Cell surface morphology mimicking nano-bio platform for immune cell stimulation
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39498306
PubMed Central
PMC11532961
DOI
10.1016/j.isci.2024.111033
PII: S2589-0042(24)02258-2
Knihovny.cz E-zdroje
- Klíčová slova
- Biotechnology, Cell biology, Immunology,
- Publikační typ
- časopisecké články MeSH
Studying the complex realm of cellular communication and interactions by fluorescence microscopy requires sample fixation on a transparent substrate. To activate T cells, which are pivotal in controlling the immune system, it is important to present the activating antigen in a spatial arrangement similar to the nature of the antigen-presenting cell, including the presence of ligands on microvilli. Similar arrangement is predicted for some other immune cells. In this work, immune cell-stimulating platform based on nanoparticle-ligand conjugates have been developed using a scalable, affordable, and broadly applicable technology, which can be readily deployed without the need for state-of-the-art nanofabrication instruments. The validation of surface biofunctionalization was performed by combination of fluorescence and atomic force microscopy techniques. We demonstrate that the targeted system serves as a biomimetic scaffold on which immune cells make primary contact with the microvilli-mimicking substrate and exhibit stimulus-specific activation.
Zobrazit více v PubMed
Delcassian D., Sattler S., Dunlop I.E. T Cell Immunoengineering with Advanced Biomaterials. Integr. Biol. 2017;9:211–222. doi: 10.1039/c6ib00233a. PubMed DOI PMC
Jin W., Tamzalit F., Chaudhuri P.K., Black C.T., Huse M., Kam L.C. T Cell Activation and Immune Synapse Organization Respond to the Microscale Mechanics of Structured Surfaces. Proc. Natl. Acad. Sci. USA. 2019;116:19835–19840. doi: 10.1073/pnas.1906986116. PubMed DOI PMC
Bashour K.T., Gondarenko A., Chen H., Shen K., Liu X., Huse M., Hone J.C., Kam L.C. CD28 and CD3 Have Complementary Roles in T-Cell Traction Forces. Proc. Natl. Acad. Sci. USA. 2014;111:2241–2246. doi: 10.1073/pnas.1315606111. PubMed DOI PMC
Deeg J., Axmann M., Matic J., Liapis A., Depoil D., Afrose J., Curado S., Dustin M.L., Spatz J.P. T Cell Activation Is Determined by the Number of Presented Antigens. Nano Lett. 2013;13:5619–5626. doi: 10.1021/nl403266t. PubMed DOI PMC
Sun Y., Sun J., Xiao M., Lai W., Li L., Fan C., Pei H. DNA Origami–Based Artificial Antigen-Presenting Cells for Adoptive T Cell Therapy. Sci. Adv. 2022;8 doi: 10.1126/sciadv.add1106. PubMed DOI PMC
Fisher P.J., Bulur P.A., Vuk-Pavlovic S., Prendergast F.G., Dietz A.B. Dendritic Cell Microvilli: A Novel Membrane Structure Associated with the Multifocal Synapse and T-Cell Clustering. Blood. 2008;112:5037–5045. doi: 10.1182/blood-2008-04-149526. PubMed DOI
Saltukoglu D., Özdemir B., Holtmannspötter M., Reski R., Piehler J., Kurre R., Reth M. Plasma Membrane Topography Governs the 3D Dynamic Localization of IgM B Cell Antigen Receptor Clusters. EMBO J. 2023;42 doi: 10.15252/embj.2022112030. PubMed DOI PMC
Frey T., Petty H.R., McConnell H.M. Electron Microscopic Study of Natural Killer Cell-Tumor Cell Conjugates. Proc. Natl. Acad. Sci. USA. 1982;79:5317–5321. doi: 10.1073/pnas.79.17.5317. PubMed DOI PMC
Kim H.-R., Jun C.-D. T Cell Microvilli: Sensors or Senders? Front. Immunol. 2019;10 PubMed PMC
Orbach R., Su X. Surfing on Membrane Waves: Microvilli, Curved Membranes, and Immune Signaling. Front. Immunol. 2020;11:2187. doi: 10.3389/fimmu.2020.02187. PubMed DOI PMC
Perica K., Kosmides A.K., Schneck J.P. Linking Form to Function: Biophysical Aspects of Artificial Antigen Presenting Cell Design. Biochim. Biophys. Acta. 2015;1853:781–790. doi: 10.1016/j.bbamcr.2014.09.001. PubMed DOI PMC
Luo X., Liu J. Ultrasmall Luminescent Metal Nanoparticles: Surface Engineering Strategies for Biological Targeting and Imaging. Adv. Sci. 2022;9 doi: 10.1002/advs.202103971. PubMed DOI PMC
Eggermont L.J., Paulis L.E., Tel J., Figdor C.G. Towards Efficient Cancer Immunotherapy: Advances in Developing Artificial Antigen-Presenting Cells. Trends Biotechnol. 2014;32:456–465. doi: 10.1016/j.tibtech.2014.06.007. PubMed DOI PMC
Samanta D., Sarkar A. Immobilization of Bio-Macromolecules on Self-Assembled Monolayers: Methods and Sensor Applications. Chem. Soc. Rev. 2011;40:2567–2592. doi: 10.1039/c0cs00056f. PubMed DOI
Wauters A.C., Scheerstra J.F., Vermeijlen I.G., Hammink R., Schluck M., Woythe L., Wu H., Albertazzi L., Figdor C.G., Tel J., et al. Artificial Antigen-Presenting Cell Topology Dictates T Cell Activation. ACS Nano. 2022;16:15072–15085. doi: 10.1021/acsnano.2c06211. PubMed DOI PMC
Fasting C., Schalley C.A., Weber M., Seitz O., Hecht S., Koksch B., Dernedde J., Graf C., Knapp E.-W., Haag R. Multivalency as a Chemical Organization and Action Principle. Angew. Chem., Int. Ed. Engl. 2012;51:10472–10498. doi: 10.1002/anie.201201114. PubMed DOI
Gao S., Guisán J.M., Rocha-Martin J. Oriented Immobilization of Antibodies onto Sensing Platforms - A Critical Review. Anal. Chim. Acta. 2022;1189 doi: 10.1016/j.aca.2021.338907. PubMed DOI
Demirel G., Çaykara T., Akaoğlu B., Çakmak M. Construction of a Novel Multilayer System and Its Use for Oriented Immobilization of Immunoglobulin G. Surf. Sci. 2007;601:4563–4570. doi: 10.1016/j.susc.2007.06.034. DOI
Miranda A., Martínez L., De Beule P.A.A. Facile synthesis of an aminopropylsilane layer on Si/SiO2 substrates using ethanol as APTES solvent. MethodsX. 2020;7 doi: 10.1016/j.mex.2020.100931. PubMed DOI PMC
Zhang D.K.Y., Cheung A.S., Mooney D.J. Activation and Expansion of Human T Cells Using Artificial Antigen-Presenting Cell Scaffolds. Nat. Protoc. 2020;15:773–798. doi: 10.1038/s41596-019-0249-0. PubMed DOI
Franke C., Chum T., Kvíčalová Z., Glatzová D., Gentsch G.J., Rodriguez A., Helmerich D.A., Herdly L., Mavila H., Frank O., et al. Approach to Map Nanotopography of Cell Surface Receptors. Commun. Biol. 2022;5:218. doi: 10.1038/s42003-022-03152-y. PubMed DOI PMC
Spicer C.D., Pashuck E.T., Stevens M.M. Achieving Controlled Biomolecule–Biomaterial Conjugation. Chem. Rev. 2018;118:7702–7743. doi: 10.1021/acs.chemrev.8b00253. PubMed DOI PMC
Williams E.H., Davydov A.V., Motayed A., Sundaresan S.G., Bocchini P., Richter L.J., Stan G., Steffens K., Zangmeister R., Schreifels J.A., Rao M.V. Immobilization of Streptavidin on 4H–SiC for Biosensor Development. Appl. Surf. Sci. 2012;258:6056–6063. doi: 10.1016/j.apsusc.2012.02.137. DOI
Weiss A., Wiskocil R.L., Stobo J.D. The Role of T3 Surface Molecules in the Activation of Human T Cells: A Two-Stimulus Requirement for IL 2 Production Reflects Events Occurring at a Pre-Translational Level. J. Immunol. 1984;133:123–128. PubMed
Helassa N., Zhang X.h., Conte I., Scaringi J., Esposito E., Bradley J., Carter T., Ogden D., Morad M., Török K. Fast-Response Calmodulin-Based Fluorescent Indicators Reveal Rapid Intracellular Calcium Dynamics. Sci. Rep. 2015;5 doi: 10.1038/srep15978. PubMed DOI PMC
Glatzová D., Mavila H., Saija M.C., Chum T., Cwiklik L., Brdička T., Cebecauer M. The Role of Prolines and Glycine in the Transmembrane Domain of LAT. FEBS J. 2021;288:4039–4052. doi: 10.1111/febs.15713. PubMed DOI
Kim H.R., Mun Y., Lee K.S., Park Y.J., Park J.S., Park J.H., Jeon B.N., Kim C.H., Jun Y., Hyun Y.M., et al. T Cell Microvilli Constitute Immunological Synaptosomes That Carry Messages to Antigen-Presenting Cells. Nat. Commun. 2018;9:3630. doi: 10.1038/s41467-018-06090-8. PubMed DOI PMC
Cai E., Marchuk K., Beemiller P., Beppler C., Rubashkin M.G., Weaver V.M., Gérard A., Liu T.L., Chen B.C., Betzig E., et al. Visualizing Dynamic Microvillar Search and Stabilization during Ligand Detection by T Cells. Science. 2017;356:eaal3118. doi: 10.1126/science.aal3118. PubMed DOI PMC
Barbieri L. University of Oxford; 2021. Quantitative Biophysical Methods to Study Immune Cell Mechanobiology.https://ora.ox.ac.uk/objects/uuid:55fde4e5-7d84-4b14-a040-20cb96a5d52d
Lee A.M., Colin-York H., Fritzsche M. CalQuo 2: Automated Fourier-space, population-level quantification of global intracellular calcium responses. Sci. Rep. 2017;7:5416. doi: 10.1038/s41598-017-05322-z. PubMed DOI PMC
Nečas D., Klapetek P.G. An Open-Source Software for SPM Data Analysis. Open Phys. 2012;10:181–188. doi: 10.2478/s11534-011-0096-2. DOI
Edelstein A.D., Tsuchida M.A., Amodaj N., Pinkard H., Vale R.D., Stuurman N. Advanced Methods of Microscope Control Using μManager Software. J. Biol. Methods. 2014;1:e10. doi: 10.14440/jbm.2014.36. PubMed DOI PMC
Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., et al. Fiji: An Open-Source Platform for Biological-Image Analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC