Split Membrane: A New Model to Accelerate All-Atom MD Simulation of Phospholipid Bilayers

. 2025 Jan 27 ; 65 (2) : 845-856. [epub] 20250108

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39779296

All-atom molecular dynamics simulations are powerful tools for studying cell membranes and their interactions with proteins and other molecules. However, these processes occur on time scales determined by the diffusion rate of phospholipids, which are challenging to achieve in all-atom models. Here, we present a new all-atom model that accelerates lipid diffusion by splitting phospholipid molecules into head and tail groups. The bilayer structure is maintained by using external lateral potentials, which compensate for the lipid split. This split model enhances lateral lipid diffusion more than ten times, allowing faster and cheaper equilibration of large systems with different phospholipid types. The current model has been tested on membranes containing PSM, POPC, POPS, POPE, POPA, and cholesterol. We have also evaluated the interaction of the split model membranes with the Disheveled DEP domain and amphiphilic helix motif of the transcriptional repressor Opi1 as representative of peripheral proteins as well as the dimeric fragment of the epidermal growth factor receptor transmembrane domain and the Human A2A Adenosine of G protein-coupled receptors as representative of transmembrane proteins. The split model can predict the interaction sites of proteins and their preferred phospholipid type. Thus, the model could be used to identify lipid binding sites and equilibrate large membranes at an affordable computational cost.

Zobrazit více v PubMed

Pogozheva I. D.; Armstrong G. A.; Kong L.; Hartnagel T. J.; Carpino C. A.; Gee S. E.; Picarello D. M.; Rubin A. S.; Lee J.; Park S.; Lomize A. L.; Im W. Comparative Molecular Dynamics Simulation Studies of Realistic Eukaryotic, Prokaryotic, and Archaeal Membranes. J. Chem. Inf. Model. 2022, 62, 1036–1051. 10.1021/acs.jcim.1c01514. PubMed DOI

Ingólfsson H. I.; Carpenter T. S.; Bhatia H.; Bremer P.-T.; Marrink S. J.; Lightstone F. C. Computational lipidomics of the neuronal plasma membrane. Biophys. J. 2017, 113, 2271–2280. 10.1016/j.bpj.2017.10.017. PubMed DOI PMC

Bretscher M. S. Asymmetrical Lipid Bilayer Structure for Biological Membranes. Nat. New Biol. 1972, 236, 11–12. 10.1038/newbio236011a0. PubMed DOI

Zachowski A. Phospholipids in animal eukaryotic membranes: transverse asymmetry and movement. Biochem. J. 1993, 294, 1–14. 10.1042/bj2940001. PubMed DOI PMC

Balla T. Phosphoinositides: Tiny Lipids With Giant Impact on Cell Regulation. Physiol. Rev. 2013, 93, 1019–1137. 10.1152/physrev.00028.2012. PubMed DOI PMC

Wang X.; Devaiah S.; Zhang W.; Welti R. Signaling functions of phosphatidic acid. Prog. Lipid Res. 2006, 45, 250–278. 10.1016/j.plipres.2006.01.005. PubMed DOI

Marrink S. J.; Corradi V.; Souza P. C.; Ingólfsson H. I.; Tieleman D. P.; Sansom M. S. Computational Modeling of Realistic Cell Membranes. Chem. Rev. 2019, 119, 6184–6226. 10.1021/acs.chemrev.8b00460. PubMed DOI PMC

Ingólfsson H. I.; Melo M. N.; van Eerden F. J.; Arnarez C.; Lopez C. A.; Wassenaar T. A.; Periole X.; de Vries A. H.; Tieleman D. P.; Marrink S. J. Lipid Organization of the Plasma Membrane. J. Am. Chem. Soc. 2014, 136, 14554–14559. 10.1021/ja507832e. PubMed DOI

Singharoy A.; Maffeo C.; Delgado-Magnero K. H.; et al. Atoms to Phenotypes: Molecular Design Principles of Cellular Energy Metabolism. Cell 2019, 179 (5), 1098–1111. 10.2139/ssrn.3365009. PubMed DOI PMC

Bernardino de la Serna J.; Schütz G. J.; Eggeling C.; Cebecauer M. There Is No Simple Model of the Plasma Membrane Organization.. Front. Cell Dev. Biol. 2016, 4, 106.10.3389/fcell.2016.00106/full. PubMed DOI PMC

Lindblom G.; Orädd G. Lipid lateral diffusion and membrane heterogeneity. Biochim. Biophys. Acta, Biomembr. 2009, 1788, 234–244. 10.1016/j.bbamem.2008.08.016. PubMed DOI

Zhang J.; Li W.; Wang J.; Qin M.; Wu L.; Yan Z.; Xu W.; Zuo G.; Wang W. Protein folding simulations: From coarse-grained model to all-atom model. IUBMB Life 2009, 61, 627–643. 10.1002/iub.223. PubMed DOI

Jämbeck J. P. M.; Lyubartsev A. P. Derivation and Systematic Validation of a Refined All-Atom Force Field for Phosphatidylcholine Lipids. J. Phys. Chem. B 2012, 116, 3164–3179. 10.1021/jp212503e. PubMed DOI PMC

Marrink S. J.; Tieleman D. P. Perspective on the Martini model. Chem. Soc. Rev. 2013, 42, 6801–6822. 10.1039/c3cs60093a. PubMed DOI

Fathizadeh A.; Elber R. A mixed alchemical and equilibrium dynamics to simulate heterogeneous dense fluids: Illustrations for Lennard-Jones mixtures and phospholipid membranes. J. Chem. Phys. 2018, 149, 07232510.1063/1.5027078. PubMed DOI PMC

Cherniavskyi Y. K.; Fathizadeh A.; Elber R.; Tieleman D. P. Computer simulations of a heterogeneous membrane with enhanced sampling techniques. J. Chem. Phys. 2020, 153, 14411010.1063/5.0014176. PubMed DOI PMC

Tajkhorshid E. Accelerating Membrane Insertion of Peripheral Proteins with a Novel Membrane Mimetic Model. Biophys. J. 2012, 102, 6a.10.1016/j.bpj.2011.11.054. PubMed DOI PMC

Vermaas J. V.; Pogorelov T. V.; Tajkhorshid E. Extension of the Highly Mobile Membrane Mimetic to Transmembrane Systems Through Customized in silico Solvents. J. Phys. Chem. B 2017, 121, 3764–3776. 10.1021/acs.jpcb.6b11378. PubMed DOI PMC

Baylon J. L.; Lenov I. L.; Sligar S. G.; Tajkhorshid E. Characterizing the Membrane-Bound State of Cytochrome P450 3A4: Structure, Depth of Insertion, and Orientation. J. Am. Chem. Soc. 2013, 135, 8542–8551. 10.1021/ja4003525. PubMed DOI PMC

Pogorelov T. V.; Vermaas J. V.; Arcario M. J.; Tajkhorshid E. Partitioning of Amino Acids into a Model Membrane: Capturing the Interface. J. Phys. Chem. B 2014, 118, 1481–1492. 10.1021/jp4089113. PubMed DOI PMC

Qi Y.; Cheng X.; Lee J.; Vermaas J. V.; Pogorelov T. V.; Tajkhorshid E.; Park S.; Klauda J. B.; Im W. CHARMM-GUI HMMM Builder for Membrane Simulations with the Highly Mobile Membrane-Mimetic Model. Biophys. J. 2015, 109, 2012–2022. 10.1016/j.bpj.2015.10.008. PubMed DOI PMC

Abraham M. J.; Murtola T.; Schulz R.; Páll S.; Smith J. C.; Hess B.; Lindahl E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1–2, 19–25. 10.1016/j.softx.2015.06.001. DOI

Lindahl E.; Abraham M. J.; Hess B.; van der Spoel D.. GROMACS Source code2021. 202110.5281/zenodo.4457626. DOI

Páll S.; Abraham M. J.; Kutzner C.; Hess B.; Lindahl E.. Tackling Exascale Software Challenges in Molecular Dynamics Simulations with GROMACS. In Solving Software Challenges for Exascale: International Conference on Exascale Applications and Software, EASC 2014, Stockholm, Sweden, April 2-3, 2014, Revised Selected Papers 2; Springer International Publishing, 2015; pp 3–2710.1007/978-3-319-15976-8_1. DOI

Bussi G.; Donadio D.; Parrinello M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007, 126, 01410110.1063/1.2408420. PubMed DOI

Parrinello M.; Rahman A. Crystal Structure and Pair Potentials: A Molecular-Dynamics Study. Phys. Rev. Lett. 1980, 45, 1196–1199. 10.1103/PhysRevLett.45.1196. DOI

Darden T.; York D.; Pedersen L. Particle mesh Ewald: An N.log(N) method for Ewald sums in large systems. J. Chem. Phys. 1993, 98, 10089–10092. 10.1063/1.464397. DOI

Miyamoto S.; Kollman P. A. Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. J. Comput. Chem. 1992, 13, 952–962. 10.1002/jcc.540130805. DOI

Hess B.; Bekker H.; Berendsen H. J. C.; Fraaije J. G. E. M. LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem. 1997, 18, 1463–1472. 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H. DOI

Lorent J. H.; Levental K. R.; Ganesan L.; Rivera-Longsworth G.; Sezgin E.; Doktorova M.; Lyman E.; Levental I. Plasma membranes are asymmetric in lipid unsaturation, packing and protein shape. Nat. Chem. Biol. 2020, 16, 644–652. 10.1038/s41589-020-0529-6. PubMed DOI PMC

Jo S.; Kim T.; Iyer V. G.; Im W. CHARMM-GUI: A web-based graphical user interface for CHARMM. J. Comput. Chem. 2008, 29, 1859–1865. 10.1002/jcc.20945. PubMed DOI

Brooks B. R.; Brooks C. L.; Mackerell A. D.; et al. CHARMM: The biomolecular simulation program. J. Comput. Chem. 2009, 30, 1545–1614. 10.1002/jcc.21287. PubMed DOI PMC

Lee J.; Cheng X.; Jo S.; MacKerell A. D.; Klauda J. B.; Im W. CHARMM-GUI Input Generator for NAMD, Gromacs, Amber, Openmm, and CHARMM/OpenMM Simulations using the CHARMM36 Additive Force Field. Biophys. J. 2016, 110, 641a.10.1016/j.bpj.2015.11.3431. PubMed DOI PMC

Wu E. L.; Cheng X.; Jo S.; Rui H.; Song K. C.; Dávila-Contreras E. M.; Qi Y.; Lee J.; Monje-Galvan V.; Venable R. M.; Klauda J. B.; Im W. CHARMM-GUI Membrane Builder toward realistic biological membrane simulations. J. Comput. Chem. 2014, 35, 1997–2004. 10.1002/jcc.23702. PubMed DOI PMC

Klauda J. B.; Venable R. M.; Freites J. A.; O’Connor J. W.; Tobias D. J.; Mondragon-Ramirez C.; Vorobyov I.; MacKerell A. D.; Pastor R. W. Update of the CHARMM All-Atom Additive Force Field for Lipids: Validation on Six Lipid Types. J. Phys. Chem. B 2010, 114, 7830–7843. 10.1021/jp101759q. PubMed DOI PMC

Jämbeck J. P. M.; Lyubartsev A. P. An Extension and Further Validation of an All-Atomistic Force Field for Biological Membranes. J. Chem. Theory Comput. 2012, 8, 2938–2948. 10.1021/ct300342n. PubMed DOI

Jämbeck J. P. M.; Lyubartsev A. P. Exploring the Free Energy Landscape of Solutes Embedded in Lipid Bilayers. J. Phys. Chem. Lett. 2013, 4, 1781–1787. 10.1021/jz4007993. PubMed DOI

Rose M.; Hirmiz N.; Moran-Mirabal J.; Fradin C. Lipid Diffusion in Supported Lipid Bilayers: A Comparison between Line-Scanning Fluorescence Correlation Spectroscopy and Single-Particle Tracking. Membranes 2015, 5, 702–721. 10.3390/membranes5040702. PubMed DOI PMC

Falginella F. L.; Kravec M.; Drabinová M.; Paclíková P.; Bryja V.; Vácha R. Binding of DEP domain to phospholipid membranes: More than just electrostatics. Biochim. Biophys. Acta, Biomembr. 2022, 1864, 183983.10.1016/j.bbamem.2022.183983. PubMed DOI

Yu A.; Xing Y.; Harrison S. C.; Kirchhausen T. Structural Analysis of the Interaction between Dishevelled2 and Clathrin AP-2 Adaptor, A Critical Step in Noncanonical Wnt Signaling. Structure 2010, 18, 1311–1320. 10.1016/j.str.2010.07.010. PubMed DOI PMC

Schrödinger L.; DeLano W.. Pymol 2020http://www.pymol.org/pymol.

Case D.et al.AMBER 2018; University of California: San Francisco, 2018.

Lindorff-Larsen K.; Piana S.; Palmo K.; Maragakis P.; Klepeis J. L.; Dror R. O.; Shaw D. E. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins 2010, 78, 1950–1958. 10.1002/prot.22711. PubMed DOI PMC

Rosenbaum D. M.; Rasmussen S.; Kobilka B. The structure and function of G-protein-coupled receptors. Nature 2009, 459, 356–363. 10.1038/nature08144. PubMed DOI PMC

Wei S.; Thakur N.; Ray A.; Jin B.; Obeng S.; McCurdy C.; McMahon L.; de Terán H. G.; Eddy M.; Lamichhane R. Slow conformational dynamics of the human A2A adenosine receptor are temporally ordered. Structure 2022, 30, 329–337. 10.1016/j.str.2021.11.005. PubMed DOI PMC

Jaakola V.-P.; Griffith M.; Hanson M.; Cherezov V.; Chien E.; Lane J.; IJzerman A.; Stevens R. The 2.6 Angstrom Crystal Structure of a Human A2A Adenosine Receptor Bound to an Antagonist. Science 2008, 322, 1211–1217. 10.1126/science.1164772. PubMed DOI PMC

Li L.; Vorobyov I.; Allen T. The Different Interactions of Lysine and Arginine Side Chains with Lipid Membranes. J. Phys. Chem. B 2013, 117, 11906–11920. 10.1021/jp405418y. PubMed DOI PMC

Bocharov E. V.; Bragin P. E.; Pavlov K. V.; Bocharova O. V.; Mineev K. S.; Polyansky A. A.; Volynsky P. E.; Efremov R. G.; Arseniev A. S. The Conformation of the Epidermal Growth Factor Receptor Transmembrane Domain Dimer Dynamically Adapts to the Local Membrane Environment. Biochemistry 2017, 56, 1697–1705. 10.1021/acs.biochem.6b01085. PubMed DOI

Arkhipov A.; Shan Y.; Das R.; Endres N. F.; Eastwood M. P.; Wemmer D. E.; Kuriyan J.; Shaw D. E. Architecture and Membrane Interactions of the EGF Receptor. Cell 2013, 152, 557–569. 10.1016/j.cell.2012.12.030. PubMed DOI PMC

Gullingsrud J.; Schulten K. Lipid Bilayer Pressure Profiles and Mechanosensitive Channel Gating. Biophys. J. 2004, 86, 3496–3509. 10.1529/biophysj.103.034322. PubMed DOI PMC

Shahane G.; Ding W.; Palaiokostas M.; Orsi M. Physical properties of model biological lipid bilayers: insights from all-atom molecular dynamics simulations. J. Mol. Model. 2019, 25, 76.10.1007/s00894-019-3964-0. PubMed DOI

Yoo J.; Aksimentiev A. Improved Parameterization of Amine–Carboxylate and Amine–Phosphate Interactions for Molecular Dynamics Simulations Using the CHARMM and AMBER Force Fields. J. Chem. Theory Comput. 2016, 12, 430–443. 10.1021/acs.jctc.5b00967. PubMed DOI

Yoo J.; Aksimentiev A. New tricks for old dogs: improving the accuracy of biomolecular force fields by pair-specific corrections to non-bonded interactions. Phys. Chem. Chem. Phys. 2018, 20, 8432–8449. 10.1039/C7CP08185E. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...