8:1731. 10.1038/s41467-017-01857-x PubMed DOI PMC
Rossy J, Owen DM, Williamson DJ, Yang Z, Gaus K. Conformational states of the kinase Lck regulate clustering in early T cell signaling. Nat Immunol. (2013) 14:82–9. 10.1038/ni.2488 PubMed DOI
Jung Y, Riven I, Feigelson SW, Kartvelishvily E, Tohya K, Miyasaka M, et al. . Three-dimensional localization of T-cell receptors in relation to microvilli using a combination of superresolution microscopies. Proc Natl Acad Sci USA. (2016) 113:E5916–24. 10.1073/pnas.1605399113 PubMed DOI PMC
Cai E, Marchuk K, Beemiller P, Beppler C, Rubashkin MG, Weaver VM, et al. . Visualizing dynamic microvillar search and stabilization during ligand detection by T cells. Science. (2017) 356:eaal3118. 10.1126/science.aal3118 PubMed DOI PMC
Kim HR, Mun Y, Lee KS, Park YJ, Park JS, Park JH, et al. . T cell microvilli constitute immunological synaptosomes that carry messages to antigen-presenting cells. Nat Commun. (2018) 9:3630. 10.1038/s41467-018-06090-8 PubMed DOI PMC
Fisher PJ, Bulur PA, Vuk-Pavlovic S, Prendergast FG, Dietz AB. Dendritic cell microvilli: a novel membrane structure associated with the multifocal synapse and T-cell clustering. Blood. (2008) 112:5037–45. 10.1182/blood-2008-04-149526 PubMed DOI
Foti M, Phelouzat MA, Holm A, Rasmusson BJ, Carpentier JL. p56Lck anchors CD4 to distinct microdomains on microvilli. Proc Natl Acad Sci USA. (2002) 99:2008–13. 10.1073/pnas.042689099 PubMed DOI PMC
Steffens CM, Hope TJ. Localization of CD4 and CCR5 in living cells. J Virol. (2003) 77:4985–91. 10.1128/JVI.77.8.4985-4991.2003 PubMed DOI PMC
Unternaehrer JJ, Chow A, Pypaert M, Inaba K, Mellman I. The tetraspanin CD9 mediates lateral association of MHC class II molecules on the dendritic cell surface. Proc Natl Acad Sci USA. (2007) 104:234–9. 10.1073/pnas.0609665104 PubMed DOI PMC
Khandelwal S, Roche PA. Distinct MHC class II molecules are associated on the dendritic cell surface in cholesterol-dependent membrane microdomains. J Biol Chem. (2010) 285:35303–10. 10.1074/jbc.M110.147793 PubMed DOI PMC
Rocha-Perugini V, Martinez Del Hoyo G, Gonzalez-Granado J., Ramirez-Huesca MM, Zorita V, Rubinstein E, et al. . CD9 Regulates Major Histocompatibility Complex Class II Trafficking in Monocyte-Derived Dendritic Cells. Mol Cell Biol. (2017) 37:e00202–17. 10.1128/MCB.00202-17 PubMed DOI PMC
Singethan K, Muller N, Schubert S, Luttge D, Krementsov DN, Khurana SR, et al. . CD9 clustering and formation of microvilli zippers between contacting cells regulates virus-induced cell fusion. Traffic. (2008) 9:924–35. 10.1111/j.1600-0854.2008.00737.x PubMed DOI PMC
Takamori S, Holt M, Stenius K, Lemke EA, Gronborg M, Riedel D, et al. . Molecular anatomy of a trafficking organelle. Cell. (2006) 127:831–46. 10.1016/j.cell.2006.10.030 PubMed DOI
Deschout H, Lukes T, Sharipov A, Szlag D, Feletti L, Vandenberg W, et al. . Complementarity of PALM and SOFI for super-resolution live-cell imaging of focal adhesions. Nat Commun. (2016) 7:13693. 10.1038/ncomms13693 PubMed DOI PMC
Fritzsche M, Fernandes RA, Chang VT, Colin-York H, Clausen MP, Felce JH, et al. . Cytoskeletal actin dynamics shape a ramifying actin network underpinning immunological synapse formation. Sci Adv. (2017) 3:e1603032. 10.1126/sciadv.1603032 PubMed DOI PMC
Lange K. Fundamental role of microvilli in the main functions of differentiated cells: Outline of an universal regulating and signaling system at the cell periphery. J Cell Physiol. (2011) 226:896–927. 10.1002/jcp.22302 PubMed DOI