Roughness of Transmembrane Helices Reduces Lipid Membrane Dynamics

. 2018 Dec 21 ; 10 () : 87-97. [epub] 20181120

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30508721
Odkazy

PubMed 30508721
PubMed Central PMC6277224
DOI 10.1016/j.isci.2018.11.026
PII: S2589-0042(18)30216-5
Knihovny.cz E-zdroje

The dynamics of cellular membranes is primarily determined by lipid species forming a bilayer. Proteins are considered mainly as effector molecules of diverse cellular processes. In addition to large assemblies of proteins, which were found to influence properties of fluid membranes, biological membranes are densely populated by small, highly mobile proteins. However, little is known about the effect of such proteins on the dynamics of membranes. Using synthetic peptides, we demonstrate that transmembrane helices interfere with the mobility of membrane components by trapping lipid acyl chains on their rough surfaces. The effect is more pronounced in the presence of cholesterol, which segregates from the rough surface of helical peptides. This may contribute to the formation or stabilization of membrane heterogeneities. Since roughness is a general property of helical transmembrane segments, our results suggest that, independent of their size or cytoskeleton linkage, integral membrane proteins affect local membrane dynamics and organization.

Zobrazit více v PubMed

Anderson R.G., Jacobson K. A role for lipid shells in targeting proteins to caveolae, rafts, and other lipid domains. Science. 2002;296:1821–1825. PubMed

Andrews N.L., Lidke K.A., Pfeiffer J.R., Burns A.R., Wilson B.S., Oliver J.M., Lidke D.S. Actin restricts FcεRI diffusion and facilitates antigen-induced receptor immobilization. Nat. Cell Biol. 2008;10:955–963. PubMed PMC

Benda A., Benes M., Marecek V., Lhotsky A., Hermens W.T., Hof M. How to determine diffusion coefficients in planar phospholipid systems by confocal fluorescence correlation spectroscopy. Langmuir. 2003;19:4120–4126.

Bernardino de la Sern A.J., Schutz G.J., Eggeling C., Cebecauer M. There is no simple model of the plasma membrane organization. Front. Cell Dev. Biol. 2016;4:106. PubMed PMC

Bienvenue A., Bloom M., Davis J.H., Devaux P.F. Evidence for protein-associated lipids from deuterium nuclear magnetic-resonance studies of rhodopsin-dimyristoylphosphatidylcholine recombinants. J. Biol. Chem. 1982;257:3032–3038. PubMed

Brocchieri L., Karlin S. Protein length in eukaryotic and prokaryotic proteomes. Nucleic Acids Res. 2005;33:3390–3400. PubMed PMC

Brotherus J.R., Griffith O.H., Brotherus M.O., Jost P.C., Silvius J.R., Hokin L.E. Lipid-protein multiple binding equilibria in membranes. Biochemistry. 1981;20:5261–5267. PubMed

Camley B.A., Esposito C., Baumgart T., Brown F.L. Lipid bilayer domain fluctuations as a probe of membrane viscosity. Biophys. J. 2010;99:L44–L46. PubMed PMC

Cebecauer M., Spitaler M., Serge A., Magee A.I. Signalling complexes and clusters: functional advantages and methodological hurdles. J. Cell Sci. 2010;123:309–320. PubMed

de Planque M.R., Greathouse D.V., Koeppe R.E., 2nd, Schafer H., Marsh D., Killian J.A. Influence of lipid/peptide hydrophobic mismatch on the thickness of diacylphosphatidylcholine bilayers. A 2H NMR and ESR study using designed transmembrane alpha-helical peptides and gramicidin A. Biochemistry. 1998;37:9333–9345. PubMed

de Planque M.R., Killian J.A. Protein-lipid interactions studied with designed transmembrane peptides: role of hydrophobic matching and interfacial anchoring. Mol. Membr. Biol. 2003;20:271–284. PubMed

de Planque M.R.R., Kruijtzer J.A.W., Liskamp R.M.J., Marsh D., Greathouse D.V., Koeppe R.E., de Kruijff B., Killian J.A. Different membrane anchoring positions of tryptophan and lysine in synthetic transmembrane α-helical peptides. J. Biol. Chem. 1999;274:20839–20846. PubMed

Dupuy A.D., Engelman D.M. Protein area occupancy at the center of the red blood cell membrane. Proc. Natl. Acad. Sci. U S A. 2008;105:2848–2852. PubMed PMC

Fastenberg M.E., Shogomori H., Xu X., Brown D.A., London E. Exclusion of a transmembrane-type peptide from ordered-lipid domains (rafts) detected by fluorescence quenching: extension of quenching analysis to account for the effects of domain size and domain boundaries. Biochemistry. 2003;42:12376–12390. PubMed

Frick M., Schmidt K., Nichols B.J. Modulation of lateral diffusion in the plasma membrane by protein density. Curr. Biol. 2007;17:462–467. PubMed

Gallova J., Uhrikova D., Hanulova M., Teixeira J., Balgavy P. Bilayer thickness in unilamellar extruded 1,2-dimyristoleoyl and 1,2-dierucoyl phosphatidylcholine vesicles: SANS contrast variation study of cholesterol effect. Colloids Surf. B Biointerfaces. 2004;38:11–14. PubMed

Harayama T., Riezman H. Understanding the diversity of membrane lipid composition. Nat. Rev. Mol. Cell Biol. 2018;19:281–296. PubMed

Heberle F.A., Feigenson G.W. Phase separation in lipid membranes. Cold Spring Harb. Perspect. Biol. 2011;3:1–13. PubMed PMC

Hite R.K., Li Z., Walz T. Principles of membrane protein interactions with annular lipids deduced from aquaporin-0 2D crystals. EMBO J. 2010;29:1652–1658. PubMed PMC

Jacobson K., Ishihara A., Inman R. Lateral diffusion of proteins in membranes. Annu. Rev. Physiol. 1987;49:163–175. PubMed

Jost P.C., Griffith O.H., Capaldi R.A., Vanderkooi G. Evidence for boundary lipid in membranes. Proc. Natl. Acad. Sci. U S A. 1973;70:480–484. PubMed PMC

Jost P.C., Nadakavukaren K.K., Griffith O.H. Phosphatidylcholine exchange between the boundary lipid and bilayer domains in cytochrome oxidase containing membranes. Biochemistry. 1977;16:3110–3114. PubMed

Kaiser H.J., Orlowski A., Rog T., Nyholm T.K., Chai W., Feizi T., Lingwood D., Vattulainen I., Simons K. Lateral sorting in model membranes by cholesterol-mediated hydrophobic matching. Proc. Natl. Acad. Sci. U S A. 2011;108:16628–16633. PubMed PMC

Kanai R., Ogawa H., Vilsen B., Cornelius F., Toyoshima C. Crystal structure of a Na+-bound Na+,K+-ATPase preceding the E1P state. Nature. 2013;502:201–206. PubMed

Kozma D., Simon I., Tusnady G.E. PDBTM: protein Data Bank of transmembrane proteins after 8 years. Nucleic Acids Res. 2013;41:D524–D529. PubMed PMC

London E., Feigenson G. Fluorescence quenching in model membranes. An analysis of the local phospholipid environment of diphenylhexatrien and Gramicidin A. Biochim. Biophys. Acta. 1981;649:89–97.

Machan R., Jurkiewicz P., Olzynska A., Olsinova M., Cebecauer M., Marquette A., Bechinger B., Hof M. Peripheral and integral membrane binding of peptides characterized by time-dependent fluorescence shifts: focus on antimicrobial peptide LAH(4) Langmuir. 2014;30:6171–6179. PubMed

Marsh D. Protein modulation of lipids, and vice-versa, in membranes. Biochim. Biophys. Acta. 2008;1778:1545–1575. PubMed

Mouritsen O.G., Bloom M. Mattress model of lipid-protein interactions in membranes. Biophys. J. 1984;46:141–153. PubMed PMC

Mouritsen O.G., Zuckermann M.J. What's so special about cholesterol? Lipids. 2004;39:1101–1113. PubMed

Niemela P.S., Miettinen M.S., Monticelli L., Hammaren H., Bjelkmar P., Murtola T., Lindahl E., Vattulainen I. Membrane proteins diffuse as dynamic complexes with lipids. J. Am. Chem. Soc. 2010;132:7574–7575. PubMed

Nyholm T.K. Lipid-protein interplay and lateral organization in biomembranes. Chem. Phys. Lipids. 2015;189:48–55. PubMed

Nystrom J.H., Lonnfors M., Nyholm T.K. Transmembrane peptides influence the affinity of sterols for phospholipid bilayers. Biophys. J. 2010;99:526–533. PubMed PMC

Oppenheimer N., Diamant H. In-plane dynamics of membranes with immobile inclusions. Phys. Rev. Lett. 2011;107:258102. PubMed

Peters R., Cherry R.J. Lateral and rotational diffusion of bacteriorhodopsin in lipid bilayers: experimental test of the Saffman-Delbruck equations. Proc. Natl. Acad. Sci. U S A. 1982;79:4317–4321. PubMed PMC

Pieper U., Schlessinger A., Kloppmann E., Chang G.A., Chou J.J., Dumont M.E., Fox B.G., Fromme P., Hendrickson W.A., Malkowski M.G. Coordinating the impact of structural genomics on the human alpha-helical transmembrane proteome. Nat. Struct. Mol. Biol. 2013;20:135–138. PubMed PMC

Pitman M.C., Grossfield A., Suits F., Feller S.E. Role of cholesterol and polyunsaturated chains in lipid-protein interactions: molecular dynamics simulation of rhodopsin in a realistic membrane environment. J. Am. Chem. Soc. 2005;127:4576–4577. PubMed

Polozova A., Litman B.J. Cholesterol dependent recruitment of di22:6-PC by a G protein-coupled receptor into lateral domains. Biophys. J. 2000;79:2632–2643. PubMed PMC

Raffy S., Teissie J. Control of lipid membrane stability by cholesterol content. Biophys. J. 1999;76:2072–2080. PubMed PMC

Ramadurai S., Duurkens R., Krasnikov V.V., Poolman B. Lateral diffusion of membrane proteins: consequences of hydrophobic mismatch and lipid composition. Biophys. J. 2010;99:1482–1489. PubMed PMC

Ramadurai S., Holt A., Krasnikov V., van den Bogaart G., Killian J.A., Poolman B. Lateral diffusion of membrane proteins. J. Am. Chem. Soc. 2009;131:12650–12656. PubMed

Ramadurai S., Holt A., Schafer L.V., Krasnikov V.V., Rijkers D.T., Marrink S.J., Killian J.A., Poolman B. Influence of hydrophobic mismatch and amino acid composition on the lateral diffusion of transmembrane peptides. Biophys. J. 2010;99:1447–1454. PubMed PMC

Rog T., Murzyn K., Karttunen M., Pasenkiewicz-Gierula M. Nonpolar interactions between trans-membrane helical EGF peptide and phosphatidylcholines, sphingomyelins and cholesterol. Molecular dynamics simulation studies. J. Pept. Sci. 2008;14:374–382. PubMed

Rog T., Pasenkiewicz-Gierula M., Vattulainen I., Karttunen M. What happens if cholesterol is made smoother: importance of methyl substituents in cholesterol ring structure on phosphatidylcholine-sterol interaction. Biophys. J. 2007;92:3346–3357. PubMed PMC

Saffman P.G., Delbruck M. Brownian motion in biological membranes. Proc. Natl. Acad. Sci. U S A. 1975;72:3111–3113. PubMed PMC

Saxton M.J. Lateral diffusion in an archipelago. The effect of mobile obstacles. Biophys. J. 1987;52:989–997. PubMed PMC

Schafer L.V., de Jong D.H., Holt A., Rzepiela A.J., de Vries A.H., Poolman B., Killian J.A., Marrink S.J. Lipid packing drives the segregation of transmembrane helices into disordered lipid domains in model membranes. Proc. Natl. Acad. Sci. U S A. 2011;108:1343–1348. PubMed PMC

Shezad K., Zhang K., Hussain M., Dong H., He C., Gong X., Xie X., Zhu J., Shen L. Surface roughness modulates diffusion and fibrillation of amyloid-beta peptide. Langmuir. 2016;32:8238–8244. PubMed

Sparr E., Ash W.L., Nazarov P.V., Rijkers D.T., Hemminga M.A., Tieleman D.P., Killian J.A. Self-association of transmembrane alpha-helices in model membranes: importance of helix orientation and role of hydrophobic mismatch. J. Biol. Chem. 2005;280:39324–39331. PubMed

Stefl M., Sachl R., Humpolickova J., Cebecauer M., Machan R., Kolarova M., Johansson L.B.A., Hof M. Dynamics and size of cross-linking-induced lipid nanodomains in model membranes. Biophys. J. 2012;102:2104–2113. PubMed PMC

van Meer G., Voelker D.R., Feigenson G.W. Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 2008;9:112–124. PubMed PMC

Wang D., He C., Stoykovich M.P., Schwartz D.K. Nanoscale topography influences polymer surface diffusion. ACS Nano. 2015;9:1656–1664. PubMed

Weiss K., Neef A., Van Q., Kramer S., Gregor I., Enderlein J. Quantifying the diffusion of membrane proteins and peptides in black lipid membranes with 2-focus fluorescence correlation spectroscopy. Biophys. J. 2013;105:455–462. PubMed PMC

Wilson B.S., Pfeiffer J.R., Oliver J.M. Observing FcεRI signaling from the inside of the mast cell membrane. J. Cell Biol. 2000;149:1131–1142. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace