Role of Lipids in Morphogenesis of T-Cell Microvilli
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
33790891
PubMed Central
PMC8006438
DOI
10.3389/fimmu.2021.613591
Knihovny.cz E-zdroje
- Klíčová slova
- T cell, dimpling domains, lipid rafts, membrane curvature, membrane-associated proteins, microvilli, phosphoinositides, sphingolipids,
- MeSH
- buněčná membrána chemie metabolismus MeSH
- fosfatidylinositoly metabolismus MeSH
- imunomodulace MeSH
- lidé MeSH
- membránové mikrodomény chemie metabolismus MeSH
- metabolismus lipidů * MeSH
- mikroklky metabolismus ultrastruktura MeSH
- morfogeneze MeSH
- sfingolipidy metabolismus MeSH
- signální transdukce MeSH
- T-lymfocyty cytologie fyziologie ultrastruktura MeSH
- vazba proteinů MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- fosfatidylinositoly MeSH
- sfingolipidy MeSH
T cells communicate with the environment via surface receptors. Cooperation of surface receptors regulates T-cell responses to diverse stimuli. Recently, finger-like membrane protrusions, microvilli, have been demonstrated to play a role in the organization of receptors and, hence, T-cell activation. However, little is known about the morphogenesis of dynamic microvilli, especially in the cells of immune system. In this review, I focus on the potential role of lipids and lipid domains in morphogenesis of microvilli. Discussed is the option that clustering of sphingolipids with phosphoinositides at the plasma membrane results in dimpling (curved) domains. Such domains can attract phosphoinositide-binding proteins and stimulate actin cytoskeleton reorganization. This process triggers cortical actin opening and bundling of actin fibres to support the growing of microvilli. Critical regulators of microvilli morphogenesis in T cells are unknown. At the end, I suggest several candidates with a potential to organize proteins and lipids in these structures.
Zobrazit více v PubMed
Kim HR, Mun Y, Lee KS, Park YJ, Park JS, Park JH, et al. . T cell microvilli constitute immunological synaptosomes that carry messages to antigen-presenting cells. Nat Commun (2018) 9(1):3630. 10.1038/s41467-018-06090-8 PubMed DOI PMC
Majstoravich S, Zhang J, Nicholson-Dykstra S, Linder S, Friedrich W, Siminovitch KA, et al. . Lymphocyte microvilli are dynamic, actin-dependent structures that do not require Wiskott-Aldrich syndrome protein (WASp) for their morphology. Blood (2004) 104(5):1396–403. 10.1182/blood-2004-02-0437 PubMed DOI
Cai E, Marchuk K, Beemiller P, Beppler C, Rubashkin MG, Weaver VM, et al. . Visualizing dynamic microvillar search and stabilization during ligand detection by T cells. Science (2017) 356(6338):598. 10.1126/science.aal3118 PubMed DOI PMC
Jung Y, Riven I, Feigelson SW, Kartvelishvily E, Tohya K, Miyasaka M, et al. . Three-dimensional localization of T-cell receptors in relation to microvilli using a combination of superresolution microscopies. Proc Natl Acad Sci USA (2016) 113(40):E5916–24. 10.1073/pnas.1605399113 PubMed DOI PMC
Ghosh S, Di Bartolo V, Tubul L, Shimoni E, Kartvelishvily E, Dadosh T, et al. . ERM-Dependent Assembly of T Cell Receptor Signaling and Co-stimulatory Molecules on Microvilli prior to Activation. Cell Rep (2020) 30(10):3434–47 e6. 10.1016/j.celrep.2020.02.069 PubMed DOI
Franke C, Chum T, Kvíčalová Z, Glatzová D, Rodriguez A, Helmerich DA, et al. . Unraveling nanotopography of cell surface receptors. Biorxiv (Preprint) (2019). 10.1101/2020.08.10.244251 PubMed DOI PMC
Jung Y, Wen L, Altman A, Ley K. CD45 pre-exclusion from the tips of microvilli establishes a phosphatase-free zone for early TCR triggering. Biorxiv (Preprint) (2020). 10.1101/2020.05.21.109074 DOI
Kim HR, Jun CD. T Cell Microvilli: Sensors or Senders? Front Immunol (2019) 10:1753. 10.3389/fimmu.2019.01753 PubMed DOI PMC
Glatzova D, Cebecauer M. Dual Role of CD4 in Peripheral T Lymphocytes. Front Immunol (2019) 10:618. 10.3389/fimmu.2019.00618 PubMed DOI PMC
Garcia E, Ismail S. Spatiotemporal Regulation of Signaling: Focus on T Cell Activation and the Immunological Synapse. Int J Mol Sci (2020) 21(9):3283. 10.3390/ijms21093283 PubMed DOI PMC
Lange K. Fundamental role of microvilli in the main functions of differentiated cells: Outline of an universal regulating and signaling system at the cell periphery. J Cell Physiol (2011) 226(4):896–927. 10.1002/jcp.22302 PubMed DOI
Sauvanet C, Wayt J, Pelaseyed T, Bretscher A. Structure, regulation, and functional diversity of microvilli on the apical domain of epithelial cells. Annu Rev Cell Dev Biol (2015) 31:593–621. 10.1146/annurev-cellbio-100814-125234 PubMed DOI
Hirokawa N, Tilney LG, Fujiwara K, Heuser JE. Organization of actin, myosin, and intermediate filaments in the brush border of intestinal epithelial cells. J Cell Biol (1982) 94(2):425–43. 10.1083/jcb.94.2.425 PubMed DOI PMC
Beer AJ, Gonzalez Delgado J, Steiniger F, Qualmann B, Kessels MM. The actin nucleator Cobl organises the terminal web of enterocytes. Sci Rep (2020) 10(1):11156. 10.1038/s41598-020-66111-9 PubMed DOI PMC
Faust JJ, Millis BA, Tyska MJ. Profilin-Mediated Actin Allocation Regulates the Growth of Epithelial Microvilli. Curr Biol (2019) 29(20):3457–65.e3. 10.1016/j.cub.2019.08.051 PubMed DOI PMC
Gorelik J, Shevchuk AI, Frolenkov GI, Diakonov IA, Lab MJ, Kros CJ, et al. . Dynamic assembly of surface structures in living cells. Proc Natl Acad Sci USA (2003) 100(10):5819–22. 10.1073/pnas.1030502100 PubMed DOI PMC
Brown MJ, Nijhara R, Hallam JA, Gignac M, Yamada KM, Erlandsen SL, et al. . Chemokine stimulation of human peripheral blood T lymphocytes induces rapid dephosphorylation of ERM proteins, which facilitates loss of microvilli and polarization. Blood (2003) 102(12):3890–9. 10.1182/blood-2002-12-3807 PubMed DOI
Shifrin DA, Jr., McConnell RE, Nambiar R, Higginbotham JN, Coffey RJ, Tyska MJ. Enterocyte microvillus-derived vesicles detoxify bacterial products and regulate epithelial-microbial interactions. Curr Biol (2012) 22(7):627–31. 10.1016/j.cub.2012.02.022 PubMed DOI PMC
Cebecauer M, Amaro M, Jurkiewicz P, Sarmento MJ, Sachl R, Cwiklik L, et al. . Membrane Lipid Nanodomains. Chem Rev (2018) 118(23):11259–97. 10.1021/acs.chemrev.8b00322 PubMed DOI
Lipowsky R. Domain-induced budding of fluid membranes. Biophys J (1993) 64(4):1133–8. 10.1016/S0006-3495(93)81479-6 PubMed DOI PMC
Lipowsky R. Budding of Membranes Induced by Intramembrane Domains. J Phys Ii (1992) 2(10):1825–40. 10.1051/jp2:1992238 DOI
Ursell TS, Klug WS, Phillips R. Morphology and interaction between lipid domains. Proc Natl Acad Sci USA (2009) 106(32):13301–6. 10.1073/pnas.0903825106 PubMed DOI PMC
Rim JE, Ursell TS, Phillips R, Klug WS. Morphological Phase Diagram for Lipid Membrane Domains with Entropic Tension. Phys Rev Lett (2011) 106(5):057801. 10.1103/PhysRevLett.106.057801 PubMed DOI PMC
Veatch SL, Keller SL. Seeing spots: complex phase behavior in simple membranes. Biochim Biophys Acta (2005) 1746(3):172–85. 10.1016/j.bbamcr.2005.06.010 PubMed DOI
Bernardino de la Serna J, Schutz GJ, Eggeling C, Cebecauer M. There Is No Simple Model of the Plasma Membrane Organization. Front Cell Dev Biol (2016) 4:106. 10.3389/fcell.2016.00106 PubMed DOI PMC
Levental I, Levental KR, Heberle FA. Lipid Rafts: Controversies Resolved, Mysteries Remain. Trends Cell Biol (2020) 30(5):341–53. 10.1016/j.tcb.2020.01.009 PubMed DOI PMC
Bjorkbom A, Rog T, Kaszuba K, Kurita M, Yamaguchi S, Lonnfors M, et al. . Effect of sphingomyelin headgroup size on molecular properties and interactions with cholesterol. Biophys J (2010) 99(10):3300–8. 10.1016/j.bpj.2010.09.049 PubMed DOI PMC
Lonnfors M, Doux JP, Killian JA, Nyholm TK, Slotte JP. Sterols have higher affinity for sphingomyelin than for phosphatidylcholine bilayers even at equal acyl-chain order. Biophys J (2011) 100(11):2633–41. 10.1016/j.bpj.2011.03.066 PubMed DOI PMC
Simons K, Ikonen E. Functional rafts in cell membranes. Nature (1997) 387(6633):569–72. 10.1038/42408 PubMed DOI
Ikenouchi J, Hirata M, Yonemura S, Umeda M. Sphingomyelin clustering is essential for the formation of microvilli. J Cell Sci (2013) 126(Pt 16):3585–92. 10.1242/jcs.122325 PubMed DOI
He C, Hu X, Jung RS, Weston TA, Sandoval NP, Tontonoz P, et al. . High-resolution imaging and quantification of plasma membrane cholesterol by NanoSIMS. Proc Natl Acad Sci USA (2017) 114(8):2000–5. 10.1073/pnas.1621432114 PubMed DOI PMC
Poole K, Meder D, Simons K, Muller D. The effect of raft lipid depletion on microvilli formation in MDCK cells, visualized by atomic force microscopy. FEBS Lett (2004) 565(1-3):53–8. 10.1016/j.febslet.2004.03.095 PubMed DOI
van Meer G, Voelker DR, Feigenson GW. Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol (2008) 9(2):112–24. 10.1038/nrm2330 PubMed DOI PMC
Lorent JH, Levental KR, Ganesan L, Rivera-Longsworth G, Sezgin E, Doktorova M, et al. . Plasma membranes are asymmetric in lipid unsaturation, packing and protein shape. Nat Chem Biol (2020) 16(6):644–52. 10.1038/s41589-020-0529-6 PubMed DOI PMC
Perlmutter JD, Sachs JN. Interleaflet interaction and asymmetry in phase separated lipid bilayers: molecular dynamics simulations. J Am Chem Soc (2011) 133(17):6563–77. 10.1021/ja106626r PubMed DOI
Romer W, Berland L, Chambon V, Gaus K, Windschiegl B, Tenza D, et al. . Shiga toxin induces tubular membrane invaginations for its uptake into cells. Nature (2007) 450(7170):670–5. 10.1038/nature05996 PubMed DOI
Hogue IB, Grover JR, Soheilian F, Nagashima K, Ono A. Gag induces the coalescence of clustered lipid rafts and tetraspanin-enriched microdomains at HIV-1 assembly sites on the plasma membrane. J Virol (2011) 85(19):9749–66. 10.1128/JVI.00743-11 PubMed DOI PMC
Kaiser F, Huebecker M, Wachten D. Sphingolipids controlling ciliary and microvillar function. FEBS Lett (2020) 594:3652–67. 10.1002/1873-3468.13816 PubMed DOI
Martin-Belmonte F, Gassama A, Datta A, Yu W, Rescher U, Gerke V, et al. . PTEN-mediated apical segregation of phosphoinositides controls epithelial morphogenesis through Cdc42. Cell (2007) 128(2):383–97. 10.1016/j.cell.2006.11.051 PubMed DOI PMC
Schuck S, Simons K. Polarized sorting in epithelial cells: raft clustering and the biogenesis of the apical membrane. J Cell Sci (2004) 117(Pt 25):5955–64. 10.1242/jcs.01596 PubMed DOI
Iijima M, Devreotes P. Tumor suppressor PTEN mediates sensing of chemoattractant gradients. Cell (2002) 109(5):599–610. 10.1016/s0092-8674(02)00745-6 PubMed DOI
Lokuta MA, Senetar MA, Bennin DA, Nuzzi PA, Chan KT, Ott VL, et al. . Type Igamma PIP kinase is a novel uropod component that regulates rear retraction during neutrophil chemotaxis. Mol Biol Cell (2007) 18(12):5069–80. 10.1091/mbc.e07-05-0428 PubMed DOI PMC
Jiang Z, Redfern RE, Isler Y, Ross AH, Gericke A. Cholesterol stabilizes fluid phosphoinositide domains. Chem Phys Lipids (2014) 182:52–61. 10.1016/j.chemphyslip.2014.02.003 PubMed DOI PMC
Pinkwart K, Schneider F, Lukoseviciute M, Sauka-Spengler T, Lyman E, Eggeling C, et al. . Nanoscale dynamics of cholesterol in the cell membrane. J Biol Chem (2019) 294(34):12599–609. 10.1074/jbc.RA119.009683 PubMed DOI PMC
Allender DW, Sodt AJ, Schick M. Cholesterol-Dependent Bending Energy Is Important in Cholesterol Distribution of the Plasma Membrane. Biophys J (2019) 116(12):2356–66. 10.1016/j.bpj.2019.03.028 PubMed DOI PMC
Sorre B, Callan-Jones A, Manneville JB, Nassoy P, Joanny JF, Prost J, et al. . Curvature-driven lipid sorting needs proximity to a demixing point and is aided by proteins. Proc Natl Acad Sci USA (2009) 106(14):5622–6. 10.1073/pnas.0811243106 PubMed DOI PMC
Pan J, Mills TT, Tristram-Nagle S, Nagle JF. Cholesterol perturbs lipid bilayers nonuniversally. Phys Rev Lett (2008) 100(19):198103. 10.1103/PhysRevLett.100.198103 PubMed DOI PMC
Blin G, Margeat E, Carvalho K, Royer CA, Roy C, Picart C. Quantitative analysis of the binding of ezrin to large unilamellar vesicles containing phosphatidylinositol 4,5 bisphosphate. Biophys J (2008) 94(3):1021–33. 10.1529/biophysj.107.110213 PubMed DOI PMC
Adada M, Canals D, Hannun YA, Obeid LM. Sphingolipid regulation of ezrin, radixin, and moesin proteins family: implications for cell dynamics. Biochim Biophys Acta (2014) 1841(5):727–37. 10.1016/j.bbalip.2013.07.002 PubMed DOI PMC
Canals D, Jenkins RW, Roddy P, Hernandez-Corbacho MJ, Obeid LM, Hannun YA. Differential effects of ceramide and sphingosine 1-phosphate on ERM phosphorylation: probing sphingolipid signaling at the outer plasma membrane. J Biol Chem (2010) 285(42):32476–85. 10.1074/jbc.M110.141028 PubMed DOI PMC
Bonilha VL, Finnemann SC, Rodriguez-Boulan E. Ezrin promotes morphogenesis of apical microvilli and basal infoldings in retinal pigment epithelium. J Cell Biol (1999) 147(7):1533–48. 10.1083/jcb.147.7.1533 PubMed DOI PMC
Crepaldi T, Gautreau A, Comoglio PM, Louvard D, Arpin M. Ezrin is an effector of hepatocyte growth factor-mediated migration and morphogenesis in epithelial cells. J Cell Biol (1997) 138(2):423–34. 10.1083/jcb.138.2.423 PubMed DOI PMC
Hsu YH, Lin WL, Hou YT, Pu YS, Shun CT, Chen CL, et al. . Podocalyxin EBP50 ezrin molecular complex enhances the metastatic potential of renal cell carcinoma through recruiting Rac1 guanine nucleotide exchange factor ARHGEF7. Am J Pathol (2010) 176(6):3050–61. 10.2353/ajpath.2010.090539 PubMed DOI PMC
Marin EP, Derakhshan B, Lam TT, Davalos A, Sessa WC. Endothelial cell palmitoylproteomic identifies novel lipid-modified targets and potential substrates for protein acyl transferases. Circ Res (2012) 110(10):1336–44. 10.1161/CIRCRESAHA.112.269514 PubMed DOI PMC
Roper K, Corbeil D, Huttner WB. Retention of prominin in microvilli reveals distinct cholesterol-based lipid micro-domains in the apical plasma membrane. Nat Cell Biol (2000) 2(9):582–92. 10.1038/35023524 PubMed DOI
Thamm K, Simaite D, Karbanova J, Bermudez V, Reichert D, Morgenstern A, et al. . Prominin-1 (CD133) modulates the architecture and dynamics of microvilli. Traffic (2019) 20(1):39–60. 10.1111/tra.12618 PubMed DOI
Taieb N, Maresca M, Guo XJ, Garmy N, Fantini J, Yahi N. The first extracellular domain of the tumour stem cell marker CD133 contains an antigenic ganglioside-binding motif. Cancer Lett (2009) 278(2):164–73. 10.1016/j.canlet.2009.01.013 PubMed DOI
Romer W, Pontani LL, Sorre B, Rentero C, Berland L, Chambon V, et al. . Actin dynamics drive membrane reorganization and scission in clathrin-independent endocytosis. Cell (2010) 140(4):540–53. 10.1016/j.cell.2010.01.010 PubMed DOI
Ewers H, Romer W, Smith AE, Bacia K, Dmitrieff S, Chai W, et al. . GM1 structure determines SV40-induced membrane invagination and infection. Nat Cell Biol (2010) 12(1):11–8. 10.1038/ncb1999 PubMed DOI
Parton RG, Simons K. The multiple faces of caveolae. Nat Rev Mol Cell Biol (2007) 8(3):185–94. 10.1038/nrm2122 PubMed DOI
Briggs JA, Riches JD, Glass B, Bartonova V, Zanetti G, Krausslich HG. Structure and assembly of immature HIV. Proc Natl Acad Sci USA (2009) 106(27):11090–5. 10.1073/pnas.0903535106 PubMed DOI PMC
Barooji YF, Rorvig-Lund A, Semsey S, Reihani SN, Bendix PM. Dynamics of membrane nanotubes coated with I-BAR. Sci Rep (2016) 6:30054. 10.1038/srep30054 PubMed DOI PMC
Choi J, Ko J, Racz B, Burette A, Lee JR, Kim S, et al. . Regulation of dendritic spine morphogenesis by insulin receptor substrate 53, a downstream effector of Rac1 and Cdc42 small GTPases. J Neurosci (2005) 25(4):869–79. 10.1523/JNEUROSCI.3212-04.2005 PubMed DOI PMC
Nakagawa H, Miki H, Nozumi M, Takenawa T, Miyamoto S, Wehland J, et al. . IRSp53 is colocalised with WAVE2 at the tips of protruding lamellipodia and filopodia independently of Mena. J Cell Sci (2003) 116(Pt 12):2577–83. 10.1242/jcs.00462 PubMed DOI
Rajagopal S, Ji Y, Xu K, Li Y, Wicks K, Liu J, et al. . Scaffold proteins IRSp53 and spinophilin regulate localized Rac activation by T-lymphocyte invasion and metastasis protein 1 (TIAM1). J Biol Chem (2010) 285(23):18060–71. 10.1074/jbc.M109.051490 PubMed DOI PMC
Bisi S, Marchesi S, Rizvi A, Carra D, Beznoussenko GV, Ferrara I, et al. . IRSp53 controls plasma membrane shape and polarized transport at the nascent lumen in epithelial tubules. Nat Commun (2020) 11(1):3516. 10.1038/s41467-020-17091-x PubMed DOI PMC
Billcliff PG, Rollason R, Prior I, Owen DM, Gaus K, Banting G. CD317/tetherin is an organiser of membrane microdomains. J Cell Sci (2013) 126(Pt 7):1553–64. 10.1242/jcs.112953 PubMed DOI PMC
Rollason R, Korolchuk V, Hamilton C, Jepson M, Banting G. A CD317/tetherin-RICH2 complex plays a critical role in the organization of the subapical actin cytoskeleton in polarized epithelial cells. J Cell Biol (2009) 184(5):721–36. 10.1083/jcb.200804154 PubMed DOI PMC
Richnau N, Fransson A, Farsad K, Aspenstrom P. RICH-1 has a BIN/Amphiphysin/Rvsp domain responsible for binding to membrane lipids and tubulation of liposomes. Biochem Biophys Res Commun (2004) 320(3):1034–42. 10.1016/j.bbrc.2004.05.221 PubMed DOI
Weck ML, Grega-Larson NE, Tyska MJ. MyTH4-FERM myosins in the assembly and maintenance of actin-based protrusions. Curr Opin Cell Biol (2017) 44:68–78. 10.1016/j.ceb.2016.10.002 PubMed DOI PMC
Bisaria A, Hayer A, Garbett D, Cohen D, Meyer T. Membrane-proximal F-actin restricts local membrane protrusions and directs cell migration. Science (2020) 368(6496):1205–10. 10.1126/science.aay7794 PubMed DOI PMC
Welf ES, Miles CE, Huh J, Sapoznik E, Chi J, Driscoll MK, et al. . Actin-Membrane Release Initiates Cell Protrusions. Dev Cell (2020) 55:P723–36. 10.1016/j.devcel.2020.11.024 PubMed DOI PMC
Navarro-Hernandez IC, Lopez-Ortega O, Acevedo-Ochoa E, Cervantes-Diaz R, Romero-Ramirez S, Sosa-Hernandez VA, et al. . Tetraspanin 33 (TSPAN33) regulates endocytosis and migration of human B lymphocytes by affecting the tension of the plasma membrane. FEBS J (2020) 287(16):3449–71. 10.1111/febs.15216 PubMed DOI
Runge KE, Evans JE, He ZY, Gupta S, McDonald KL, Stahlberg H, et al. . Oocyte CD9 is enriched on the microvillar membrane and required for normal microvillar shape and distribution. Dev Biol (2007) 304(1):317–25. 10.1016/j.ydbio.2006.12.041 PubMed DOI
Bari R, Guo Q, Xia B, Zhang YH, Giesert EE, Levy S, et al. . Tetraspanins regulate the protrusive activities of cell membrane. Biochem Biophys Res Commun (2011) 415(4):619–26. 10.1016/j.bbrc.2011.10.121 PubMed DOI PMC
Sengupta P, Seo AY, Pasolli HA, Song YE, Johnson MC. Lippincott-Schwartz J. A lipid-based partitioning mechanism for selective incorporation of proteins into membranes of HIV particles. Nat Cell Biol (2019) 21(4):452–61. 10.1038/s41556-019-0300-y PubMed DOI