Approach to map nanotopography of cell surface receptors
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
SBF003\1163
Wellcome Trust (Wellcome)
Wellcome Trust - United Kingdom
19-0704S
Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
EP/N509760/1
RCUK | Engineering and Physical Sciences Research Council (EPSRC)
2031229
RCUK | Engineering and Physical Sciences Research Council (EPSRC)
British Heart Foundation - United Kingdom
PubMed
35264712
PubMed Central
PMC8907216
DOI
10.1038/s42003-022-03152-y
PII: 10.1038/s42003-022-03152-y
Knihovny.cz E-zdroje
- MeSH
- buněčná membrána metabolismus MeSH
- nanotechnologie * MeSH
- receptory buněčného povrchu * metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- receptory buněčného povrchu * MeSH
Cells communicate with their environment via surface receptors, but nanoscopic receptor organization with respect to complex cell surface morphology remains unclear. This is mainly due to a lack of accessible, robust and high-resolution methods. Here, we present an approach for mapping the topography of receptors at the cell surface with nanometer precision. The method involves coating glass coverslips with glycine, which preserves the fine membrane morphology while allowing immobilized cells to be positioned close to the optical surface. We developed an advanced and simplified algorithm for the analysis of single-molecule localization data acquired in a biplane detection scheme. These advancements enable direct and quantitative mapping of protein distribution on ruffled plasma membranes with near isotropic 3D nanometer resolution. As demonstrated successfully for CD4 and CD45 receptors, the described workflow is a straightforward quantitative technique to study molecules and their interactions at the complex surface nanomorphology of differentiated metazoan cells.
Abbe Center of Photonics Friedrich Schiller University Jena Jena Germany
Department of Biotechnology and Biophysics Biocenter University of Würzburg Würzburg Germany
Department of Physics SUPA University of Strathclyde Glasgow UK
Institute of Applied Optics and Biophysics Friedrich Schiller University Jena Jena Germany
Jena Center for Soft Matter Friedrich Schiller University Jena Jena Germany
Zobrazit více v PubMed
Cebecauer M, Spitaler M, Serge A, Magee AI. Signalling complexes and clusters: functional advantages and methodological hurdles. J. Cell Sci. 2010;123:309–320. PubMed
Pak AJ, et al. Immature HIV-1 lattice assembly dynamics are regulated by scaffolding from nucleic acid and the plasma membrane. Proc. Natl Acad. Sci. USA. 2017;114:E10056–E10065. PubMed PMC
Rossier O, et al. Integrins beta1 and beta3 exhibit distinct dynamic nanoscale organizations inside focal adhesions. Nat. Cell Biol. 2012;14:1057–1067. PubMed
Barreiro O, et al. Endothelial adhesion receptors are recruited to adherent leukocytes by inclusion in preformed tetraspanin nanoplatforms. J. Cell Biol. 2008;183:527–542. PubMed PMC
Kellermayer B, et al. Differential nanoscale topography and functional role of GluN2-NMDA receptor subtypes at glutamatergic synapses. Neuron. 2018;100:106–119 e7. PubMed
Sevcsik E, Schutz GJ. With or without rafts? Alternative views on cell membranes. Bioessays. 2015;38:129–139. PubMed PMC
Dustin ML, Davis SJ. TCR signaling: the barrier within. Nat. Immunol. 2014;15:136–137. PubMed PMC
Bernardino de la Serna J, Schutz GJ, Eggeling C, Cebecauer M. There is no simple model of the plasma membrane organization. Front Cell Dev. Biol. 2016;4:106. PubMed PMC
Brameshuber M, et al. Monomeric TCRs drive T cell antigen recognition. Nat. Immunol. 2018;19:487–496. PubMed PMC
James JR, et al. The T cell receptor triggering apparatus is composed of monovalent or monomeric proteins. J. Biol. Chem. 2011;286:31993–32001. PubMed PMC
Gomes de Castro MA, et al. Differential organization of tonic and chronic B cell antigen receptors in the plasma membrane. Nat. Commun. 2019;10:820. PubMed PMC
Campi G, Varma R, Dustin ML. Actin and agonist MHC-peptide complex-dependent T cell receptor microclusters as scaffolds for signaling. J. Exp. Med. 2005;202:1031–1036. PubMed PMC
Tolar P, Hanna J, Krueger PD, Pierce SK. The constant region of the membrane immunoglobulin mediates B cell-receptor clustering and signaling in response to membrane antigens. Immunity. 2009;30:44–55. PubMed PMC
Saka SK, et al. Multi-protein assemblies underlie the mesoscale organization of the plasma membrane. Nat. Commun. 2014;5:4509. PubMed PMC
Letschert S, et al. Super-resolution imaging of plasma membrane glycans. Angew. Chem. Int Ed. Engl. 2014;53:10921–10924. PubMed
Mateos-Gil P, Letschert S, Doose S, Sauer M. Super-resolution imaging of plasma membrane proteins with click chemistry. Front Cell Dev. Biol. 2016;4:98. PubMed PMC
Puchner EM, Walter JM, Kasper R, Huang B, Lim WA. Counting molecules in single organelles with superresolution microscopy allows tracking of the endosome maturation trajectory. Proc. Natl Acad. Sci. USA. 2013;110:16015–16020. PubMed PMC
Loschberger A, Franke C, Krohne G, van de Linde S, Sauer M. Correlative super-resolution fluorescence and electron microscopy of the nuclear pore complex with molecular resolution. J. Cell Sci. 2014;127:4351–4355. PubMed
Ehmann N, et al. Quantitative super-resolution imaging of Bruchpilot distinguishes active zone states. Nat. Commun. 2014;5:4650. PubMed PMC
Jungmann R, et al. Quantitative super-resolution imaging with qPAINT. Nat. Methods. 2016;13:439–442. PubMed PMC
Lillemeier BF, et al. TCR and Lat are expressed on separate protein islands on T cell membranes and concatenate during activation. Nat. Immunol. 2010;11:90–96. PubMed PMC
Rossy J, Owen DM, Williamson DJ, Yang Z, Gaus K. Conformational states of the kinase Lck regulate clustering in early T cell signaling. Nat. Immunol. 2013;14:82–89. PubMed
Rossboth B, et al. TCRs are randomly distributed on the plasma membrane of resting antigen-experienced T cells. Nat. Immunol. 2018;19:821–827. PubMed PMC
Mattila PK, et al. The actin and tetraspanin networks organize receptor nanoclusters to regulate B cell receptor-mediated signaling. Immunity. 2013;38:461–474. PubMed
Balint, S., Lopes, F. B. & Davis, D. M. A nanoscale reorganization of the IL-15 receptor is triggered by NKG2D in a ligand-dependent manner. Sci. Signal.11, eaal3606 (2018). PubMed PMC
Annibale P, Vanni S, Scarselli M, Rothlisberger U, Radenovic A. Identification of clustering artifacts in photoactivated localization microscopy. Nat. Methods. 2011;8:527–528. PubMed
Burgert A, Letschert S, Doose S, Sauer M. Artifacts in single-molecule localization microscopy. Histochem Cell Biol. 2015;144:123–131. PubMed
Lukes T, et al. Quantifying protein densities on cell membranes using super-resolution optical fluctuation imaging. Nat. Commun. 2017;8:1731. PubMed PMC
Levet F, et al. SR-Tesseler: a method to segment and quantify localization-based super-resolution microscopy data. Nat. Methods. 2015;12:1065–1071. PubMed
Baumgart F, et al. Varying label density allows artifact-free analysis of membrane-protein nanoclusters. Nat. Methods. 2016;13:661–664. PubMed PMC
Spahn C, Herrmannsdorfer F, Kuner T, Heilemann M. Temporal accumulation analysis provides simplified artifact-free analysis of membrane-protein nanoclusters. Nat. Methods. 2016;13:963–964. PubMed
Vangindertael J, et al. An introduction to optical super-resolution microscopy for the adventurous biologist. Methods Appl. Fluoresc. 2018;6:022003. PubMed
Raghunathan K, Kenworthy AK. Dynamic pattern generation in cell membranes: current insights into membrane organization. Biochim. Biophys. Acta Biomembr. 2018;1860:2018–2031. PubMed PMC
Sezgin E, Levental I, Mayor S, Eggeling C. The mystery of membrane organization: composition, regulation and roles of lipid rafts. Nat. Rev. Mol. Cell Biol. 2017;18:361–374. PubMed PMC
Jarsch IK, Daste F, Gallop JL. Membrane curvature in cell biology: an integration of molecular mechanisms. J. Cell Biol. 2016;214:375–387. PubMed PMC
Fisher PJ, Bulur PA, Vuk-Pavlovic S, Prendergast FG, Dietz AB. Dendritic cell microvilli: a novel membrane structure associated with the multifocal synapse and T-cell clustering. Blood. 2008;112:5037–5045. PubMed
Kim HR, et al. T cell microvilli constitute immunological synaptosomes that carry messages to antigen-presenting cells. Nat. Commun. 2018;9:3630. PubMed PMC
Shalek AK, et al. Nanowire-mediated delivery enables functional interrogation of primary immune cells: application to the analysis of chronic lymphocytic leukemia. Nano Lett. 2012;12:6498–6504. PubMed PMC
Gorelik J, et al. Dynamic assembly of surface structures in living cells. Proc. Natl Acad. Sci. USA. 2003;100:5819–5822. PubMed PMC
Cebecauer M. Role of Lipids in Morphogenesis of T-Cell Microvilli. Front Immunol. 2021;12:613591. PubMed PMC
Lange K. Fundamental role of microvilli in the main functions of differentiated cells: Outline of an universal regulating and signaling system at the cell periphery. J. Cell Physiol. 2011;226:896–927. PubMed
Millington PF, Critchley DR, Tovell PW, Pearson R. Scanning electron microscopy of intestinal microvilli. J. Microsc. 1969;89:339–344. PubMed
Griffiths G, Lucocq JM. Antibodies for immunolabeling by light and electron microscopy: not for the faint hearted. Histochem Cell Biol. 2014;142:347–360. PubMed PMC
Schwarz H, Humbel BM. Correlative light and electron microscopy using immunolabeled sections. Methods Mol. Biol. 2014;1117:559–592. PubMed
Franke C, et al. Correlative single-molecule localization microscopy and electron tomography reveals endosome nanoscale domains. Traffic. 2019;20:601–617. PubMed PMC
Li D, et al. ADVANCED IMAGING. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics. Science. 2015;349:aab3500. PubMed PMC
Geissbuehler S, et al. Live-cell multiplane three-dimensional super-resolution optical fluctuation imaging. Nat. Commun. 2014;5:5830. PubMed PMC
von Diezmann A, Shechtman Y, Moerner WE. Three-dimensional localization of single molecules for super-resolution imaging and single-particle tracking. Chem. Rev. 2017;117:7244–7275. PubMed PMC
Huang B, Wang W, Bates M, Zhuang X. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science. 2008;319:810–803. PubMed PMC
Juette MF, et al. Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples. Nat. Methods. 2008;5:527–529. PubMed
Ram S, Prabhat P, Chao J, Ward ES, Ober RJ. High accuracy 3D quantum dot tracking with multifocal plane microscopy for the study of fast intracellular dynamics in live cells. Biophys. J. 2008;95:6025–6043. PubMed PMC
Pavani SR, et al. Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function. Proc. Natl Acad. Sci. USA. 2009;106:2995–2999. PubMed PMC
Shtengel G, et al. Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure. Proc. Natl Acad. Sci. USA. 2009;106:3125–3130. PubMed PMC
Dustin ML, Depoil D. New insights into the T cell synapse from single molecule techniques. Nat. Rev. Immunol. 2011;11:672–684. PubMed PMC
Smith, C. L. Basic confocal microscopy. Curr. Protoc.Neurosci., 56:2.2.1-2.2.18 (2011). PubMed
Mazia D, Schatten G, Sale W. Adhesion of cells to surfaces coated with polylysine. Applications to electron microscopy. J. Cell Biol. 1975;66:198–200. PubMed PMC
Groves JT, Dustin ML. Supported planar bilayers in studies on immune cell adhesion and communication. J. Immunol. Methods. 2003;278:19–32. PubMed
Bunnell SC, et al. T cell receptor ligation induces the formation of dynamically regulated signaling assemblies. J. Cell Biol. 2002;158:1263–1275. PubMed PMC
Franke C, Sauer M, van de Linde S. Photometry unlocks 3D information from 2D localization microscopy data. Nat. Methods. 2017;14:41–44. PubMed
Sattentau QJ, Dalgleish AG, Weiss RA, Beverley PC. Epitopes of the CD4 antigen and HIV infection. Science. 1986;234:1120–1123. PubMed
Bazil V, Hilgert I, Kristofova H, Maurer D, Horejsi V. Sialic acid-dependent epitopes of CD45 molecules of restricted cellular expression. Immunogenetics. 1989;29:202–205. PubMed
Maidorn M, Rizzoli SO, Opazo F. Tools and limitations to study the molecular composition of synapses by fluorescence microscopy. Biochem J. 2016;473:3385–3399. PubMed
Schermelleh L, et al. Super-resolution microscopy demystified. Nat. Cell Biol. 2019;21:72–84. PubMed
de Kruijff B, Cullis PR. The influence of poly(L-lysine) on phospholipid polymorphism. Evidence that electrostatic polypeptide-phospholipid interactions can modulate bilayer/non-bilayer transitions. Biochim. Biophys. Acta. 1980;601:235–240. PubMed
Pachmann K, Leibold W. Insolubilization of protein antigens on polyacrylic plastic beads using poly-L-lysine. J. Immunol. Methods. 1976;12:81–89. PubMed
van de Linde S, et al. Direct stochastic optical reconstruction microscopy with standard fluorescent probes. Nat. Protoc. 2011;6:991–1009. PubMed
Klein T, et al. Live-cell dSTORM with SNAP-tag fusion proteins. Nat. Methods. 2011;8:7–9. PubMed
Santos AM, et al. Capturing resting T cells: the perils of PLL. Nat. Immunol. 2018;19:203–205. PubMed PMC
Helassa N, Podor B, Fine A, Torok K. Design and mechanistic insight into ultrafast calcium indicators for monitoring intracellular calcium dynamics. Sci. Rep. 2016;6:38276. PubMed PMC
Tokunaga M, Imamoto N, Sakata-Sogawa K. Highly inclined thin illumination enables clear single-molecule imaging in cells. Nat. Methods. 2008;5:159–161. PubMed
Franke C, van de Linde S. Reply to ‘Impact of optical aberrations on axial position determination by photometry’. Nat. Methods. 2018;15:990–992. PubMed
Culley S, et al. Quantitative mapping and minimization of super-resolution optical imaging artifacts. Nat. Methods. 2018;15:263–266. PubMed PMC
Schindelin J, et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. PubMed PMC
van de Linde S. Single-molecule localization microscopy analysis with ImageJ. J. Phys. D. 2019;52:203002.
Hermiston ML, Xu Z, Weiss A. CD45: a critical regulator of signaling thresholds in immune cells. Annu Rev. Immunol. 2003;21:107–137. PubMed
Jung Y, Wen L, Altman A, Ley K. CD45 pre-exclusion from the tips of T cell microvilli prior to antigen recognition. Nat. Commun. 2021;12:3872. PubMed PMC
Fernandes RA, et al. A cell topography-based mechanism for ligand discrimination by the T cell receptor. Proc. Natl Acad. Sci. USA. 2019;116:14002–14010. PubMed PMC
Fritzsche M, et al. Cytoskeletal actin dynamics shape a ramifying actin network underpinning immunological synapse formation. Sci. Adv. 2017;3:e1603032. PubMed PMC
Axelrod D. Cell-substrate contacts illuminated by total internal reflection fluorescence. J. Cell Biol. 1981;89:141–145. PubMed PMC
Ghosh S, et al. ERM-dependent assembly of T cell receptor signaling and co-stimulatory molecules on microvilli prior to activation. Cell Rep. 2020;30:3434–3447 e6. PubMed
Blaskovic S, Blanc M, van der Goot FG. What does S-palmitoylation do to membrane proteins? FEBS J. 2013;280:2766–2774. PubMed
Varma R, Campi G, Yokosuka T, Saito T, Dustin ML. T cell receptor-proximal signals are sustained in peripheral microclusters and terminated in the central supramolecular activation cluster. Immunity. 2006;25:117–127. PubMed PMC
Hashimoto-Tane A, et al. Micro-adhesion rings surrounding TCR microclusters are essential for T cell activation. J. Exp. Med. 2016;213:1609–1625. PubMed PMC
Kornete M, Marone R, Jeker LT. Highly efficient and versatile plasmid-based gene editing in primary T cells. J. Immunol. 2018;200:2489–2501. PubMed PMC
Boyum, A. Isolation of lymphocytes, granulocytes and macrophages. Scand. J. Immunol.5, 9–15 (1976). PubMed
Wolter S, et al. rapidSTORM: accurate, fast open-source software for localization microscopy. Nat. Methods. 2012;9:1040–1041. PubMed
Geissbuehler S, et al. Mapping molecular statistics with balanced super-resolution optical fluctuation imaging (bSOFI) Optical Nanoscopy. 2012;1:4.
Chum T, et al. The role of palmitoylation and transmembrane domain in sorting of transmembrane adaptor proteins. J. Cell Sci. 2016;129:95–107. PubMed
Edelstein AD, et al. Advanced methods of microscope control using muManager software. J. Biol. Methods. 2014;1:e10. PubMed PMC
Lee AM, Colin-York H, Fritzsche M. CalQuo (2): automated Fourier-space, population-level quantification of global intracellular calcium responses. Sci. Rep. 2017;7:5416. PubMed PMC
Haralick, R. M., Shanmugam, K. & Dinstein, I. Textural features for image classification. IEEE Trans. Syst. Man Cybern.SMC-3, 610–621 (1973).
Glatzova, D. et al. The role of prolines and glycine in the transmembrane domain of LAT. FEBS J.288, 4039–4052 (2021). PubMed