There Is No Simple Model of the Plasma Membrane Organization
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu přehledy, časopisecké články
Grantová podpora
P 26337
Austrian Science Fund FWF - Austria
MC_EX_MR/K015591/1
Medical Research Council - United Kingdom
MR/K01577X/1
Medical Research Council - United Kingdom
P 25730
Austrian Science Fund FWF - Austria
G0902418
Medical Research Council - United Kingdom
MC_UU_12010/9
Medical Research Council - United Kingdom
PubMed
27747212
PubMed Central
PMC5040727
DOI
10.3389/fcell.2016.00106
Knihovny.cz E-zdroje
- Klíčová slova
- heterogenous distribution, membrane organization models, membrane physical properties, nanodomains, plasma membrane,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Ever since technologies enabled the characterization of eukaryotic plasma membranes, heterogeneities in the distributions of its constituents were observed. Over the years this led to the proposal of various models describing the plasma membrane organization such as lipid shells, picket-and-fences, lipid rafts, or protein islands, as addressed in numerous publications and reviews. Instead of emphasizing on one model we in this review give a brief overview over current models and highlight how current experimental work in one or the other way do not support the existence of a single overarching model. Instead, we highlight the vast variety of membrane properties and components, their influences and impacts. We believe that highlighting such controversial discoveries will stimulate unbiased research on plasma membrane organization and functionality, leading to a better understanding of this essential cellular structure.
Zobrazit více v PubMed
Ailenberg M., Silverman M. (2003). Cytochalasin D disruption of actin filaments in 3T3 cells produces an anti-apoptotic response by activating gelatinase A extracellularly and initiating intracellular survival signals. Biochim. Biophys. Acta 1593, 249–258. 10.1016/S0167-4889(02)00395-6 PubMed DOI
Aimon S., Callan-Jones A., Berthaud A., Pinot M., Toombes G. E., Bassereau P. (2014). Membrane shape modulates transmembrane protein distribution. Dev. Cell 28, 212–218. 10.1016/j.devcel.2013.12.012 PubMed DOI PMC
Amaro M., Šachl R., Aydogan G., Mikhalyov II., Vácha R., Hof M. (2016). GM1 Ganglioside inhibits β-Amyloid oligomerization induced by Sphingomyelin. Angew. Chem. 55, 9411–9415. 10.1002/anie.201603178 PubMed DOI PMC
Anderson M. J., Fambrough D. M. (1983). Aggregates of acetylcholine receptors are associated with plaques of a basal lamina heparan sulfate proteoglycan on the surface of skeletal muscle fibers. J. Cell Biol. 97(5 Pt 1), 1396–1411. 10.1083/jcb.97.5.1396 PubMed DOI PMC
Anderson R. G., Jacobson K. (2002). A role for lipid shells in targeting proteins to caveolae, rafts, and other lipid domains. Science 296, 1821–1825. 10.1126/science.1068886 PubMed DOI
Andrade D. M., Clausen M. P., Keller J., Mueller V., Wu C., Bear J. E., et al. . (2015). Cortical actin networks induce spatio-temporal confinement of phospholipids in the plasma membrane–a minimally invasive investigation by STED-FCS. Sci. Rep. 5:11454. 10.1038/srep11454 PubMed DOI PMC
Aoki T., Hammerling U., De Harven E., Boyse E. A., Old L. J. (1969). Antigenic structure of cell surfaces. An immunoferritin study of the occurrence and topography of H-2′ theta, and TL alloantigens on mouse cells. J. Exp. Med. 130, 979–1001. 10.1084/jem.130.5.979 PubMed DOI PMC
Bagatolli L. A., Gratton E. (1999). Two-photon fluorescence microscopy observation of shape changes at the phase transition in phospholipid giant unilamellar vesicles. Biophys. J. 77, 2090–2101. 10.1016/S0006-3495(99)77050-5 PubMed DOI PMC
Balda M. S., Matter K. (2008). Tight junctions at a glance. J. Cell Sci. 121(Pt 22), 3677–3682. 10.1242/jcs.023887 PubMed DOI
Bass M. D., Roach K. A., Morgan M. R., Mostafavi-Pour Z., Schoen T., Muramatsu T., et al. . (2007). Syndecan-4-dependent Rac1 regulation determines directional migration in response to the extracellular matrix. J. Cell Biol. 177, 527–538. 10.1083/jcb.200610076 PubMed DOI PMC
Baumgart T., Hammond A. T., Sengupta P., Hess S. T., Holowka D. A., Baird B. A., et al. . (2007). Large-scale fluid/fluid phase separation of proteins and lipids in giant plasma membrane vesicles. Proc. Natl. Acad. Sci. U.S.A. 104, 3165–3170. 10.1073/pnas.0611357104 PubMed DOI PMC
Bernardino de la Serna J., Perez-Gil J., Simonsen A. C., Bagatolli L. A. (2004). Cholesterol rules: direct observation of the coexistence of two fluid phases in native pulmonary surfactant membranes at physiological temperatures. J. Biol. Chem. 279, 40715–40722. 10.1074/jbc.M404648200 PubMed DOI
Berrier A. L., Yamada K. M. (2007). Cell-matrix adhesion. J. Cell. Physiol. 213, 565–573. 10.1002/jcp.21237 PubMed DOI
Björkbom A., Róg T., Kaszuba K., Kurita M., Yamaguchi S., Lönnfors M., et al. . (2010). Effect of sphingomyelin headgroup size on molecular properties and interactions with cholesterol. Biophys. J. 99, 3300–3308. 10.1016/j.bpj.2010.09.049 PubMed DOI PMC
Botelho R. J., Teruel M., Dierckman R., Anderson R., Wells A., York J. D., et al. . (2000). Localized biphasic changes in phosphatidylinositol-4,5-bisphosphate at sites of phagocytosis. J. Cell Biol. 151, 1353–1368. 10.1083/jcb.151.7.1353 PubMed DOI PMC
Bozic B., Kralj-Iglic V., Svetina S. (2006). Coupling between vesicle shape and lateral distribution of mobile membrane inclusions. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(4 Pt 1):041915. 10.1103/PhysRevE.73.041915 PubMed DOI
Brameshuber M., Weghuber J., Ruprecht V., Gombos I., Horváth I., Vigh L., et al. . (2010). Imaging of mobile long-lived nanoplatforms in the live cell plasma membrane. J. Biol. Chem. 285, 41765–41771. 10.1074/jbc.M110.182121 PubMed DOI PMC
Buda C., Dey I., Balogh N., Horvath L. I., Maderspach K., Juhasz M., et al. . (1994). Structural order of membranes and composition of phospholipids in fish brain-cells during thermal acclimatization. Proc. Natl. Acad. Sci. U.S.A. 91, 8234–8238. 10.1073/pnas.91.17.8234 PubMed DOI PMC
Callan-Jones A., Sorre B., Bassereau P. (2011). Curvature-driven lipid sorting in biomembranes. Cold Spring Harb. Perspect. Biol. 3:a004648. 10.1101/cshperspect.a004648 PubMed DOI PMC
Canagarajah B. J., Hummer G., Prinz W. A., Hurley J. H. (2008). Dynamics of cholesterol exchange in the oxysterol binding protein family. J. Mol. Biol. 378, 737–748. 10.1016/j.jmb.2008.01.075 PubMed DOI PMC
Cantor R. S. (1999). Lipid composition and the lateral pressure profile in membranes. Biophys. J. 76, A58–A58. 10.1016/S0006-3495(99)77415-1 PubMed DOI PMC
Capponi S., Freites J. A., Tobias D. J., White S. H. (2016). Interleaflet mixing and coupling in liquid-disordered phospholipid bilayers. Biochim. Biophys. Acta 1858, 354–362. 10.1016/j.bbamem.2015.11.024 PubMed DOI PMC
Cebecauer M., Owen D. M., Markiewicz A., Magee A. I. (2009). Lipid order and molecular assemblies in the plasma membrane of eukaryotic cells. Biochem. Soc. Trans. 37(Pt 5), 1056–1060. 10.1042/BST0371056 PubMed DOI
Cebecauer M., Spitaler M., Sergè A., Magee A. I. (2010). Signalling complexes and clusters: functional advantages and methodological hurdles. J. Cell Sci. 123(Pt 3), 309–320. 10.1242/jcs.061739 PubMed DOI
Cerottini J. C., Brunner K. T. (1967). Localization of mouse isoantigens on the cell surface as revealed by immunofluorescence. Immunology 13, 395–403. PubMed PMC
Chazotte B., Hackenbrock C. R. (1988). The multicollisional, obstructed, long-range diffusional nature of mitochondrial electron transport. J. Biol. Chem. 263, 14359–14367. PubMed
Chen Y., Qin J., Chen Z. W. (2008). Fluorescence-topographic NSOM directly visualizes peak-valley polarities of GM1/GM3 rafts in cell membrane fluctuations. J. Lipid Res. 49, 2268–2275. 10.1194/jlr.D800031-JLR200 PubMed DOI PMC
Chiantia S., Schwille P., Klymchenko A. S., London E. (2011). Asymmetric GUVs prepared by MbetaCD-mediated lipid exchange: an FCS study. Biophys. J. 100, L1–L3. 10.1016/j.bpj.2010.11.051 PubMed DOI PMC
Chum T., Glatzova D., Kvicalova Z., Malinsky J., Brdicka T., Cebecauer M. (2016). The role of palmitoylation and transmembrane domain in sorting of transmembrane adaptor proteins. J. Cell Sci. 129, 95–107. 10.1242/jcs.194209 PubMed DOI
Collins M. D., Keller S. L. (2008). Tuning lipid mixtures to induce or suppress domain formation across leaflets of unsupported asymmetric bilayers. Proc. Natl. Acad. Sci. U.S.A. 105, 124–128. 10.1073/pnas.0702970105 PubMed DOI PMC
Contreras F. X., Ernst A. M., Haberkant P., Björkholm P., Lindahl E., Gönen B., et al. . (2012). Molecular recognition of a single sphingolipid species by a protein's transmembrane domain. Nature 481, 525–529. 10.1038/nature10742 PubMed DOI
Contreras F. X., Ernst A. M., Wieland F., Brügger B. (2011). Specificity of intramembrane protein-lipid interactions. Cold Spring Harb. Perspect. Biol. 3:a004705. 10.1101/cshperspect.a004705 PubMed DOI PMC
Cortizo A. M., Paladini A., Díaz G. B., García M. E., Gagliardino J. J. (1990). Changes induced by glucose in the plasma membrane properties of pancreatic islets. Mol. Cell. Endocrinol. 71, 49–54. 10.1016/0303-7207(90)90074-I PubMed DOI
Crawley S. W., Mooseker M. S., Tyska M. J. (2014). Shaping the intestinal brush border. J. Cell Biol. 207, 441–451. 10.1083/jcb.201407015 PubMed DOI PMC
Culbertson C. T., Jacobson S. C., Michael Ramsey J. (2002). Diffusion coefficient measurements in microfluidic devices. Talanta 56, 365–373. 10.1016/S0039-9140(01)00602-6 PubMed DOI
DePierre J. W., Karnovsky M. L. (1973). Plasma membranes of mammalian cells: a review of methods for their characterization and isolation. J. Cell Biol. 56, 275–303. 10.1083/jcb.56.2.275 PubMed DOI PMC
Devaux P. F., Herrmann A., Ohlwein N., Kozlov M. M. (2008). How lipid flippases can modulate membrane structure. Biochim. Biophys. Acta 1778, 1591–1600. 10.1016/j.bbamem.2008.03.007 PubMed DOI
Digman M. A., Wiseman P. W., Horwitz A. R., Gratton E. (2009). Detecting protein complexes in living cells from laser scanning confocal image sequences by the cross correlation raster image spectroscopy method. Biophys. J. 96, 707–716. 10.1016/j.bpj.2008.09.051 PubMed DOI PMC
Di Rienzo C., Gratton E., Beltram F., Cardarelli F. (2013). Fast spatiotemporal correlation spectroscopy to determine protein lateral diffusion laws in live cell membranes. Proc. Natl. Acad. Sci. U.S.A. 110, 12307–12312. 10.1073/pnas.1222097110 PubMed DOI PMC
Douglass A. D., Vale R. D. (2005). Single-molecule microscopy reveals plasma membrane microdomains created by protein-protein networks that exclude or trap signaling molecules in T cells. Cell 121, 937–950. 10.1016/j.cell.2005.04.009 PubMed DOI PMC
Dupuy A. D., Engelman D. M. (2008). Protein area occupancy at the center of the red blood cell membrane. Proc. Natl. Acad. Sci. U.S.A. 105, 2848–2852. 10.1073/pnas.0712379105 PubMed DOI PMC
Duzgunes N., Newton C., Fisher K., Fedor J., Papahadjopoulos D. (1988). Monolayer coupling in phosphatidylserine bilayers: distinct phase transitions induced by magnesium interacting with one or both monolayers. Biochim. Biophys. Acta 944, 391–398. 10.1016/j.jcis.2016.09.007 PubMed DOI
Edwards S. W., Tan C. M., Limbird L. E. (2000). Localization of G-protein-coupled receptors in health and disease. Trends Pharmacol. Sci. 21, 304–308. 10.1016/S0165-6147(00)01513-3 PubMed DOI
Eggeling C. (2015). Super-resolution optical microscopy of lipid plasma membrane dynamics. Essays Biochem. 57, 69–80. 10.1042/bse0570069 PubMed DOI
Eggeling C., Ringemann C., Medda R., Schwarzmann G., Sandhoff K., Polyakova S., et al. . (2009). Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457, 1159–1162. 10.1038/nature07596 PubMed DOI
Elowitz M. B., Surette M. G., Wolf P. E., Stock J. B., Leibler S. (1999). Protein mobility in the cytoplasm of Escherichia coli. J. Bacteriol. 181, 197–203. PubMed PMC
Ernst A. M., Contreras F. X., Brügger B., Wieland F. (2010). Determinants of specificity at the protein-lipid interface in membranes. FEBS Lett. 584, 1713–1720. 10.1016/j.febslet.2009.12.060 PubMed DOI
Evans E., Sackmann E. (1988). Translational and rotational drag coefficients for a disk moving in a liquid membrane-associated with a rigid substrate. J. Fluid Mech. 194, 553–561. 10.1017/S0022112088003106 DOI
Fantini J., Barrantes F. J. (2013). How cholesterol interacts with membrane proteins: an exploration of cholesterol-binding sites including CRAC, CARC, and tilted domains. Front. Physiol. 4:31. 10.3389/fphys.2013.00031 PubMed DOI PMC
Fernández-Busnadiego R., Saheki Y., De Camilli P. (2015). Three-dimensional architecture of extended synaptotagmin-mediated endoplasmic reticulum-plasma membrane contact sites. Proc. Natl. Acad. Sci. U.S.A. 112, E2004–E2013. 10.1073/pnas.1503191112 PubMed DOI PMC
Fraenkel G., Hopf H. S. (1940). The physiological action of abnormally high temperatures on poikilothermic animals: temperature adaptation and the degree of saturation of the phosphatides. Biochem. J. 34, 1085–1092. 10.1042/bj0341085 PubMed DOI PMC
Frick M., Schmidt K., Nichols B. J. (2007). Modulation of lateral diffusion in the plasma membrane by protein density. Curr. Biol. 17, 462–467. 10.1016/j.cub.2007.01.069 PubMed DOI
Frisz J. F., Klitzing H. A., Lou K., Hutcheon I. D., Weber P. K., Zimmerberg J., et al. . (2013). Sphingolipid domains in the plasma membranes of fibroblasts are not enriched with cholesterol. J. Biol. Chem. 288, 16855–16861. 10.1074/jbc.M113.473207 PubMed DOI PMC
Frolov V. A., Bashkirov P. V., Akimov S. A., Zimmerberg J. (2010). Membrane curvature and fission by dynamin: mechanics, dynamics and partners. Biophys. J. 98:2a 10.1016/j.bpj.2009.12.012 DOI
Fujita A., Cheng J., Hirakawa M., Furukawa K., Kusunoki S., Fujimoto T. (2007). Gangliosides GM1 and GM3 in the living cell membrane form clusters susceptible to cholesterol depletion and chilling. Mol. Biol. Cell 18, 2112–2122. 10.1091/mbc.E07-01-0071 PubMed DOI PMC
Fujiwara T., Ritchie K., Murakoshi H., Jacobson K., Kusumi A. (2002). Phospholipids undergo hop diffusion in compartmentalized cell membrane. J. Cell Biol. 157, 1071–1081. 10.1083/jcb.200202050 PubMed DOI PMC
Gaffield M. A., Tabares L., Betz W. J. (2009). Preferred sites of exocytosis and endocytosis colocalize during high- but not lower-frequency stimulation in mouse motor nerve terminals. J. Neurosci. 29, 15308–15316. 10.1523/JNEUROSCI.4646-09.2009 PubMed DOI PMC
Garcia-Parajo M. F., Cambi A., Torreno-Pina J. A., Thompson N., Jacobson K. (2014). Nanoclustering as a dominant feature of plasma membrane organization. J. Cell Sci. 127, 4995–5005. 10.1242/jcs.146340 PubMed DOI PMC
Golan D. E., Veatch W. (1980). Lateral mobility of band 3 in the human erythrocyte membrane studied by fluorescence photobleaching recovery: evidence for control by cytoskeletal interactions. Proc. Natl. Acad. Sci. U.S.A. 77, 2537–2541. 10.1073/pnas.77.5.2537 PubMed DOI PMC
Golebiewska U., Kay J. G., Masters T., Grinstein S., Im W., Pastor R. W., et al. . (2011). Evidence for a fence that impedes the diffusion of phosphatidylinositol 4,5-bisphosphate out of the forming phagosomes of macrophages. Mol. Biol. Cell 22, 3498–3507. 10.1091/mbc.E11-02-0114 PubMed DOI PMC
Golebiewska U., Nyako M., Woturski W., Zaitseva I., McLaughlin S. (2008). Diffusion coefficient of fluorescent phosphatidylinositol 4,5-bisphosphate in the plasma membrane of cells. Mol. Biol. Cell 19, 1663–1669. 10.1091/mbc.E07-12-1208 PubMed DOI PMC
Gowrishankar K., Ghosh S., Saha S., Rumamol C., Mayor S., Rao M. (2012). Active remodeling of cortical actin regulates spatiotemporal organization of cell surface molecules. Cell 149, 1353–1367. 10.1016/j.cell.2012.05.008 PubMed DOI
Grecco H. E., Schmick M., Bastiaens P. I. (2011). Signaling from the living plasma membrane. Cell 144, 897–909. 10.1016/j.cell.2011.01.029 PubMed DOI
Grossmann G., Opekarová M., Malinsky J., Weig-Meckl I., Tanner W. (2007). Membrane potential governs lateral segregation of plasma membrane proteins and lipids in yeast. EMBO J. 26, 1–8. 10.1038/sj.emboj.7601466 PubMed DOI PMC
Guigas G., Weiss M. (2015). Effects of protein crowding on membrane systems. Biochim. Biophys. Acta 1858, 2441–2450. 10.1016/j.bbamem.2015.12.021 PubMed DOI
Gurtovenko A. A., Vattulainen I. (2007). Lipid transmembrane asymmetry and intrinsic membrane potential: two sides of the same coin. J. Am. Chem. Soc. 129, 5358–5359. 10.1021/ja070949m PubMed DOI
Gut J., Kawato S., Cherry R. J., Winterhalter K. H., Richter C. (1985). Lipid-Peroxidation decreases the rotational mobility of Cytochrome-P-450 in Rat-Liver microsomes. Biochim. Biophys. Acta 817, 217–228. 10.1016/0005-2736(85)90023-9 PubMed DOI
Haberkant P., Schmitt O., Contreras F. X., Thiele C., Hanada K., Sprong H., et al. . (2008). Protein-sphingolipid interactions within cellular membranes. J. Lipid Res. 49, 251–262. 10.1194/jlr.D700023-JLR200 PubMed DOI
Hansen C. G., Nichols B. J. (2009). Molecular mechanisms of clathrin-independent endocytosis. J. Cell Sci. 122(Pt 11), 1713–1721. 10.1242/jcs.033951 PubMed DOI PMC
Hanson M. A., Cherezov V., Griffith M. T., Roth C. B., Jaakola V. P., Chien E. Y., et al. . (2008). A specific cholesterol binding site is established by the 2.8 A structure of the human beta2-adrenergic receptor. Structure 16, 897–905. 10.1016/j.str.2008.05.001 PubMed DOI PMC
Hartel A. J., Glogger M., Guigas G., Jones N. G., Fenz S. F., Weiss M., et al. . (2015). The molecular size of the extra-membrane domain influences the diffusion of the GPI-anchored VSG on the trypanosome plasma membrane. Sci. Rep. 5:10394. 10.1038/srep10394 PubMed DOI PMC
Hatzakis N. S., Bhatia V. K., Larsen J., Madsen K. L., Bolinger P. Y., Kunding A. H., et al. . (2009). How curved membranes recruit amphipathic helices and protein anchoring motifs. Nat. Chem. Biol. 5, 835–841. 10.1038/nchembio.213 PubMed DOI
He H. T., Marguet D. (2011). Detecting nanodomains in living cell membrane by fluorescence correlation spectroscopy. Annu. Rev. Phys. Chem. 62, 417–436. 10.1146/annurev-physchem-032210-103402 PubMed DOI
Hebert B., Costantino S., Wiseman P. W. (2005). Spatiotemporal image correlation spectroscopy (STICS) theory, verification, and application to protein velocity mapping in living CHO cells. Biophys. J. 88, 3601–3614. 10.1529/biophysj.104.054874 PubMed DOI PMC
Herman P., Vecer J., Opekarova M., Vesela P., Jancikova I., Zahumensky J., et al. . (2015). Depolarization affects the lateral microdomain structure of yeast plasma membrane. FEBS J. 282, 419–434. 10.1111/febs.13156 PubMed DOI
Hodgkin A. L., Huxley A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544. 10.1113/jphysiol.1952.sp004764 PubMed DOI PMC
Honigmann A., Mueller V., Ta H., Schoenle A., Sezgin E., Hell S. W., et al. . (2014). Scanning STED-FCS reveals spatiotemporal heterogeneity of lipid interaction in the plasma membrane of living cells. Nat. Commun. 5:5412. 10.1038/ncomms6412 PubMed DOI
Hughes B. D., Pailthorpe B. A., White L. R. (1981). The translational and rotational drag on a cylinder moving in a membrane. J. Fluid Mech. 110, 349–372. 10.1017/S0022112081000785 DOI
Hung M. C., Link W. (2011). Protein localization in disease and therapy. J. Cell Sci. 124(Pt 20), 3381–3392. 10.1242/jcs.089110 PubMed DOI
Hynes R. O. (2009). The extracellular matrix: not just pretty fibrils. Science 326, 1216–1219. 10.1126/science.1176009 PubMed DOI PMC
Ipsen J. H., Karlström G., Mouritsen O. G., Wennerström H., Zuckermann M. J. (1987). Phase equilibria in the phosphatidylcholine-cholesterol system. Biochim. Biophys. Acta 905, 162–172. 10.1016/0005-2736(87)90020-4 PubMed DOI
Ivankin A., Kuzmenko I., Gidalevitz D. (2010). Cholesterol-phospholipid interactions: new insights from surface x-ray scattering data. Phys. Rev. Lett. 104, 108101–108104. 10.1103/PhysRevLett.104.108101 PubMed DOI PMC
Jacobson K., Ishihara A., Inman R. (1987). Lateral diffusion of proteins in membranes. Annu. Rev. Physiol. 49, 163–175. 10.1146/annurev.ph.49.030187.001115 PubMed DOI
Jacobson K., O'Dell D., Holifield B., Murphy T. L., August J. T. (1984). Redistribution of a major cell surface glycoprotein during cell movement. J. Cell Biol. 99, 1613–1623. 10.1083/jcb.99.5.1613 PubMed DOI PMC
Janetopoulos C., Firtel R. A. (2008). Directional sensing during chemotaxis. FEBS Lett. 582, 2075–2085. 10.1016/j.febslet.2008.04.035 PubMed DOI PMC
Jaqaman K., Kuwata H., Touret N., Collins R., Trimble W. S., Danuser G., et al. . (2011). Cytoskeletal control of CD36 diffusion promotes its receptor and signaling function. Cell 146, 593–606. 10.1016/j.cell.2011.06.049 PubMed DOI PMC
Jeon J. H., Monne H. M., Javanainen M., Metzler R. (2012). Anomalous diffusion of phospholipids and cholesterols in a lipid bilayer and its origins. Phys. Rev. Lett. 109:188103. 10.1103/PhysRevLett.109.188103 PubMed DOI
Johnson J. L., Monfregola J., Napolitano G., Kiosses W. B., Catz S. D. (2012). Vesicular trafficking through cortical actin during exocytosis is regulated by the Rab27a effector JFC1/Slp1 and the RhoA-GTPase-activating protein Gem-interacting protein. Mol. Biol. Cell 23, 1902–1916. 10.1091/mbc.E11-12-1001 PubMed DOI PMC
Jurkiewicz P., Cwiklik L., Vojtíšková A., Jungwirth P., Hof M. (2012). Structure, dynamics, and hydration of POPC/POPS bilayers suspended in NaCl, KCl, and CsCl solutions. Biochim. Biophys. Acta 1818, 609–616. 10.1016/j.bbamem.2011.11.033 PubMed DOI
Kahya N., Brown D. A., Schwille P. (2005). Raft partitioning and dynamic behavior of human placental alkaline phosphatase in giant unilamellar vesicles. Biochemistry 44, 7479–7489. 10.1021/bi047429d PubMed DOI
Kahya N., Scherfeld D., Bacia K., Poolman B., Schwille P. (2003). Probing lipid mobility of raft-exhibiting model membranes by fluorescence correlation spectroscopy. J. Biol. Chem. 278, 28109–28115. 10.1074/jbc.M302969200 PubMed DOI
Kaiser H. J., Orlowski A., Róg T., Nyholm T. K., Chai W., Feizi T., et al. . (2011). Lateral sorting in model membranes by cholesterol-mediated hydrophobic matching. Proc. Natl. Acad. Sci. U.S.A. 108, 16628–16633. 10.1073/pnas.1103742108 PubMed DOI PMC
Karnovsky M. J., Kleinfeld A. M., Hoover R. L., Dawidowicz E. A., McIntyre D. E., Salzman E. A., et al. . (1982). Lipid domains in membranes. Ann. N. Y. Acad. Sci. 401, 61–75. 10.1111/j.1749-6632.1982.tb25707.x PubMed DOI
Kenworthy A. K., Nichols B. J., Remmert C. L., Hendrix G. M., Kumar M., Zimmerberg J., et al. . (2004). Dynamics of putative raft-associated proteins at the cell surface. J. Cell Biol. 165, 735–746. 10.1083/jcb.200312170 PubMed DOI PMC
Kiessling V., Crane J. M., Tamm L. K. (2006). Transbilayer effects of raft-like lipid domains in asymmetric planar bilayers measured by single molecule tracking. Biophys. J. 91, 3313–3326. 10.1529/biophysj.106.091421 PubMed DOI PMC
Klammt C., Lillemeier B. F. (2012). How membrane structures control T cell signaling. Front. Immunol. 3:291. 10.3389/fimmu.2012.00291 PubMed DOI PMC
Klausner R. D., Kleinfeld A. M., Hoover R. L., Karnovsky M. J. (1980). Lipid domains in membranes. Evidence derived from structural perturbations induced by free fatty acids and lifetime heterogeneity analysis. J. Biol. Chem. 255, 1286–1295. PubMed
Klotzsch E., Schütz G. J. (2013). A critical survey of methods to detect plasma membrane rafts. Philos. Trans. R. Soc. B Biol. Sci. 368:20120033. 10.1098/rstb.2012.0033 PubMed DOI PMC
Koppel D. E., Sheetz M. P., Schindler M. (1981). Matrix control of protein diffusion in biological membranes. Proc. Natl. Acad. Sci. U.S.A. 78, 3576–3580. 10.1073/pnas.78.6.3576 PubMed DOI PMC
Korlach J., Schwille P., Webb W. W., Feigenson G. W. (1999). Characterization of lipid bilayer phases by confocal microscopy and fluorescence correlation spectroscopy. Proc. Natl. Acad. Sci. U.S.A. 96, 8461–8466. 10.1073/pnas.96.15.8461 PubMed DOI PMC
Kourilsky F. M., Silvestre D., Levy J. P., Dausset J., Nicolai M. G., Senik A. (1971). Immunoferritin study of the distribution of HL-A antigens on human blood cells. J. Immunol. 106, 454–466. PubMed
Kowalska M. A., Cierniewski C. S. (1983). Microenvironment changes of human-blood platelet membranes associated with fibrinogen binding. J. Membr. Biol. 75, 57–64. 10.1007/BF01870799 PubMed DOI
Kraft M. L. (2013). Plasma membrane organization and function: moving past lipid rafts. Mol. Biol. Cell 24, 2765–2768. 10.1091/mbc.E13-03-0165 PubMed DOI PMC
Kucik D. F., Elson E. L., Sheetz M. P. (1999). Weak dependence of mobility of membrane protein aggregates on aggregate size supports a viscous model of retardation of diffusion. Biophys. J. 76(1 Pt 1), 314–322. 10.1016/S0006-3495(99)77198-5 PubMed DOI PMC
Kusumi A., Ike H., Nakada C., Murase K., Fujiwara T. (2005). Single-molecule tracking of membrane molecules: plasma membrane compartmentalization and dynamic assembly of raft-philic signaling molecules. Semin. Immunol. 17, 3–21. 10.1016/j.smim.2004.09.004 PubMed DOI
Kusumi A., Shirai Y. M., Koyama-Honda I., Suzuki K. G., Fujiwara T. K. (2010). Hierarchical organization of the plasma membrane: investigations by single-molecule tracking vs. fluorescence correlation spectroscopy. FEBS Lett. 584, 1814–1823. 10.1016/j.febslet.2010.02.047 PubMed DOI
Kwon H. J., Abi-Mosleh L., Wang M. L., Deisenhofer J., Goldstein J. L., Brown M. S., et al. . (2009). Structure of N-terminal domain of NPC1 reveals distinct subdomains for binding and transfer of cholesterol. Cell 137, 1213–1224. 10.1016/j.cell.2009.03.049 PubMed DOI PMC
Lee A. G. (2004). How lipids affect the activities of integral membrane proteins. Biochim. Biophys. Acta 1666, 62–87. 10.1016/j.bbamem.2004.05.012 PubMed DOI
Lee I. H., Saha S., Polley A., Huang H., Mayor S., Rao M., et al. . (2015). Live cell plasma membranes do not exhibit a miscibility phase transition over a wide range of temperatures. J. Phys. Chem. B 119, 4450–4459. 10.1021/jp512839q PubMed DOI
Letschert S., Göhler A., Franke C., Bertleff-Zieschang N., Memmel E., Doose S., et al. . (2014). Super-resolution imaging of plasma membrane glycans. Angew. Chem. Int. Ed Engl. 53, 10921–10924. 10.1002/anie.201406045 PubMed DOI
Lev S. (2012). Nonvesicular lipid transfer from the endoplasmic reticulum. Cold Spring Harb. Perspect. Biol. 4:a013300. 10.1101/cshperspect.a013300 PubMed DOI PMC
Lichtenberg D., Goñi F. M., Heerklotz H. (2005). Detergent-resistant membranes should not be identified with membrane rafts. Trends Biochem. Sci. 30, 430–436. 10.1016/j.tibs.2005.06.004 PubMed DOI
Lillemeier B. F., Mörtelmaier M. A., Forstner M. B., Huppa J. B., Groves J. T., Davis M. M. (2010). TCR and Lat are expressed on separate protein islands on T cell membranes and concatenate during activation. Nat. Immunol. 11, 90–96. 10.1038/ni.1832 PubMed DOI PMC
Lillemeier B. F., Pfeiffer J. R., Surviladze Z., Wilson B. S., Davis M. M. (2006). Plasma membrane-associated proteins are clustered into islands attached to the cytoskeleton. Proc. Natl. Acad. Sci. U.S.A. 103, 18992–18997. 10.1073/pnas.0609009103 PubMed DOI PMC
Lingwood D., Simons K. (2010). Lipid rafts as a membrane-organizing principle. Science 327, 46–50. 10.1126/science.1174621 PubMed DOI
Lippincott-Schwartz J., Snapp E., Kenworthy A. (2001). Studying protein dynamics in living cells. Nat. Rev. Mol. Cell Biol. 2, 444–456. 10.1038/35073068 PubMed DOI
Luby-Phelps K., Castle P., Taylor D. L., Lanni F. (1986). Further evidence for the existence of a structural network in the cytoplasmic ground substance of living cells. J. Cell Biol. 103, A286–A286.
Luby-Phelps K., Mujumdar S., Mujumdar R. B., Ernst L. A., Galbraith W., Waggoner A. S. (1993). A novel fluorescence ratiometric method confirms the low solvent viscosity of the cytoplasm. Biophys. J. 65, 236–242. 10.1016/S0006-3495(93)81075-0 PubMed DOI PMC
Machta B. B., Papanikolaou S., Sethna J. P., Veatch S. L. (2011). Minimal model of plasma membrane heterogeneity requires coupling cortical actin to criticality. Biophys. J. 100, 1668–1677. 10.1016/j.bpj.2011.02.029 PubMed DOI PMC
Magee A. I., Adler J., Parmryd I. (2005). Cold-induced coalescence of T-cell plasma membrane microdomains activates signalling pathways. J. Cell Sci. 118(Pt 14), 3141–3151. 10.1242/jcs.02442 PubMed DOI
Magidson V., Khodjakov A. (2013). Circumventing photodamage in live-cell microscopy. Methods Cell Biol. 114, 545–560. 10.1016/B978-0-12-407761-4.00023-3 PubMed DOI PMC
Malínská K., Malínský J., Opekarová M., Tanner W. (2003). Visualization of protein compartmentation within the plasma membrane of living yeast cells. Mol. Biol. Cell 14, 4427–4436. 10.1091/mbc.E03-04-0221 PubMed DOI PMC
Malinsky J., Tanner W., Opekarova M. (2016). Transmembrane voltage: potential to induce lateral microdomains. Biochim. Biophys. Acta. 1861(8 Pt B), 806–811. 10.1016/j.bbalip.2016.02.012 PubMed DOI
Marsh D. (1993). The nature of the lipid-protein interface and the influence of protein structure on protein-lipid interactions, in Protein-Lipid Interactions, ed Watts A. (Amsterdam: Elsevier; ), 41–66.
Marsh D. (1996). Lateral pressure in membranes. Biochim. Biophys. Acta 1286, 183–223. 10.1016/S0304-4157(96)00009-3 PubMed DOI
Matsuda S., Miura E., Matsuda K., Kakegawa W., Kohda K., Watanabe M., et al. . (2008). Accumulation of AMPA receptors in autophagosomes in neuronal axons lacking adaptor protein AP-4. Neuron 57, 730–745. 10.1016/j.neuron.2008.02.012 PubMed DOI
Matthews J. M. (2012). Protein dimerization and oligomerization in biology, in Advances in Experimental Medicine and Biology, ed Jacqueline M. M. (New York, NY: Springer-Verlag; ), V–Vi. 10.1007/978-1-4614-3229-6 PubMed DOI
Mattila P. K., Lappalainen P. (2008). Filopodia: molecular architecture and cellular functions. Nat. Rev. Mol. Cell Biol. 9, 446–454. 10.1038/nrm2406 PubMed DOI
Maxfield F. R., van Meer G. (2010). Cholesterol, the central lipid of mammalian cells. Curr. Opin. Cell Biol. 22, 422–429. 10.1016/j.ceb.2010.05.004 PubMed DOI PMC
Mazzon M., Mercer J. (2014). Lipid interactions during virus entry and infection. Cell. Microbiol. 16, 1493–1502. 10.1111/cmi.12340 PubMed DOI PMC
McLaughlin S., Murray D. (2005). Plasma membrane phosphoinositide organization by protein electrostatics. Nature 438, 605–611. 10.1038/nature04398 PubMed DOI
McMahon H. T., Gallop J. L. (2005). Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438, 590–596. 10.1038/nature04396 PubMed DOI
Meier P., Sachse J. H., Brophy P. J., Marsh D., Kothe G. (1987). Integral membrane proteins significantly decrease the molecular motion in lipid bilayers: a deuteron NMR relaxation study of membranes containing myelin proteolipid apoprotein. Proc. Natl. Acad. Sci. U.S.A. 84, 3704–3708. 10.1073/pnas.84.11.3704 PubMed DOI PMC
Merkel R., Sackmann E., Evans E. (1989). Molecular friction and epitactic coupling between monolayers in supported bilayers. J. De Phys. 50, 1535–1555. 10.1051/jphys:0198900500120153500 DOI
Mihailescu M., Vaswani R. G., Jardón-Valadez E., Castro-Román F., Freites J. A., Worcester D. L., et al. . (2011). Acyl-chain methyl distributions of liquid-ordered and -disordered membranes. Biophys. J. 100, 1455–1462. 10.1016/j.bpj.2011.01.035 PubMed DOI PMC
Mima J., Hickey C. M., Xu H., Jun Y., Wickner W. (2008). Reconstituted membrane fusion requires regulatory lipids, SNAREs and synergistic SNARE chaperones. EMBO J. 27, 2031–2042. 10.1038/emboj.2008.139 PubMed DOI PMC
Miosge L., Zamoyska R. (2007). Signalling in T-cell development: is it all location, location, location? Curr. Opin. Immunol. 19, 194–199. 10.1016/j.coi.2007.02.008 PubMed DOI
Mitra K., Ubarretxena-Belandia I., Taguchi T., Warren G., Engelman D. M. (2004). Modulation of the bilayer thickness of exocytic pathway membranes by membrane proteins rather than cholesterol. Proc. Natl. Acad. Sci. U.S.A. 101, 4083–4088. 10.1073/pnas.0307332101 PubMed DOI PMC
Morgan M. R., Humphries M. J., Bass M. D. (2007). Synergistic control of cell adhesion by integrins and syndecans. Nat. Rev. Mol. Cell Biol. 8, 957–969. 10.1038/nrm2289 PubMed DOI PMC
Mouritsen O. G., Bagatolli L. A. (2015). Lipid domains in model membranes: a brief historical perspective. Essays Biochem. 57, 1–19. 10.1042/bse0570001 PubMed DOI
Mouritsen O. G., Bloom M. (1984). Mattress model of lipid-protein interactions in membranes. Biophys. J. 46, 141–153. 10.1016/S0006-3495(84)84007-2 PubMed DOI PMC
Mouritsen O. G., Bloom M. (1993). Models of Lipid-Protein Interactions in Membranes. Annu. Rev. Biophys. Biomol. Struct. 22, 145–171. 10.1146/annurev.bb.22.060193.001045 PubMed DOI
Mouritsen O. G., Zuckermann M. J. (2004). What's so special about cholesterol? Lipids 39, 1101–1113. 10.1007/s11745-004-1336-x PubMed DOI
Mueller V., Honigmann A., Ringemann C., Medda R., Schwarzmann G., Eggeling C. (2013). FCS in STED microscopy: studying the nanoscale of lipid membrane dynamics. Meth. Enzymol. 519, 1–38. 10.1016/B978-0-12-405539-1.00001-4 PubMed DOI
Mueller V., Ringemann C., Honigmann A., Schwarzmann G., Medda R., Leutenegger M., et al. . (2011). STED nanoscopy reveals molecular details of cholesterol- and cytoskeleton-modulated lipid interactions in living cells. Biophys. J. 101, 1651–1660. 10.1016/j.bpj.2011.09.006 PubMed DOI PMC
Munro S. (1995). An investigation of the role of transmembrane domains in Golgi protein retention. EMBO J. 14, 4695–4704. PubMed PMC
Murase K., Fujiwara T., Umemura Y., Suzuki K., Iino R., Yamashita H., et al. . (2004). Ultrafine membrane compartments for molecular diffusion as revealed by single molecule techniques. Biophys. J. 86, 4075–4093. 10.1529/biophysj.103.035717 PubMed DOI PMC
Nickels J. D., Smith J. C., Cheng X. (2015). Lateral organization, bilayer asymmetry, and inter-leaflet coupling of biological membranes. Chem. Phys. Lipids 192, 87–99. 10.1016/j.chemphyslip.2015.07.012 PubMed DOI
Nicolson G. L. (1979). Topographic display of cell surface components and their role in transmembrane signaling. Curr. Top. Dev. Biol. 13(Pt 1), 305–338. 10.1016/S0070-2153(08)60700-0 PubMed DOI
Nicolson G. L. (2014). The Fluid-Mosaic model of membrane structure: still relevant to understanding the structure, function and dynamics of biological membranes after more than 40 years. Biochim. Biophys. Acta 1838, 1451–1466. 10.1016/j.bbamem.2013.10.019 PubMed DOI
Nicolson G. L., Hyman R., Singer S. J. (1971). The two-dimensional topographic distribution of H-2 histocompatibility alloantigens on mouse red blood cell membranes. J. Cell Biol. 50, 905–910. 10.1083/jcb.50.3.905 PubMed DOI PMC
Niemelä P. S., Miettinen M. S., Monticelli L., Hammaren H., Bjelkmar P., Murtola T., et al. . (2010). Membrane proteins diffuse as dynamic complexes with lipids. J. Am. Chem. Soc. 132, 7574–7575. 10.1021/ja101481b PubMed DOI
Nussinov R. (2013). The spatial structure of cell signaling systems. Phys. Biol. 10:045004. 10.1088/1478-3975/10/4/045004 PubMed DOI PMC
Olšinová M., Jurkiewicz P., Pozník M., Šachl R., Prausová T., Hof M., et al. . (2014). Di- and tri-oxalkyl derivatives of a boron dipyrromethene (BODIPY) rotor dye in lipid bilayers. Phys. Chem. Chem. Phys. 16, 10688–10697. 10.1039/C4CP00888J PubMed DOI
Onfelt B., Nedvetzki S., Yanagi K., Davis D. M. (2004). Cutting edge: membrane nanotubes connect immune cells. J. Immunol. 173, 1511–1513. 10.4049/jimmunol.173.3.1511 PubMed DOI
Ortega-Arroyo J., Kukura P. (2012). Interferometric scattering microscopy (iSCAT): new frontiers in ultrafast and ultrasensitive optical microscopy. Phys. Chem. Chem. Phys. 14, 15625–15636. 10.1039/c2cp41013c PubMed DOI
O'shea P. S., Feuerstein-Thelen S., Azzi A. (1984). Membrane-potential-dependent changes of the lipid microviscosity of mitochondria and phospholipid vesicles. Biochem. J. 220, 795–801. 10.1042/bj2200795 PubMed DOI PMC
Owen D. M., Gaus K., Magee A. I., Cebecauer M. (2010). Dynamic organization of lymphocyte plasma membrane: lessons from advanced imaging methods. Immunology 131, 1–8. 10.1111/j.1365-2567.2010.03319.x PubMed DOI PMC
Owen D. M., Williamson D. J., Magenau A., Gaus K. (2012). Sub-resolution lipid domains exist in the plasma membrane and regulate protein diffusion and distribution. Nat. Commun. 3:1256. 10.1038/ncomms2273 PubMed DOI
Peters R., Cherry R. J. (1982). Lateral and rotational diffusion of bacteriorhodopsin in lipid bilayers: experimental test of the Saffman-Delbruck equations. Proc. Natl. Acad. Sci. U.S.A. 79, 4317–4321. 10.1073/pnas.79.14.4317 PubMed DOI PMC
Quemeneur F., Sigurdsson J. K., Renner M., Atzberger P. J., Bassereau P., Lacoste D. (2014). Shape matters in protein mobility within membranes. Proc. Natl. Acad. Sci. U.S.A. 111, 5083–5087. 10.1073/pnas.1321054111 PubMed DOI PMC
Raghupathy R., Anilkumar A. A., Polley A., Singh P. P., Yadav M., Johnson C., et al. . (2015). Transbilayer lipid interactions mediate nanoclustering of lipid-anchored proteins. Cell 161, 581–594. 10.1016/j.cell.2015.03.048 PubMed DOI PMC
Ramadurai S., Holt A., Krasnikov V., van den Bogaart G., Killian J. A., Poolman B. (2009). Lateral diffusion of membrane proteins. J. Am. Chem. Soc. 131, 12650–12656. 10.1021/ja902853g PubMed DOI
Rao M., Mayor S. (2014). Active organization of membrane constituents in living cells. Curr. Opin. Cell Biol. 29, 126–132. 10.1016/j.ceb.2014.05.007 PubMed DOI
Raychaudhuri S., Im Y. J., Hurley J. H., Prinz W. A. (2006). Nonvesicular sterol movement from plasma membrane to ER requires oxysterol-binding protein-related proteins and phosphoinositides. J. Cell Biol. 173, 107–119. 10.1083/jcb.200510084 PubMed DOI PMC
Ritchie K., Iino R., Fujiwara T., Murase K., Kusumi A. (2003). The fence and picket structure of the plasma membrane of live cells as revealed by single molecule techniques. Mol. Membr. Biol. 20, 13–18. 10.1080/0968768021000055698 PubMed DOI
Ritchie K., Shan X. Y., Kondo J., Iwasawa K., Fujiwara T., Kusumi A. (2005). Detection of non-Brownian diffusion in the cell membrane in single molecule tracking. Biophys. J. 88, 2266–2277. 10.1529/biophysj.104.054106 PubMed DOI PMC
Rossier O., Octeau V., Sibarita J. B., Leduc C., Tessier B., Nair D., et al. . (2012). Integrins beta1 and beta3 exhibit distinct dynamic nanoscale organizations inside focal adhesions. Nat. Cell Biol. 14, 1057–1067. 10.1038/ncb2588 PubMed DOI
Rothman J. E., Lenard J. (1977). Membrane asymmetry. Science 195, 743–753. PubMed
Rubin-Delanchy P., Burn G. L., Griffié J., Williamson D. J., Heard N. A., Cope A. P., et al. . (2015). Bayesian cluster identification in single-molecule localization microscopy data. Nat. Methods 12, 1072–1076. 10.1038/nmeth.3612 PubMed DOI
Šachl R., Mikhalyov I., Gretskaya N., Olzynska A., Hof M., Johansson L. B. (2011). Distribution of BODIPY-labelled phosphatidylethanolamines in lipid bilayers exhibiting different curvatures. Phys. Chem. Chem. Phys. 13, 11694–11701. 10.1039/c1cp20608g PubMed DOI
Saffman P. G., Delbrück M. (1975). Brownian motion in biological membranes. Proc. Natl. Acad. Sci. U.S.A. 72, 3111–3113. 10.1073/pnas.72.8.3111 PubMed DOI PMC
Saka S. K., Honigmann A., Eggeling C., Hell S. W., Lang T., Rizzoli S. O. (2014). Multi-protein assemblies underlie the mesoscale organization of the plasma membrane. Nat. Commun. 5, 4509. 10.1038/ncomms5509 PubMed DOI PMC
Sako Y., Kusumi A. (1995). Barriers for lateral diffusion of transferrin receptor in the plasma membrane as characterized by receptor dragging by laser tweezers: fence versus tether. J. Cell Biol. 129, 1559–1574. 10.1083/jcb.129.6.1559 PubMed DOI PMC
Saxton M. J. (1987). Lateral diffusion in an archipelago. The effect of mobile obstacles. Biophys. J. 52, 989–997. 10.1016/S0006-3495(87)83291-5 PubMed DOI PMC
Saxton M. J. (1990). The membrane skeleton of erythrocytes. A percolation model. Biophys. J. 57, 1167–1177. 10.1016/S0006-3495(90)82636-9 PubMed DOI PMC
Saxton M. J. (2008). A biological interpretation of transient anomalous subdiffusion. II. Reaction kinetics. Biophys. J. 94, 760–771. 10.1529/biophysj.107.114074 PubMed DOI PMC
Schaeffer C., Creatore A., Rampoldi L. (2014). Protein trafficking defects in inherited kidney diseases. Nephrol. Dial. Transplant 29(Suppl. 4), iv33–iv44. 10.1093/ndt/gfu231 PubMed DOI
Schmidt C. F., Barenholz Y., Huang C., Thompson T. E. (1978). Monolayer coupling in sphingomyelin bilayer systems. Nature 271, 775–777. 10.1038/271775a0 PubMed DOI
Schmoranzer J., Goulian M., Axelrod D., Simon S. M. (2000). Imaging constitutive exocytosis with total internal reflection fluorescence microscopy. J. Cell Biol. 149, 23–32. 10.1083/jcb.149.1.23 PubMed DOI PMC
Sevcsik E., Brameshuber M., Folser M., Weghuber J., Honigmann A., Schutz G. J. (2015). GPI-anchored proteins do not reside in ordered domains in the live cell plasma membrane. Nat. Commun. 6:6969. 10.1371/journal.pntd.0001708 PubMed DOI PMC
Sevcsik E., Schütz G. J. (2016). With or without rafts? Alternative views on cell membranes. Bioessays. 38, 129–139. 10.1002/bies.201500150 PubMed DOI PMC
Sezgin E., Gutmann T., Buhl T., Dirkx R., Grzybek M., Coskun Ü., et al. . (2015). Adaptive lipid packing and bioactivity in membrane domains. PLoS ONE 10:e0123930. 10.1371/journal.pone.0123930 PubMed DOI PMC
Sezgin E., Levental I., Grzybek M., Schwarzmann G., Mueller V., Honigmann A., et al. . (2012). Partitioning, diffusion, and ligand binding of raft lipid analogs in model and cellular plasma membranes. Biochim. Biophys. Acta 1818, 1777–1784. 10.1016/j.bbamem.2012.03.007 PubMed DOI
Sharpe H. J., Stevens T. J., Munro S. (2010). A comprehensive comparison of transmembrane domains reveals organelle-specific properties. Cell 142, 158–169. 10.1016/j.cell.2010.05.037 PubMed DOI PMC
Sheetz M. P., Sable J. E., Döbereiner H. G. (2006). Continuous membrane-cytoskeleton adhesion requires continuous accommodation to lipid and cytoskeleton dynamics. Annu. Rev. Biophys. Biomol. Struct. 35, 417–434. 10.1146/annurev.biophys.35.040405.102017 PubMed DOI
Sheetz M. P., Schindler M., Koppel D. E. (1980). Lateral mobility of integral membrane proteins is increased in spherocytic erythrocytes. Nature 285, 510–511. 10.1038/285510a0 PubMed DOI
Sherbet G. V. (1989). Membrane fluidity and cancer metastasis. Exp. Cell Biol. 57, 198–205. 10.1159/000163526 PubMed DOI
Shimshick E. J., McConnell H. M. (1973a). Lateral phase separation in phospholipid membranes. Biochemistry 12, 2351–2360. 10.1021/bi00736a026 PubMed DOI
Shimshick E. J., McConnell H. M. (1973b). Lateral phase separations in binary mixtures of cholesterol and phospholipids. Biochem. Biophys. Res. Commun. 53, 446–451. 10.1016/0006-291X(73)90682-7 PubMed DOI
Shinitzky M., Inbar M. (1976). Microviscosity parameters and protein mobility in biological-membranes. Biochim. Biophys. Acta 433, 133–149. 10.1016/0005-2736(76)90183-8 PubMed DOI
Shvartsman D. E., Gutman O., Tietz A., Henis Y. I. (2006). Cyclodextrins but not compactin inhibit the lateral diffusion of membrane proteins independent of cholesterol. Traffic 7, 917–926. 10.3389/fphys.2016.00185 PubMed DOI
Sieber J. J., Willig K. I., Kutzner C., Gerding-Reimers C., Harke B., Donnert G., et al. . (2007). Anatomy and dynamics of a supramolecular membrane protein cluster. Science 317, 1072–1076. 10.1126/science.1141727 PubMed DOI
Simons K., Ikonen E. (1997). Functional rafts in cell membranes. Nature 387, 569–572. 10.1038/42408 PubMed DOI
Simons K., van Meer G. (1988). Lipid sorting in epithelial cells. Biochemistry 27, 6197–6202. 10.1021/bi00417a001 PubMed DOI
Singer S. J., Nicolson G. L. (1971). The structure and chemistry of mammalian cell membranes. Am. J. Pathol. 65, 427–437. PubMed PMC
Singer S. J., Nicolson G. L. (1972). The fluid mosaic model of the structure of cell membranes. Science 175, 720–731. 10.1126/science.175.4023.720 PubMed DOI
Spira F., Mueller N. S., Beck G., von Olshausen P., Beig J., Wedlich-Söldner R. (2012). Patchwork organization of the yeast plasma membrane into numerous coexisting domains. Nat. Cell Biol. 14, 640–648. 10.1038/ncb2487 PubMed DOI
Stachowiak J. C., Brodsky F. M., Miller E. A. (2013). A cost-benefit analysis of the physical mechanisms of membrane curvature. Nat. Cell Biol. 15, 1019–1027. 10.1038/ncb2832 PubMed DOI PMC
Stefan C. J., Manford A. G., Baird D., Yamada-Hanff J., Mao Y., Emr S. D. (2011). Osh proteins regulate phosphoinositide metabolism at ER-plasma membrane contact sites. Cell 144, 389–401. 10.1016/j.cell.2010.12.034 PubMed DOI
Stinchcombe J. C., Bossi G., Booth S., Griffiths G. M. (2001). The immunological synapse of CTL contains a secretory domain and membrane bridges. Immunity 15, 751–761. 10.1016/S1074-7613(01)00234-5 PubMed DOI
Stryer L. (1995). Biochemistry. New York, NY: W. H. Freeman and Company.
Suzuki K. G., Fujiwara T. K., Edidin M., Kusumi A. (2007). Dynamic recruitment of phospholipase C gamma at transiently immobilized GPI-anchored receptor clusters induces IP3-Ca2+ signaling: single-molecule tracking study 2. J. Cell Biol. 177, 731–742. 10.1083/jcb.200609175 PubMed DOI PMC
Swaminathan R., Hoang C. P., Verkman A. S. (1997). Photobleaching recovery and anisotropy decay of green fluorescent protein GFP-S65T in solution and cells: cytoplasmic viscosity probed by green fluorescent protein translational and rotational diffusion. Biophys. J. 72, 1900–1907. 10.1016/S0006-3495(97)78835-0 PubMed DOI PMC
Tank D. W., Wu E. S., Webb W. W. (1982). Enhanced molecular diffusibility in muscle membrane blebs: release of lateral constraints. J. Cell Biol. 92, 207–212. 10.1083/jcb.92.1.207 PubMed DOI PMC
Tarling E. J., de Aguiar Vallim T. Q., Edwards P. A. (2013). Role of ABC transporters in lipid transport and human disease. Trends Endocrinol. Metab. 24, 342–350. 10.1016/j.tem.2013.01.006 PubMed DOI PMC
Trimble W. S., Grinstein S. (2015). Barriers to the free diffusion of proteins and lipids in the plasma membrane. J. Cell Biol. 208, 259–271. 10.1083/jcb.201410071 PubMed DOI PMC
Uittenbogaard A., Smart E. J. (2000). Palmitoylation of caveolin-1 is required for cholesterol binding, chaperone complex formation, and rapid transport of cholesterol to caveolae. J. Biol. Chem. 275, 25595–25599. 10.1074/jbc.M003401200 PubMed DOI
Vácha R., Berkowitz M. L., Jungwirth P. (2009). Molecular model of a cell plasma membrane with an asymmetric multicomponent composition: water permeation and ion effects. Biophys. J. 96, 4493–4501. 10.1016/j.bpj.2009.03.010 PubMed DOI PMC
Valeur B., Berberan-Santos M. N. (2012). Molecular Fluorescence. Principles and Applications. New York, NY: Wiley VCH.
van Meer G., de Kroon A. I. (2011). Lipid map of the mammalian cell. J. Cell Sci. 124(Pt 1), 5–8. 10.1242/jcs.071233 PubMed DOI
van Meer G., Simons K. (1982). Viruses budding from either the apical or the basolateral plasma membrane domain of MDCK cells have unique phospholipid compositions. EMBO J. 1, 847–852. PubMed PMC
van Meer G., Voelker D. R., Feigenson G. W. (2008). Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9, 112–124. 10.1038/nrm2330 PubMed DOI PMC
van Zanten T. S., Gómez J., Manzo C., Cambi A., Buceta J., Reigada R., et al. . (2010). Direct mapping of nanoscale compositional connectivity on intact cell membranes. Proc. Natl. Acad. Sci. U.S.A. 107, 15437–15442. 10.1073/pnas.1003876107 PubMed DOI PMC
Veatch S. L., Cicuta P., Sengupta P., Honerkamp-Smith A., Holowka D., Baird B. (2008). Critical fluctuations in plasma membrane vesicles. ACS Chem. Biol. 3, 287–293. 10.1021/cb800012x PubMed DOI
Veatch S. L., Keller S. L. (2005). Miscibility phase diagrams of giant vesicles containing sphingomyelin. Phys. Rev. Lett. 94:148101. 10.1103/PhysRevLett.94.148101 PubMed DOI
Vilmart-Seuwen J., Kersken H., Stürzl R., Plattner H. (1986). Atp keeps exocytosis sites in a primed state but is not required for Membrane-Fusion - an analysis with paramecium cells Invivo and Invitro. J. Cell Biol. 103, 1279–1288. 10.1083/jcb.103.4.1279 PubMed DOI PMC
Voelker D. R. (2009). Genetic and biochemical analysis of non-vesicular lipid traffic. Annu. Rev. Biochem. 78, 827–856. 10.1146/annurev.biochem.78.081307.112144 PubMed DOI
Wier M. L., Edidin M. (1986). Effects of cell density and extracellular matrix on the lateral diffusion of major histocompatibility antigens in cultured fibroblasts. J. Cell Biol. 103, 215–222. 10.1083/jcb.103.1.215 PubMed DOI PMC
Williamson J. J., Olmsted P. D. (2015). Kinetics of symmetry and asymmetry in a phase-separating bilayer membrane. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 92:052721. 10.1103/PhysRevE.92.052721 PubMed DOI
Wilson B. S., Pfeiffer J. R., Oliver J. M. (2000). Observing FcepsilonRI signaling from the inside of the mast cell membrane. J. Cell Biol. 149, 1131–1142. 10.1083/jcb.149.5.1131 PubMed DOI PMC
Wilson B. S., Pfeiffer J. R., Surviladze Z., Gaudet E. A., Oliver J. M. (2001). High resolution mapping of mast cell membranes reveals primary and secondary domains of Fc(epsilon)RI and LAT. J. Cell Biol. 154, 645–658. 10.1083/jcb.200104049 PubMed DOI PMC
Wilson R. L., Frisz J. F., Klitzing H. A., Zimmerberg J., Weber P. K., Kraft M. L. (2015). Hemagglutinin clusters in the plasma membrane are not enriched with cholesterol and sphingolipids. Biophys. J. 108, 1652–1659. 10.1016/j.bpj.2015.02.026 PubMed DOI PMC
Wu Q. Y., Liang Q. (2014). Interplay between curvature and lateral organization of lipids and peptides/proteins in model membranes. Langmuir 30, 1116–1122. 10.1021/la4039123 PubMed DOI
Yeagle P. L. (2014). Non-covalent binding of membrane lipids to membrane proteins. Biochim. Biophys. Acta 1838, 1548–1559. 10.1016/j.bbamem.2013.11.009 PubMed DOI
Yeung T., Gilbert G. E., Shi J., Silvius J., Kapus A., Grinstein S. (2008). Membrane phosphatidylserine regulates surface charge and protein localization. Science 319, 210–213. 10.1126/science.1152066 PubMed DOI
Zhang F., Crise B., Su B., Hou Y., Rose J. K., Bothwell A., et al. . (1991). Lateral diffusion of membrane-spanning and glycosylphosphatidylinositol-linked proteins: toward establishing rules governing the lateral mobility of membrane proteins. J. Cell Biol. 115, 75–84. 10.1083/jcb.115.1.75 PubMed DOI PMC
Zidovetzki R., Levitan I. (2007). Use of cyclodextrins to manipulate plasma membrane cholesterol content: evidence, misconceptions and control strategies. Biochim. Biophys. Acta 1768, 1311–1324. 10.1016/j.bbamem.2007.03.026 PubMed DOI PMC
Split Membrane: A New Model to Accelerate All-Atom MD Simulation of Phospholipid Bilayers
Interleaflet organization of membrane nanodomains: What can(not) be resolved by FRET?
Approach to map nanotopography of cell surface receptors
Role of Lipids in Morphogenesis of T-Cell Microvilli
Dual Role of CD4 in Peripheral T Lymphocytes
Roughness of Transmembrane Helices Reduces Lipid Membrane Dynamics
Lipid Driven Nanodomains in Giant Lipid Vesicles are Fluid and Disordered