The Role of Zebrafish and Laboratory Rodents in Schizophrenia Research
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
33101067
PubMed Central
PMC7500259
DOI
10.3389/fpsyt.2020.00703
Knihovny.cz E-zdroje
- Klíčová slova
- animal models, laboratory rodents, model validity, neurobiology, schizophrenia, schizophrenia symptoms, zebrafish,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Schizophrenia is a severe disorder characterized by positive, negative and cognitive symptoms, which are still not fully understood. The development of efficient antipsychotics requires animal models of a strong validity, therefore the aims of the article were to summarize the construct, face and predictive validity of schizophrenia models based on rodents and zebrafish, to compare the advantages and disadvantages of these models, and to propose future directions in schizophrenia modeling and indicate when it is reasonable to combine these models. The advantages of rodent models stem primarily from the high homology between rodent and human physiology, neurochemistry, brain morphology and circuitry. The advantages of zebrafish models stem in the high fecundity, fast development and transparency of the embryo. Disadvantages of both models originate in behavioral repertoires not allowing specific symptoms to be modeled, even when the models are combined. Especially modeling the verbal component of certain positive, negative and cognitive symptoms is currently impossible.
3rd Faculty of Medicine Charles University Prague Czechia
Brain Electrophysiology National Institute of Mental Health Prague Czechia
Institute for Environmental Studies Faculty of Science Charles University Prague Czechia
Translational Neuroscience National Institute of Mental Health Prague Czechia
Zobrazit více v PubMed
Bhugra D. The global prevalence of schizophrenia. PloS Med (2005) 2:e151. PubMed PMC
Kinney DK, Teixeira P, Hsu D, Napoleon SC, Crowley DJ, Miller A, et al. Relation of schizophrenia prevalence to latitude, climate, fish consumption, infant mortality, and skin color: a role for prenatal vitamin D deficiency and infections? Schizophr Bull (2009) 35:582–95. PubMed PMC
Samões B, Silveira C. The role of vitamin D in the pathophysiology of schizophrenia. Neuropsychiatry (2017) 7:362–9.
Horacek J, Bubenikova-Valesova V, Kopecek M, Palenicek T, Dockery C, Mohr P, et al. Mechanism of action of atypical antipsychotic drugs and the neurobiology of schizophrenia. CNS Drugs (2006) 20:389–409. PubMed
Aleman A, Kahn RS. Strange feelings: do amygdala abnormalities dysregulate the emotional brain in schizophrenia. Prog Neurobiol (2005) 77:283–98. PubMed
Siskind D, Siskind V, Kisely S. Clozapine response rates among people with treatment-resistant schizophrenia: data from a systematic review and meta-analysis. Can J Psychiat (2017) 62:772–7. PubMed PMC
Bubeníková-Valešová V, Horáček J, Vrajová M, Höschl C. Models of schizophrenia in humans and animals based on inhibition of NMDA receptors. Neurosci Biobehav Rev (2008) 32:1014–23. PubMed
Meyer U, Feldon J. Epidemiology-driven neurodevelopmental animal models of schizophrenia. Prog Neurobiol (2010) 90:285–326. PubMed
Tordjman S, Drapier D, Bonnot O, Graignic R, Fortes S, Cohen D, et al. Animal models relevant to schiziophrenia and autism: validity and limitations. Behav Genet (2007) 37:61–78. PubMed
Akande MG, Örn S, Norrgren L. Evaluation of the toxic effects of clozapine in zebra fish (Danio rerio) embryos with the fish embryo toxicity test. Int J Pharm BioMed Res (2010) 1:90–4.
Guo S. Linking genes to brain, behavior and neurological diseases: what can we learn from zebrafish? Genes Brain Behav (2004) 3:63–74. PubMed
Spence ROW, Smith C. Male territoriality mediates density and sex ratio effects on oviposition in the zebrafish, Danio rerio. Anim Behav (2005) 69:1317–23.
Buske C, Gerlai R. Shoaling develops with age in Zebrafish (Danio rerio). Prog Neuropsychopharmacol Biol Psychiatry (2011) 35:1409–15. PubMed PMC
Pham M, Raymond J, Hester J, Kyzar E, Gaikwad S, Bruce I, et al. Assessing social behavior phenotyps in adult zebrafish: shoaling, social preference, and mirror biting tests. Zebrafish Protoc Neurobehav Res (2012) 66:231–46.
Miller N, Gerlai R. From schooling to shoaling: patterns of collective motion in zebrafish (Danio rerio). PloS One (2012) 7:e48865. 10.1371/journal.pone.0048865 PubMed DOI PMC
Volgin AD, Yakovlev OA, Demin KA, de Abreu MS, Alekseeva PA, Friend AJ, et al. Zebrafish models for personalized psychiatry: insights from individual, strain and sex differences, and modeling gene x environment interactions. J Neurosci Res (2019) 97:402–13. PubMed
Morris BJ, Cochran SM, Pratt JA. PCP: from pharmacology to modelling schizophrenia. Curr Opin Pharmacol (2005) 5:101–6. PubMed
Benes FM. Amygdalocortical circuitry in schizophrenia: from circuits to molecules. Neuropsychopharmacology (2010) 35:239–57. PubMed PMC
Morris RW, Sparks A, Mitchell PB, Weickert CS, Green MJ. Lack of cortico-limbic coupling in bipolar disorder and schizophrenia during emotion regulation. Transl Psychiatry (2012) 2:e90. 10.1038/tp.2012.16 PubMed DOI PMC
Horacek J, Mikolas P, Tintera J, Novak T, Palenicek T, Brunovsky M, et al. Sad mood induction has an opposite effect on amygdala response to emotional stimuli in euthymic patients with bipolar disorder and healthy controls. J Psychiatry Neurosci (2015) 40:134–42. PubMed PMC
Flores G, Morales-Medina JC, Diaz A. Neuronal and brain morphological changes in animal models of schizophrenia. Behav Brain Res (2016) 301:190–203. PubMed
Li Z, Chen J, Yu H, He L, Xu Y, Zhang D, et al. Genome-wide association analysis identifies 30 new susceptibility loci for schizophrenia. Nat Genet (2017) 49:1576–83. PubMed
Avramopoulos D. Recent advances in the genetics of schizophrenia. Mol Neuropsychiatry (2018) 4:35–51. PubMed PMC
Wood JD, Bonath F, Kumar S, Ross CA, Cunliffe VT. Disrupted-in-schizophrenia 1 and neuregulin 1 are required for the specification of oligodendrocytes and neurones in the zebrafish brain. Hum Mol Genet (2009) 18:391–404. PubMed
Ayhan Y, McFarland R, Pletnikov MV. Animal models of gene-environment interaction in schizophrenia: a dimensional perspective. Prog Neurobiol (2016) 136:1–27. PubMed PMC
Fromer M, Roussos P, Sieberts SK, Johnson JS, Kavanagh DH, Perumal TM, et al. Gene expression elucidates functional impact of polygenic risk for schizophrenia. Nat Neurosci (2016) 19:1442–53. PubMed PMC
Khandaker GM, Dantzer R. Is there a role for immune-to-brain communication in schizophrenia? Psychopharmacol (Berl) (2016) 233:1559–73. PubMed PMC
Nasiadka A, Clark MD. Zebrafish breeding in the laboratory environment. ILAR J (2012) 53:161–8. PubMed
Wafer LN, Jensen VB, Whitney JC, Gomez TH, Flores R, Goodwin BS. Effects of environmental enrichment on the fertility and fecundity of zebrafish (Danio rerio). J Am Assoc Lab Anim Sci (2016) 55:291–4. PubMed PMC
Flurkey K, Currer JM, Leiter EH, Witham B. The Jackson laboratory handbook on genetically standardized mice. 6th edition New Mexico: The Jackson Laboratory; (2009).
Viana J, Wildman N, Hannon E, Farbos A, O’Neill P, Moore K, et al. Clozapine-induced transcriptional changes in the zebrafish brain. NPJ Schizophr (2020) 6:3. PubMed PMC
Wienholds E, van Eeden F, Kosters M, Mudde J, Plasterk RHA, Cuppen E. Efficient target-selected mutagenesis in zebrafish. Genome Res (2003) 13:2700–7. PubMed PMC
Moens CB, Donn TM, Wolf-Saxon ER, Ma TP. Reverse genetics in zebrafish by TILLING. Brief Funct Genom (2008) 7:454–9. PubMed PMC
Asakawa K, Kawakami K. Targeted gene expression by the Gal4-UAS system in zebrafish. Dev Growth Differ (2008) 50:391–9. PubMed
Weissman TA, Sanes JR, Lichtman JW, Livet J. Generating and imaging multicolor brainbow mice. Cold Spring Harb Protoc (2011) 2011:763–9. PubMed
Thummel R, Burket CT, Brewer JL, Sarras M, Li L, Perry M, et al. Cre-mediated site-specific recombination in zebrafish embryos. Dev Dynam (2005) 233:1366–77. PubMed
McLellan MA, Rosenthal NA, Pinto AR. Cre-loxP-mediated recombination: general principles and experimental considerations. Curr Protoc Mouse Biol (2017) 7:1–12. 10.1002/cpmo.22 PubMed DOI
Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD, et al. Efficient in vivo genome editing using RNA-guided nucleases. Nat Biotechnol (2013) 31:227–9. PubMed PMC
Nemudryi AA, Valetdinova KR, Medvedev SP, Zakian SM. TALEN and CRISPR/Cas genome editing systems: tools of discovery. Acta Naturae (2014) 6:19–40. PubMed PMC
Papaleo F, Yang F, Garcia S, Chen J, Lu B, Crawley JN, et al. Dysbindin-1 modulates prefrontal cortical activity and schizophrenia-like behaviors via dopamine/D2 pathways. Mol Psychiatry (2012) 17:85–98. PubMed PMC
Papaleo F, Burdick MC, Callicott JH, Weinberger DR. Epistatic interaction between COMT and DTNBP1 modulates prefrontal function in mice and in humans. Mol Psychiatry (2014) 19:311–6. PubMed PMC
Managò F, Mereu M, Mastwal S, Mastrogiacomo R, Scheggia D, Emanuele M, et al. Genetic disruption of Arc/Arg3.1 in mice causes alterations in dopamine and neurobehavioral phenotypes related to schizophrenia. Cell Rep (2016) 16:2116–28. PubMed PMC
Cinque S, Zoratto F, Poleggi A, Leo D, Cerniglia L, Cimino S, et al. Behavioral phenotyping of dopamine transporter knockout rats: compulsive traits, motor stereotypies, and anhedonia. Front Psychiatry (2018) 9:43. PubMed PMC
Scheggia D, Mastrogiacomo R, Mereu M, Sannino S, Straub RE, Armando M. Variations in Dysbindin-1 are associated with cognitive response to antipsychotic drug treatment. Nat Commun (2018) 9:2265. PubMed PMC
Sumitomo A, Horike K, Hirai K, Butcher N, Boot E, Sakurai T, et al. A mouse model of 22q11.2 deletions: molecular and behavioral signatures of Parkinson’s disease and schizophrenia. Sci Adv (2018) 4:eaar6637. PubMed PMC
Leggio GM, Torrisi SA, Mastrogiacomo R, Mauro D, Chisari M, Devroye C, et al. The epistatic interaction between the dopamine D3 receptor and dysbindin-1 modulates higher-order cognitive functions in mice and humans. Mol Psychiatry (2019). 10.1038/s41380-019-0511-4 PubMed DOI
Ettl AK, Holzschuh J, Driever W. The zebrafish mutation m865 affects formation of dopaminergic neurons and neuronal survival, and maps to a genetic interval containing the sepiapterin reductase locus. Anat Embryol (2006) 211:73–86. PubMed
Boehmler W, Carr T, Thisse C, Thisse B, Canfield VA, Levenson R. D4 dopamine receptor genes of zebrafish and effects of the antipsychotic clozapine on larval swimming behaviour. Genes Brain Behav (2007) 6:155–66. PubMed
Drerup CM, Wiora HM, Topczewski J, Morris JA. Disc1 regulates foxd3 and sox10 experssion, affecting neural crest migration and differentiation. Development (2009) 136:2623–32. PubMed PMC
Webb KJ, Norton WHJ, Trümbach D, Meijer AH, Ninkovic J, Topp S, et al. Zebrafish reward mutants reveal novel transcripts mediating the behavioral effects of amphetamine. Genome Biol (2009) 10:R81. PubMed PMC
Formella I, Scott EK, Burne THJ, Harms LR, Liu P, Turner KM, et al. Transient knockdown of tyrosine hydroxylase during development has persistent effects on behaviour in adult zebrafish (Danio rerio). PloS One (2012) 7:e42482. PubMed PMC
Timme-Laragy AR, Karchner SI, Hahn ME. Gene knockdown by morpholino-modified oligonucleotides in the zebrafish model: applications for developmental toxicology. Methods Mol Biol (2012) 889:51–71. PubMed PMC
Reissner KJ, Sartor GC, Vazey EM, Dunn TE, Aston-Jones G, Kalivas PW. Use of vivo-morpholinos for control of protein expression in the adult rat brain. J Neurosci Methods (2012) 203:354–60. PubMed PMC
Giacomotto J, Carroll AP, Rinkwitz S, Mowry B, Cairns MJ, Becker TS. Developmental suppression of schizophrenia-associated miR-137 alters sensorimotor function in zebrafish. Transl Psychiatry (2016) 6:e818. PubMed PMC
He E, Lozano MAG, Stringer S, Watanabe K, Sakamoto K, den Oudsten F, et al. MIR137 schizophrenia-associated locus controls synaptic function by regulating synaptogenesis, synapse maturation and synaptic transmission. Hum Mol Genet (2018) 27:1879–91. PubMed PMC
Pan YA, Freundlich T, Weissman TA, Schoppik D, Wang XC, Zimmerman S, et al. Zebrabow: multispectral cell labeling for cell tracing and lineage analysis in zebrafish. Development (2013) 140:2835–46. PubMed PMC
Marsden KC, Granato M. In vivo Ca2+ imaging reveals that decreased dendritic excitability drives startle habituation. Cell Rep (2015) 13:1733–40. PubMed PMC
Saito A, Taniguchi Y, Rannals MD, Merfeld EB, Ballinger MD, Koga M, et al. Early postnatal GABAa receptor modulation reverses deficits in neuronal maturation in a conditional neurodevelopmental mouse model of DISC1. Mol Psychiatry (2016) 21:1449–59. PubMed PMC
Ezran C, Karanewsky CJ, Pendleton JL, Sholtz A, Krasnow MR, Willick J, et al. The mouse lemur, a genetic model organism for primate biology, behavior, and health. Genetics (2017) 206:651–64. PubMed PMC
Sullivan PF, Kendler KS, Neale MC. Schizophrenia as a complex trait. Arch Gen Psychiatry (2003) 60:1187–92. PubMed
Toro CT, Deakin JFW. Adult neurogenesis and schizophrenia: a window on abnormal early brain development? Schizophr Res (2007) 90:1–14. 10.1016/j.schres.2006.09.030 PubMed DOI
van Os J, Kenis G, Rutten BP. The environment and schizophrenia. Nature (2010) 468:203–12. PubMed
Xu J, He G, Zhu J, Zhou X, St Clair D, Wang T, et al. Prenatal nutritional deficiency reprogrammed postnatal gene expression in mammal brains: implications for schizophrenia. Int J Neuropsychopharmacol (2014) 18:pyu054. 10.1093/ijnp/pyu054 PubMed DOI PMC
McGrath JJ, Eyles DW, Pedersen CB, Anderson C, Ko P, Burne TH, et al. Neonatal vitamin D status and risk of schizophrenia. Arch Gen Psychiatry (2010) 67:889–94. PubMed
Selemon LD, Zecevic N. Schizophrenia: a tale of two critical periods for prefrontal cortical development. Transl Psychiatry (2015) 5:e623. 10.1038/tp.2015.115 PubMed DOI PMC
Flores G, Morales-Medina JC. Role of the prefrontal cortex in the neonatal ventral hippocampus lesion, an animal model of schizophrenia. J Neurol Neuromed (2016) 1:35–9.
Grayson B, Barnes SA, Markou A, Piercy C, Podda G, Neill JC. Postnatal phencyclidine (PCP) as a neurodevelopmental animal model of schizophrenia pathophysiology and symptomatology: a review. Curr Top Behav Neurosci (2016) 29:403–28. PubMed
Whitford TJ, Rennie CJ, Grieve SM, Clark CR, Gordon E, Williams LM. Brain maturation in adolescence: concurrent changes in neuroanatomy and neurophysiology. Hum Brain Mapp (2007) 28:228–37. PubMed PMC
Riccomagno MM, Kolodkin AL. Sculpting neural circuits by axon and dendrite pruning. Annu Rev Cell Dev Biol (2015) 31:779–805. PubMed PMC
Mondelli V, Dazzan P, Hepgul N, Di Forti M, Aas M, D’Albenzio A, et al. Abnormal cortisol levels during the day and cortisol awakening response in first-episode psychosis: the role of stress and of antipsychotic treatment. Schizophr Res (2010) 116:234–42. PubMed PMC
Carr CP, Martins CM, Stingel AM, Lemgruber VB, Juruena MF. The role of early life stress in adult psychiatric disorders: a systematic review according to childhood trauma subtypes. J Nerv Ment Dis (2013) 201:1007–20. PubMed
Geven EJW, Klaren PHM. The teleost head kidney: integrating thyroid and immune signalling. Dev Comp Immunol (2017) 66:73–83. PubMed
Alderman SL, Bernier NJ. Ontogeny of the corticotropin-releasing factor system in zebrafish. Gen Comp Endocrinol (2009) 164:61–9. PubMed
Hauser J, Feldon J, Pryce CR. Prenatal dexamethasone exposure, postnatal development, and adulthood prepulse inhibition and latent inhibition in Wistar rats. Behav Brain Res (2006) 175:51–61. PubMed
Marsden CA, King MV, Fone KCF. Influence of social isolation in the rat on serotonergic function and memory - relevance to models of schizophrenia and the role of 5-HT6 receptors. Neuropharmacology (2011) 61:400–7. PubMed
Mohn AR, Gainetdinov RR, Caron MG, Koller BH. Mice with reduced NMDA receptor expression display behaviors related to schizophrenia. Cell (1999) 98:427–36. PubMed
Nesan D, Vijayan MM. Maternal cortisol mediates hypothalamus-pituitary-interrenal axis development in zebrafish. Sci Rep (2016) 6:22582. 10.1038/srep22582 PubMed DOI PMC
Pikulkaew S, Benato F, Celeghin A, Zucal C, Skobo T, Colombo L, et al. The knockdown of maternal glucocorticoid receptor mRNA alters embryo development in zebrafish. Dev Dynam (2011) 240:874–89. PubMed
Alsop D, Vijayan MM. Development of the corticosteroid stress axis and receptor expression in zebrafish. American journal of physiology. Am J Physiol Regul Integr Comp Physiol (2008) 1:711–9. PubMed
Clark KJ, Boczek NJ, Ekker SC. Stressing zebrafish for behavioral genetics. Rev Neurosci (2011) 22:49–62. PubMed PMC
Idalencio R, Kalichak F, Santos Rosa JG, de Oliveira TA, Koakoski G, Gusso D, et al. Waterborne risperidone decreases stress response in zebrafish. PloS One (2015) 10:e0140800. 10.1371/journal.pone.0140800 PubMed DOI PMC
Grossman L, Utterback E, Stewart A, Gaikwad S, Chung KM, Suciu C, et al. Characterization of behavioral and endocrine effects of LSD on zebrafish. Behav Brain Res (2010) 214:277–84. PubMed
Xu MQ, Sun WS, Liu BX, Feng GY, Yu L, Yang L, et al. Prenatal malnutrition and adult schizophrenia: further evidence from the 1959-1961 chinese famine. Schizophr Bull (2009) 35:568–76. PubMed PMC
Alamy M, Bengelloun WA. Malnutrition and brain development: an analysis of the effects of inadequate diet during different stages of life in rat. Neurosci Biobehav Rev (2012) 36:1463–80. PubMed
Mokler DJ, Torres OI, Galler JR, Morgane PJ. Stress-induced changes in extracellular dopamine and serotonin in the medial prefrontal cortex and dorsal hippocampus of prenatally malnourished rats. Brain Res (2007) 1148:226–33. PubMed PMC
Vucetic Z, Totoki K, Schoch H, Whitaker KW, Hill-Smith T, Lucki I, et al. Early life protein restriction alters dopamine circuitry. Neuroscience (2010) 168:359–70. PubMed PMC
Cruz-Rizzolo RJ, Leal LL, de Paiva IR, Barbosa Ribeiro JO, Pimenta T, Pinato L, et al. Protein maslnutrition during gestation and early life decreases neuronal size in the medial prefrontal cortex of post-pubertal rats. IBRO Rep (2017) 3:65–71. PubMed PMC
Naderi M, Ferrari MCO, Chivers DP, Niyogi S. Maternal exposure to dietary selenium causes dopaminergic hyperfunction and cognitive impairment in zebrafish offspring. Environ Sci Technol (2018) 52:13574–83. PubMed
Kesby JP, Cui X, Burne TH, Eyles DW. Altered dopamine ontogeny in the developmentally vitamin D deficient rat and its relevance to schizophrenia. Front Cell Neurosci (2013) 7:111. 10.3389/fncel.2013.00111 PubMed DOI PMC
Kirkbride JB, Susser E, Kundakovic M, Kresovich JK, Davey Smith G, Relton CL. Prenatal nutrition, epigenetics and schizophrenia risk: can we test causal effects? Epigenomics (2012) 4:303–15. PubMed PMC
Khandaker GM, Zimbron J, Lewis G, Jones PB. Prenatal maternal infection, neurodevelopment and adult schizophrenia: a systematic review of population-based studies. Psychol Med (2013) 43:239–57. PubMed PMC
Estes ML, McAllister KA. Maternal immune activation: implications for neuropsychiatric disorders. Science (2016) 353:772–7. PubMed PMC
Mednick SA, Machon RA, Huttunen MO, Bonett D. Adult schizophrenia following prenatal exposure to an influenza epidemic. Arch Gen Psychiatry (1988) 45:189–92. PubMed
Brown AS, Derkits EJ. Prenatal infection and schizophrenia: a review of epidemiologic and translational studies. Am J Psychiatry (2010) 167:261–80. PubMed PMC
Sørensen HJ, Mortensen EL, Reinisch JM, Mednick SA. Association between prenatal exposure to bacterial infection and risk of schizophrenia. Schizophr Bull (2009) 35:631–7. PubMed PMC
Torrey EF, Yolken RH. Could schizophrenia be a viral zoonosis transmitted from house cats? Schizophr Bull (1995) 21:167–71. PubMed
Horacek J, Flegr J, Tintera J, Verebova K, Spaniel F, Novak T, et al. Latent toxoplasmosis reduces gray matter density in schizophrenia but not in controls: voxel-based-morphometry (VBM) study. World J Biol Psychiatry (2012) 13:501–9. PubMed
Wischhof L, Irrsack E, Osorio C, Koch M. Prenatal LPS-exposure – a neurodevelopmental rat model of schizophrenia – differentially affects cognitive functions, myelination and parvalbumin expression in male and female offspring. Prog Neuropsychopharmacol Biol Psychiatry (2015) 57:17–30. PubMed
Kubesova A, Tejkalova H, Syslova K, Kacer P, Vondrousova J, Tyls F, et al. Biochemical, histopathological and morphological profiling of a rat model of early immune stimulation: relation to psychopathology. PloS One (2015) 10:e0115439. 10.1371/journal.pone.0115439 PubMed DOI PMC
Kirsten K, Fior D, Kreutz LC, Barcellos JLG. First description of behavior and immune system relationship in fish. Sci Rep (2018) 8:846. 10.1038/s41598-018-19276-3 PubMed DOI PMC
Miyamoto S, Miyake N, Jarskog LF, Fleischhacker WW, Lieberman JA. Pharmacological treatment of schizophrenia: a critical review of the pharmacology and clinical effects of current and future therapeutic agents. Mol Psychiatry (2012) 17:1206–27. PubMed
Patel KR, Cherian J, Gohil K, Atkinson D. Schizophrenia: overview and treatment options. P T (2014) 39:638–45. PubMed PMC
Melicher T, Horacek J, Hlinka J, Spaniel F, Tintera J, Ibrahim I, et al. White matter changes in first episode psychosis and their relation to the size of sample studied: a DTI study. Schizophr Res (2015) 162:22–8. PubMed
Mueller T. What is the thalamus in zebrafish? Front Neurosci (2012) 6:1–14. PubMed PMC
Parker MO, Brock AJ, Walton RT, Brennan CH. The role of zebrafish (Danio rerio) in dissecting the genetics and neural circuits of executive function. Front Neural Circuits (2013) 7:63. PubMed PMC
Kozol RA, Abrams AJ, James DM, Buglo E, Yan Q, Dallman JE. Function over form: modeling groups of inherited neurological conditions in zebrafish. Front Mol Neurosci (2016) 9:55. 10.3389/fnmol.2016.00055 PubMed DOI PMC
Gaidica M. (2006). labs.gaidi.ca/rat-brain-atlas/ (Accessed April 1, 2020).
Lipska BK, Weinberger DR. To model a psychiatric disorder in animals: schizophrenia as a reality test. Neuropsychopharmacology (2000) 23:223–39. PubMed
Daenen EW, Wolterink G, Van Der Heyden JA, Kruse CG, Van Ree JM. Neonatal lesions in the amygdala or ventral hippocampus disrupt prepulse inhibition of the acoustic startle response; implications for an animal model of neurodevelopmental disorders like schizophrenia. Eur Neuropsychopharm (2003) 13:187–97. PubMed
Tseng KY, Chambers RA, Lipska BK. The neonatal ventral hippocampal lesion as a heuristic neurodevelopmental model of schizophrenia. Behav Brain Res (2009) 204:295–305. PubMed PMC
Ganz J, Kroehne V, Freudenreich D, Machate A, Geffarth M, Braasch I, et al. Subdivisions of the adult zebrafish pallium based on molecular marker analysis. F1000Res (2014) 3:308. 10.12688/f1000research.5595.1 PubMed DOI PMC
Vargas JP, López JC, Portavella M. What are the functions of fish brain pallium? Brain Res Bull (2009) 79:436–40. PubMed
Cheng RK, Jesuthasan SJ, Penney TB. Zebrafish forebrain and temporal conditioning. Philos Trans R Soc Lond B Biol Sci (2014) 369:20120462. 10.1098/rstb.2012.046 PubMed DOI PMC
Mueller T, Wullimann MF. An evolutionary interpretation of teleostean forebrain anatomy. Brain Behav Evol (2009) 74:30–42. PubMed
Kimmel CB, Warga RM, Schilling TF. Origin and organization of the zebrafish fate map. Development (1990) 108:581–94. PubMed
Nieuwenhuys R. The forebrain of actinopterygians revisited. Brain Behav Evol (2009) 73:229–52. PubMed
Nieuwenhuys R. The development and general morphology of the telencephalon of actinopterygian fishes: synopsis, documentation and commentary. Brain Struct Funct (2011) 215:141–57. PubMed PMC
Yamamoto N, Ishikawa Y, Yoshimoto M, Xue HG, Bahaxar N, Sawai N, et al. A new interpretation on the homology of the teleostean telencephalon based on hodology and a new eversion model. Brain Behav Evol (2007) 69:96–104. PubMed
Franěk M, Vaculín S, Yamamotová A, Šťastný F, Bubeníková-Valešová V, Rokyta R. Pain perception in neurodevelopmental animal models of schizophrenia. Physiol Res (2010) 59:811–9. PubMed
Aizenberg M, Schuman EM. Cerebellar-dependent learning in larval zebrafish. J Neurosci (2011) 31:8708–12. PubMed PMC
Breier A, Su TP, Saunders R, Carson RE, Kolachana BS, de Bartolomeis A, et al. Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: evidence from a novel positron emission tomography method. Proc Natl Acad Sci USA (1997) 94:2569–74. PubMed PMC
Steeds H, Carhart-Harris RL, Stone JM. Drug models of schizophrenia. Ther Adv Psychopharmacol (2015) 5:43–58. PubMed PMC
Krajcovic B, Fajnerova I, Horacek J, Kelemen E, Kubik S, Svoboda J, et al. Neural and neuronal discoordination in schizophrenia: from ensembles through networks to symptoms. Acta Physiol (Oxf) (2019) 226:e13282. 10.1111/apha.13282 PubMed DOI
Gaskin PL, Toledo-Rodriguez M, Alexander SP, Fone KC. Down-regulation of hippocampal genes regulating dopaminergic, GABAergic, and glutamatergic function following combined neonatal phencyclidine and post-weaning social isolation of rats as a neurodevelopmental model for schizophrenia. Int J Neuropsychopharmacol (2016) 19:pyw062. 10.1093/ijnp/pyw062 PubMed DOI PMC
Schwabe K, Klein S, Koch M. Behavioural effects of neonatal lesions of the medial prefrontal cortex and subchronic pubertal treatment with phencyclidine of adult rats. Behav Brain Res (2006) 168:150–60. PubMed
Panula P, Sallinen V, Sundvik M, Kolehmainen J, Torkko V, Tiittula A, et al. Modulatory neurotransmitter systems and behavior: towards zebrafish models of neurodegenerative diseases. Zebrafish (2006) 3:235–47. PubMed
Seibt KJ, Piato AL, da Luz Oliveira R, Capiotti KM, Vianna MR, Bonan CD. Antipsychotic drugs reverse MK-801-induced cognitive and social interaction deficits in zebrafish (Danio rerio). Behav Brain Res (2011) 224:135–9. PubMed
Rico EP, de Oliveira DL, Rosemberg DB, Mussulini BH, Bonan CD, Dias RD, et al. Expression and functional analysis of Na+-dependent glutamate transporters from zebrafish brain. Brain Res Bull (2010) 81:517–23. PubMed
Rico EP, Rosemberg DB, Seibt KJ, Capiotti KM, Da Silva RS, Bonan CD. Zebrafish neurotransmitter systems as potential pharmacological and toxicological targets. Neurotoxicol Teratol (2011) 33:608–17. PubMed
Rubio MD, Drummond JB, Meador-Woodruff JH. Glutamate receptor abnormalities in schizophrenia: implications for innovative treatments. Biomol Ther (2012) 20:1–18. 10.4062/biomolther.2012.20.1.001 PubMed DOI PMC
Adell A, Jiménez-Sánchez L, López-Gill X, Romón T. Is the acute NMDA receptor hypofunction a valid model of schizophrenia? Schizophr Bull (2012) 38:9–14. PubMed PMC
Kim SY, Lee H, Kim HJ, Bang E, Lee SH, Lee DW, et al. In vivo and ex vivo evidence for ketamine-induced hyperglutamatergic activity in the cerebral cortex of the rat: potential relevance to schizophrenia. NMR BioMed (2011) 24:1235–42. PubMed
Balla A, Nattini ME, Sershen H, Lajtha A, Dunlop DS, Javitt DC. GABAB/NMDA receptor interaction in the regulation of extracellular dopamine levels in rodent prefrontal cortex and striatum. Neuropharmacology (2009) 56:915–21. PubMed PMC
Laruelle M. Schizophrenia: from dopaminergic to glutamatergic interventions. Curr Opin Pharmacol (2014) 14:97–102. PubMed
Laurelle M, Kegeles L, Abi-Dargham A. Glutamate, dopamine, and schizophrenia from pathology to treatment. Ann N Y Acad Sci (2003) 1003:138–58. PubMed
Quednow BB, Geyer MA, Halberstadt AL. Serotonin and schizophrenia. Handb Behav Neurosci (2010) 21:585–620.
Stahl SM. Beyond the dopamine hypothesis of schizophrenia to three neural networks of psychosis: dopamine, serotonin, and glutamate. CNS Spectr (2018) 23:187–91. PubMed
Brunelin J, Fecteau S, Suaud-Chagny MF. Abnormal striatal dopamine transmission in schizophrenia. Curr Med Chem (2013) 20:397–404. PubMed PMC
Gruber O, Chadha Santuccione A, Aach H. Magnetic resonance imaging in studying schizophrenia, negative symptoms, and the glutamate system. Front Psychiatry (2014) 5:32. PubMed PMC
Haleem DJ. 5-HT1A receptor-dependent control of nigrostriatal dopamine neurotransmission in the pharmacotherapy of Parkinson’s disease and schizophrenia. Behav Pharmacol (2015) 26:45–58. PubMed
Rink E, Wullimann MF. The teleostean (zebrafish) dopaminergic system ascending to the subpallium (striatum) is located in the basal diencephalon (posterior tuberculum). Brain Res (2001) 889:316–30. PubMed
Rink E, Wullimann MF. Connections of the ventral telencephalon and tyrosine hydroxylase distribution in the zebrafish brain (Danio rerio) lead to identification of an ascending dopaminergic system in a teleost. Brain Res Bull (2002) 57:385–7. PubMed
Guo S, Wilson SW, Cooke S, Chitnis AB, Driever W, Rosenthal A. Mutations in the zebrafish unmask shared regulatory pathways controlling the development of catecholaminergic neurons. Dev Biol (1999) 208:473–87. PubMed
Schweizer J, Lohr H, Filippi A, Driever W. Dopaminergic and noradrenergic circuit development in zebrafish. Dev Neurobiol (2012) 72:256–68. PubMed
Maximino C, Herculano AM. A review of monoaminergic neuropsychopharmacology in zebrafish. Zebrafish (2010) 7:359–78. PubMed
Tarazi FI. Neuropharmacology of dopamine receptors: implications in neuropsychiatric diseases. J Sci Res Med Sci (2001) 3:93–104. PubMed PMC
Seeman P. Dopamine D2 receptors as treatment targets in schizophrenia. Clin Schizophr Relat Psychoses (2010) 4:56–73. PubMed
Boehmler W, Obrecht-Pflumio S, Canfield V, Thisse C, Thisse B, Levenson R. Evolution and expression of D2 and D3 dopamine receptor genes in zebrafish. Dev Dynam (2004) 230:481–93. PubMed
Ek F, Malo M, Åberg Andersson M, Wedding C, Kronborg J, Svensson P, et al. Behavioral analysis of dopaminergic activation in zebrafish and rats reveals similar phenotypes. ACS Chem Neurosci (2016) 7:633–46. PubMed
Panula P, Chen YC, Priyadarshini M, Kudo H, Semenova S, Sundvik M, et al. The comparative neuroanatomy and neurochemistry of zebrafish CNS systems of relevance to human neuropsychiatric diseases. Neurobiol Dis (2010) 40:46–57. PubMed
Mueller T, Dong Z, Berberoglu MA, Guo S. The dorsal pallium in zebrafish, Danio rerio (Cyprinidae, Teleostei). Brain Res (2011) 1381:95–105. PubMed PMC
Halberstadt AL, Geyer MA. Serotonergic hallucinogens as translational models relevant to schizophrenia. Int J Neuropsychopharmacol (2013) 16:2165–80. PubMed PMC
Hollister LE. Drug-induced psychoses and schizophrenic reactions: a critical comparison. Ann NY Acad Sci (1962) 96:80–92. PubMed
Muguruza C, Moreno JL, Umali A, Callado LF, Meana JJ, González-Maeso J. Dysregulated 5-HT2A receptor binding in postmortem frontal cortex of schizophrenic subject. Eur Neuropsychopharm (2013) 23:852–64. PubMed PMC
Fink KB, Göthert M. 5-HT receptor regulation of neurotransmitter release. Pharmacol Rev (2007) 59:360–417. PubMed
UniProt (2002). Available at: www.uniprot.org/uniprot/?query=5-ht&sort=score (Accessed March 3, 2020).
Lillesaar C, Stigloher C, Tannhäuser B, Wullimann MF, Bally-Cuif L. Axonal projections originating from raphe serotonergic neurons in the developing and adult zebrafish, Danio rerio, using transgenics to visualize raphe-specific pet1 expression. J Comp Neurol (2009) 512:158–82. PubMed
Herculano AM, Maximino C. Serotonergic modulation of zebrafish behavior: towards a paradox. Prog Neuropsychopharmacol Biol Psychiatry (2014) 55:50–66. PubMed
Robinson KSL, Stewart A, Cachat J, Landsman S, Gebhardt M, Kalueff AV. Psychopharmacological effects of acute exposure to kynurenic acid (KYNA) in zebrafish. Pharmacol Biochem Behav (2013) 108:54–60. PubMed
Stewart AM, Ullmann JFP, Norton WH, Parker MO, Brennan CH, Gerlai R, et al. Molecular psychiatry of zebrafish. Mol Psychiatry (2015) 20:2–17. PubMed PMC
Oltrabella F, Melgoza A, Nguyen B, Guo S. Role of the endocannabinoid system in vertebrates: emphasis on the zebrafish model. Dev Growth Differ (2017) 59:194–210. PubMed PMC
Williams FE, Messer W. Muscarinic acetylcholine receptors in the brain of the zebrafish (Danio rerio) measured by radioligand binding techniques. Comp Biochem Physiol C Toxicol Pharmacol (2004) 137:349–53. PubMed
Akhtar MT, Ali S, Rashidi H, van der Kooy F, Verpoorte R, Richardson MK. Developmental effects of cannabinoids on zebrafish larvae. Zebrafish (2013) 10:283–93. PubMed
Menezes FP, Bonan C. Evaluation of age-dependent response to NMDA receptor antagonism in zebrafish. Zebrafish (2015) 12:137–43. PubMed
Mahabir S, Chatterjee D, Buske C, Gerlai R. Maturation of shoaling in two zebrafish strains: a behavioral and neurochemical analysis. Behav Brain Res (2013) 247:1–8. PubMed PMC
Ralph RJ, Caine SB. Dopamine D1 and D2 agonist effects on prepulse inhibition and locomotion: comparison of Sprague-Dawley rats to Swiss-Webster, 129X1/SvJ, C57BL/6J, and DBA/2J mice. J Pharmacol Exp Ther (2005) 312:733–41. PubMed
Swain HA, Sigstad C, Scalzo FM. Effects of dizocilpine (MK-801) on circling behavior, swimming activity, and place preference in zebrafish (Danio rerio). Neurotoxicol Teratol (2004) 26:725–9. PubMed
Norton W, Bally-Cuif L. Adult zebrafish as a model organism for behavioural genetics. BMC Neurosci (2010) 11:90. 10.1186/1471-2202-11-90 PubMed DOI PMC
Kalueff AV, Stewart AM, Gerlai R. Zebrafish as an emerging model for studying complex brain disorders. Trends Pharmacol Sci (2014) 35:63–75. PubMed PMC
Fontana BD, Mezzomo NJ, Kalueff AV, Rosemberg DB. The developing utility of zebrafish models of neurological and neuropsychiatric disorders: a critical review. Exp Neurol (2018) 299:157–71. PubMed
Sturgeon DR, Fessler RG, Meltzer HY. Behavioral rating scales for assessing phencyclidine-induced locomotor activity, stereotypes behavior and ataxia in rats. Eur J Pharmacol (1979) 59:169–79. PubMed
Roberts AC, Reichl J, Song MY, Dearinger AD, Moridzadeh N, Lu ED, et al. Habituation of the C-Start response in larval zebrafish exhibits several distinct phases and sensitivity to NMDA receptor blockade. PloS One (2011) 6:e29132. 10.1371/journal.pone.0029132 PubMed DOI PMC
Scheggi S, De Montis MG, Gambarana C. Making sense of rodent models of anhedonia. Int J Neuropsychopharmacol (2018) 21:1049–65. PubMed PMC
Mansbach RS, Geyer MA, Braff DL. Dopaminergic stimulation disrupts sensorimotor gating in the rat. Psychopharmacol (Berl) (1988) 94:507–14. PubMed
Ericson EL, Ahlenius S. Phencyclidine-induced disruption of an aversely motivated two-choice successive discrimination in the rat. Psychopharmacology (1990) 102:171–4. PubMed
Butelman ER. The effect of NMDA antagonists in the radial arm maze task with an interposed delay. Pharmacol Biochem Behav (1990) 35:533–6. PubMed
Barnett SA. The rat: a study in behavior. Chicago: The University of Chicago Press; (1976).
Kalueff AV. Illustrated zebrafish neurobehavioral glossary. In: Kalueff, AV, editor: The Rights and Wrongs of Zebrafish: Behavioral Phenotyping of Zebrafish. Cham, CH: Springer International Publishing; (2017). p. 291–317.
Spence R, Gerlach G, Lawrence C, Smith C. The behaviour and ecology of the zebrafish, Danio rerio. Biol Rev (2008) 83:13–34. PubMed
Irons TD, Kelly PE, Hunter DL, Macphail RC, Padilla S. Acute administration of dopaminergic drugs has differential effects on locomotion in larval zebrafish. Pharmacol. Pharmacol Biochem Behav (2013) 103:792–813. PubMed PMC
Hunt MJ, Raynaud B, Garcia R. Ketamine dose-dependently induces high-frequency oscillations in the nucleus accumbens in freely moving rats. Biol Psychiatry (2006) 60:1206–14. PubMed
Powell CM, Miyakawa T. Schizophrenia-relevant behavioral testing in rodent models: a uniquely human disorder? Biol Psychiatry (2006) 59:1198–207. PubMed PMC
Geyer MA, Ellenbroek B. Animal behavior models of the mechanisms underlying antipsychotic atypicality. Prog Neuropsychopharmacol Biol Psychiatry (2003) 27:1071–9. PubMed
Ennaceur A, Michalikova S, Chazot PL. Models of anxiety: responses of rats to novelty in an open space and an enclosed space. Behav Brain Res (2006) 171:26–49. PubMed
Ohl F, Arndt SS, van der Staay FJ. Pathological anxiety in animals. Vet J (2008) 175:18–26. PubMed
Egan RJ, Bergner CL, Hart PC, Cachat JM, Canavello PR, Elegante MF, et al. Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafish. Behav Brain Res (2009) 205:38–44. PubMed PMC
Páleníček T, Fujáková M, Brunovský M, Balíková M, Horáček J, Gorman I, et al. Electroencephalographic spectral and coherence analysis of ketamine in rats: correlation with behavioral effects and pharmacokinetics. Neuropsychobiology (2011) 63:202–18. PubMed
Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. Stages of embryonic development of the zebrafish. Dev Dynam (1995) 203:253–310. PubMed
Creese I, Iversen SD. The role of forebrain dopamine systems in amphetamine induced stereotyped behavior in the rat. Psychopharmacologia (1974) 39:345–57. PubMed
Burket JA, Cannon WR, Jacome LF, Deutsch SI. MK-801, a noncompetitive NMDA receptor antagonist, elicits circling behavior in the genetically inbred Balb/c mouse strain. Brain Res Bull (2010) 83:337–9. PubMed
Bracha HS. Asymmetric rotational (circling) behavior, a dopamine-related asymmetry: preliminary findings in unmedicated and never-medicated schizophrenic patients. Biol Psychiatry (1987) 22:995–1003. PubMed
Riehl R, Kyzar E, Allain A, Green J, Hook M, Monnig L, et al. Behavioral and physiological effects of acute ketamine exposure in adult zebrafish. Neurotoxicol Teratol (2011) 33:658–67. PubMed
Zakhary SM, Ayubcha D, Ansari F, Kamran K, Karim M, Leheste JR, et al. A behavioral and molecular analysis of ketamine in zebrafish. Synapse (2011) 65:160–7. PubMed PMC
Jansen LM, Gispen de Wied CC, Kahn RS. Selective impairments in the stress response in schizophrenic patients. Psychopharmacol (Berl) (2000) 149:319–25. PubMed
Lange C, Deutschenbaur L, Borgwardt S, Lang UE, Walter M, Huber CG. Experimentally induced psychosocial stress in schizophrenia spectrum disorders: a systematic review. Schizophr Res (2017) 182:4–12. PubMed
Budick SA, O’Malley DM. Locomotor repertoire of the larval zebrafish: swimming, turning and prey capture. J Exp Biol (2000) 203:2565–79. PubMed
Cachat J, Stewart A, Grossman L, Gaikwad S, Kadri F, Chung KM, et al. Measuring behavioral and endocrine responses to novelty stress in adult zebrafish. Nat Protoc (2010) 5:1786–99. PubMed
Griffiths BB, Schoonheim PJ, Ziv L, Voelker L, Baier H, Gahtan E. A zebrafish model of glucocorticoid resistance shows serotonergic modulation of the stress response. Front Behav Neurosci (2012) 6:68. 10.3389/fnbeh.2012.00068 PubMed DOI PMC
Karnik I, Gerlai R. Can zebrafish learn spatial tasks? An empirical analysis of place single CS-US associative learning. Behav Brain Res (2012) 233:415–21. PubMed PMC
Bubeníková V, Votava M, Horáček J, Páleníček T, Dockery C. The effect of zotepine, risperidone, clozapine and olanzapine on MK-801-disrupted sensorimotor gating. Pharmacol Biochem Behav (2005) 80:591–6. PubMed
Suriyampola PS, Shelton DS, Shukla R, Roy T, Bhat A, Martins EP, et al. Zebrafish social behavior in the wild. Zebrafish (2016) 13:1–8. 10.1089/zeb.2015.1159 PubMed DOI
Spence R, Fatema MK, Reichard M, Huq KA, Wahab MA, Ahmed ZF, et al. The distribution and habitat preferences of the zebrafish in Bangladesh. J Fish Biol (2006) 69:1435–48.
Koolhaas JM, Schuurman T, Wiepkema PR. The organization of intraspecific agonistic behaviour in the rat. Prog Neurobiol (1980) 15:247–68. PubMed
Rung JP, Carlsson A, Rydén Markinhuhta K, Carlsson ML. (+)-MK-801 induced social withdrawal in rats; a model for negative symptoms of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry (2005) 29:827–32. PubMed
McGraw LA, Young LJ. The prairie vole: an emerging model organism for understanding the social brain. Trends Neurosci (2010) 33:103–9. PubMed PMC
Pike TW, Samanta M, Lindström J, Royle NJ. Behavioural phenotype affects social interactions in an animal network. Proc R Soc B (2008) 275:2515–20. PubMed PMC
Bell AM, Sih A. Exposure to predation generates personality in threespined sticklebacks (Gasterosteus aculeatus). Ecol Lett (2007) 10:828–34. PubMed
Horká P, Horký P, Randák T, Turek J, Rylková K, Slavík O. Radio-telemetry shows differences in the behaviour of wild and hatchery-reared European grayling Thymallus thymallus in response to environmental variables. J Fish Biol (2015) 86:544–57. PubMed
Horká P, Sychrová O, Horký P, Slavík O, Švátora M, Petrusek A. Feeding habits of the alien brook trout Salvelinus fontinalis and the native brown trout Salmo trutta in Czech mountain streams. Knowl Manag Aquat Ec (2017) 418:6. 10.1051/kmae/2016038 DOI
Slavík O, Horký P, Maciak M, Horká P, Langrová I. Diel movement of brown trout, Salmo trutta, is reduced in dense populations with high site fidelity. Ecol Evol (2018) 8:4495–507. PubMed PMC
Horan WP, Kring AM, Blanchard JJ. Anhedonia in schizophrenia: a review of assessment strategies. Schizophr Bull (2006) 32:259–73. PubMed PMC
Gard DE, Kring AM, Gard GM, Horan WP, Green MF. Anhedonia in schizophrenia: distinctions between anticipatory and consummatory pleasure. Schizophr Res (2007) 93:253–60. PubMed PMC
Strauss GP. The emotion paradox of anhedonia in schizophrenia: or is it? Schizophr Bull (2013) 39:247–50. PubMed PMC
Moreau JL. Simulating the anhedonia symptom of depression in animals. Dialogues Clin Neurosci (2002) 4:351–60. PubMed PMC
Nguyen M, Stewart AM, Kalueff AV. Aquatic blues: modeling depression and antidepressant action in zebrafish. Prog Neuropsychopharmacol Biol Psychiatry (2014) 55:26–39. PubMed
Simpson EH, Waltz JA, Kellendonk C, Balsam PD. Schizophrenia in translation: dissecting motivation in schizophrenia and rodents. Schizophr Bull (2012) 38:1111–7. PubMed PMC
Wilson CA, Koenig JI. Social interaction and social withdrawal in rodents as readouts for investigating the negative symptoms of schizophrenia. Eur Neuropsychopharm (2014) 24:759–73. PubMed PMC
Scerbina T, Chatterjee D, Gerlai R. Dopamine receptor antagonism disrupts social preference in zebrafish, a strain comparison study. Amino Acids (2012) 43:2059–72. PubMed PMC
Clapcote SJ, Lipina TV, Millar JK, Mackie S, Christie S, Ogawa F, et al. Behavioral phenotypes of Disc1 missense mutations in mice. Neuron (2007) 54:387–402. PubMed
Harvey PD, Strassing M. Predicting the severity of everyday functional disability in people with schizophrenia: cognitive deficits, functional capacity, symptoms, and health status. World Psychiatry (2012) 11:73–9. PubMed PMC
Judd LL, McAdams L, Budnick B, Braff DL. Sensory gating deficits in schizophrenia: new results. Am J Psychiatry (1992) 149:488–93. PubMed
Kupferschmidt DA, Gordon JA. The dynamics of disordered dialogue: prefrontal, hippocampal and thalamic miscommunication underlying working memory deficits in schizophrenia. BNA (2018) 2:1–15. 10.1177/2398212818771821 PubMed DOI PMC
Carter JD, Bizzell J, Kim C, Bellion C, Carpenter KL, Dichter G, et al. Attention deficits in schizophrenia - preliminary evidence of dissociable transient and sustained deficits. Schizophr Res (2010) 122:104–12. PubMed PMC
Williams LE, Blackford JU, Luksik A, Gauthier I, Heckers S. Reduced habituation in patients with schizophrenia. Schizophr Res (2013) 151:124–32. PubMed PMC
Wadehra S, Pruitt P, Murphy ER, Diwadkar VA. Network dysfunction during associative learning in schizophrenia: increased activation, but decreased connectivity: an fMRI study. Schizophr Res (2013) 148:38–49. PubMed
Hammer TB, Oranje B, Fagerlund B, Bro H, Glenthøj BY. Stability of prepulse inhibition and habituation of the startle reflex in schizophrenia: a 6-year follow-up study of initially antipsychotic-naive, first-episode schizophrenia patients. Int J Neuropsychopharmacol (2011) 14:913–25. PubMed
Swerdlow NR, Braff DL, Geyer MA. Sensorimotor gating of the startle reflex: what we said 25 years ago, what has happened since then, and what comes next. J Psychopharmacol (Oxford) (2016) 30:1072–81. PubMed PMC
Burgess HA, Granato M. Sensorimotor gating in larval zebrafish. J Neurosci (2007) 27:4984–94. PubMed PMC
Bhandiwad AA, Zeddies DG, Raible DW, Rubel EW, Sisneros JA. Auditory sensitivity of larval zebrafish (Danio rerio) measured using a behavioral prepulse inhibition assay. J Exp Biol (2013) 216:3504–13. PubMed PMC
Rohleder C, Wiedermann D, Neumaier B, Drzezga A, Timmermann L, Graf R, et al. The functional networks of prepulse inhibition: neuronal connectivity analysis based on FDG-PET in awake and unrestrained rats. Front Behav Neurosci (2016) 10:148. 10.3389/fnbeh.2016.00148 PubMed DOI PMC
Swerdlow NR, Light GA. Sensorimotor gating deficits in schizophrenia: advancing our understanding of the phenotype, its neural circuitry and genetic substrate. Schizophr Res (2018) 198:1–5. PubMed PMC
Eaton RC, DiDomenico R, Nissanov J. Role of the Mauthner cell in sensorimotor integration by the brain stem escape network. Brain Behav Evol (1991) 37:272–85. PubMed
Best JD, Berghmans S, Hunt JJ, Clarke SC, Fleming A, Goldsmith P, et al. Non-associative learning in larval zebrafish. Neuropsychopharmacology (2008) 33:1206–15. PubMed
Valsamis B, Schmid S. Habituation and prepulse inhibition of acoustic startle in rodents. J Vis Exp (2011) 55:e3446. 10.3791/3446 PubMed DOI PMC
Roberts AC, Bill BR, Glanzman DL. Learning and memory in zebrafish larvae. Front Neural Circuit (2013) 7:126. 10.3389/fncir.2013.00126 PubMed DOI PMC
Wolman MA, Jain RA, Liss L, Granato M. Chemical modulation of memory formation in larval zebrafish. Proc Natl Acad Sci USA (2011) 108:15468–73. PubMed PMC
Diwadkar VA, Flaugher B, Jones T, Zalányi L, Ujfalussy B, Keshavan MS, et al. Impaired associative learning in schizophrenia: behavioral and computational studies. Cognit Neurodyn (2008) 2:207–19. PubMed PMC
Harloe JP, Thorpe AJ, Lichtman AH. Differential endocannabinoid regulation of extinction in appetitive and aversive Barnes maze tasks. Learn Mem (2008) 15:806–9. PubMed PMC
Sison M, Gerlai R. Associative learning performance is impaired in zebrafish (Danio rerio) by the NMDA-R antagonist MK-801. Neurobiol Learn Mem (2011) 96:230–7. PubMed PMC
de P Cognato G, Bortolotto JW, Blazina AR, Christoff RR, Lara DR, Vianna MR, et al. Y-maze memory task in zebrafish (Danio rerio): the role of glutamatergic and cholinergic systems on the acquisition and consolidation periods. Neurobiol Learn Mem (2012) 98:321–8. PubMed
Xu X, Scott-Scheiern T, Kempker L, Simons K. Active avoidance conditioning in zebrafish (Danio rerio). Neurobiol Learn Mem (2007) 87:72–7. PubMed
Pirkola T, Tuulio-Henriksson A, Glahn D, Kieseppä T, Haukka J, Kaprio J, et al. Spatial working memory function in twins with schizophrenia and bipolar disorder. Biol Psychiatry (2005) 58:930–6. PubMed
Orellana G, Slachevsky A. Executive functioning in schizophrenia. Front Psychiatry (2013) 4:35. PubMed PMC
Goetghebeur P, Dias R. Comparison of haloperidol, risperidone, sertindole, and modafinil to reverse an attentional set-shifting impairment following subchronic PCP administration in the rat - a back translational study. Psychopharmacol (Berl) (2009) 202:287–93. PubMed
Young JW, Geyer MA, Rissling AJ, Sharp RF, Eyler LT, Asgaard GL, et al. Reverse translation of the rodent 5C-CPT reveals that the impaired attention of people with schizophrenia is similar to scopolamine-induced deficits in mice. Transl Psychiatry (2013) 3:e324. 10.1038/tp.2013.82 PubMed DOI PMC
Esnal A, Sánchez-González A, Río-Álamos C, Oliveras I, Cañete T, Blázquez G, et al. Prepulse inhibition and latent inhibition deficits in Roman high-avoidance vs. Roman low-avoidance rats: modeling schizophrenia-related features. Physiol Behav (2016) 163:267–73. PubMed
Barnes SA, Young JW, Markou A, Adham N, Gyertyán I, Kiss B. The effects of cariprazine and aripiprazole on PCP-induced deficits on attention assessed in the 5-choice serial reaction time task. Psychopharmacol (Berl) (2018) 235:1403–14. PubMed PMC
Stark KL, Xu B, Bagchi A, Lai WS, Liu H, Hsu R, et al. Altered brain microRNA biogenesis contributes to phenotypic deficits in a 22q11-deletion mouse model. Nat Genet (2008) 40:751–60. PubMed
Bardgett ME, Baum KT, O’Connell SM, Lee NM, Hon JC. Effects of risperidone on locomotor activity and spatial memory in rats with hippocampal damage. Neuropharmacology (2006) 51:1156–62. PubMed
Wang AL, Chao OY, Yang YM, Trossbach SV, Müller CP, Korth C, et al. Anxiogenic-like behavior and deficient attention/working memory in rats expressing the human DISC1 gene. Pharmacol Biochem Behav (2019) 179:73–9. PubMed
Monte AS, Mello BSF, Borella VCM, da Silva Araujo T, da Silva FER, de Sousa FCF, et al. Two-hit model of schizophrenia induced by neonatal immune activation and peripubertal stress in rats: study of sex differences and brain oxidative alterations. Behav Brain Res (2017) 331:30–7. PubMed
Murray BG, Davies DA, Molder JJ, Howland JG. Maternal immune activation during pregnancy in rats impairs working memory capacity of the offspring. Neurobiol Learn Mem (2017) 141:150–6. PubMed
de Castro MR, Lima JV, de Freitas DP, de Souza Valente R, Dummer NS, de Aguiar RB, et al. Behavioral and neurotoxic effects of arsenic exposure in zebrafish (Danio rerio, Teleostei: Cyprinidae). Comp Biochem Physiol C Toxicol Pharmacol (2009) 150:337–42. PubMed
Bahl A, Engert F. Neural circuits for evidence accumulation and decision making in larval zebrafish. Nat Neurosci (2020) 23:94–102. PubMed PMC
Mailman RB, Murthy V. Third generation atipsychotic drugs: partial agonism or receptor functional selectivity? Curr Pharm Des (2010) 16:488–501. PubMed PMC
Aringhieri S, Carli M, Kolachalam S, Verdesca V, Cini E, Rossi M, et al. Molecular targets of atypical antipsychotics: from mechanism of action to clinical differences. Pharmacol Ther (2018) 192:20–41. PubMed
Lipska BK, Weinberger DR. Subchronic treatment with haloperidol and clozapine in rats with neonatal excitotoxic hippocampal damage. Neuropsychopharmacology (1994) 10:199–205. PubMed
McOmish CE, Burrows E, Howard M, Scarr E, Kim D, Shin HS, et al. Phospholipase C-beta1 knockout mice exhibit endophenotypes modeling schizophrenia which are rescued by environmental enrichment and clozapine administration. Mol Psychiatry (2008) 13:661–72. PubMed
Pezze MA, Dalley JW, Robbins TW. Remediation of attentional dysfunction in rats with lesions of the medial prefrontal cortex by intra-accumbens administration of the dopamine D2/3 receptor antagonist sulpiride. Psychopharmacol (Berl) (2009) 202:307–13. PubMed
Seibt KJ, da Luz Oliveira R, Zimmermann FF, Capiotti KM, Boggo MR, Ghisleni G, et al. Antipsychotic drugs prevent the motor hyperactivity induced by psychotomimetic MK-801 in zebrafish (Danio rerio). Behav Brain Res (2010) 214:417–22. PubMed
Qiao H, Noda Y, Kamei H, Nagai T, Furukawa H, Miura H, et al. Clozapine, but not haloperidol, reverses social behavior deficit in mice during withdrawal from chronic phencyclidine treatment. Neuroreport (2001) 12:11–5. PubMed
Bruins Slot LA, Kleven MS, Newman-Tancredi A. Effects of novel antipsychotics with mixed D2 antagonist/5-HT 1A agonist properties on PCP-induced social interaction deficits in the rat. Neuropharmacology (2005) 49:996–1006. PubMed
Chartoff EH, Heusner CL, Palmiter RD. Dopamine is not required for the hyperlocomotor response to NMDA receptor antagonists. Neuropsychopharmacology (2005) 30:1324–33. PubMed
Sams-Dodd F. Effect of novel antipsychotic drugs on phencyclidine-induced stereotyped behaviour and social isolation in the rat social interaction test. Behav Pharmacol (1997) 8:196–215. PubMed
Kohnomi S, Suemaru K, Kawasaki H, Araki H. Effect of aripiprazole on 5-HT2 receptor-mediated wet-dog shake responses and disruption of prepulse inhibition in rats. J Pharmacol Sci (2008) 106:645–50. PubMed
Gattaz WF, Schummer B, Behrens S, Unit N. Effects of zotepine, haloperidol and clozapine on MK-801-induced stereotypy and locomotion in rats. J Neural Transm Gen Sect (1994) 96:227–32. PubMed
Beraki S, Kuzmin A, Tai F, Ögren SO. Repeated low dose of phencyclidine administration impairs spatial learning in mice: blockade by clozapine but not by haloperidol. Eur Neuropsychopharm (2008) 18:486–97. PubMed
Verma V, Tan CH, Ong WY, Grigoryan GA, Jones CA, Stolzberg D, et al. The chakragati mouse shows deficits in prepulse inhibition of acoustic startle and latent inhibition. Neurosci Res (2008) 60:281–8. PubMed
Mutlu O, Ulak G, Celikyurt IK, Akar FY, Erden F. Effects of olanzapine, sertindole and clozapine on learning and memory in the Morris water maze test in naive and MK-801-treated mice. Pharmacol Biochem Behav (2011) 98:398–404. PubMed
Nakaya K, Nakagawasai O, Arai Y, Onogi H, Sato A, Niijima F, et al. Pharmacological characterizations of memantine-induced disruption of prepulse inhibition of the acoustic startle response in mice: involvement of dopamine D2 and 5-HT2A receptors. Behav Brain Res (2011) 218:165–73. PubMed
Nowakowska E, Kus K, Ratajczak P, Cichocki M, Wozniak A. The influence of aripiprazole, olanzapine and enriched environment on depressant-like behavior, spatial memory dysfunction and hippocampal level of BDNF in prenatally stressed rats. Pharmacol Rep (2014) 66:404–11. PubMed
Rajagopal L, Massey BW, Huang M, Oyamada Y. Meltzer HY The novel object recognition test in rodents in relation to cognitive impairment in schizophrenia. Curr Pharm Des (2014) 20:5104–14. PubMed
Celikyurt IK, Akar FY, Ulak G, Mutlu O, Erden F. Effects of risperidone on learning and memory in naive and MK-801-treated rats. Pharmacology (2011) 87:187–94. PubMed
Gutierrez A, Regan SL, Hoover CS, Williams MT, Vorhees CV. Effects of intrastriatal dopamine D1 or D2 antagonists on methamphetamine-induced egocentric and allocentric learning and memory deficits in Sprague–Dawley rats. Psychopharmacol (Berl) (2019) 236:2243–58. PubMed PMC
Nordquist RE, Risterucci C, Moreau JL, von Kienlin M, Künnecke B, Maco M, et al. Effects of aripiprazole/OPC-14597 on motor activity, pharmacological models of psychosis, and brain activity in rats. Neuropharmacology (2008) 54:405–16. PubMed
Ishii D, Matsuzawa D, Kanahara N, Matsuda S, Sutoh C, Ohtsuka H, et al. Effects of aripiprazole on MK-801-induced prepulse inhibition deficits and mitogen-activated protein kinase signal transduction pathway. Neurosci Lett (2010) 471:53–7. PubMed
Vardigan JD, Huszar SL, McNaughton CH, Hutson PH, Uslaner JM. MK-801 produces a deficit in sucrose preference that is reversed by clozapine, D-serine, and the metabotropic glutamate 5 receptor positive allosteric modulator CDPPB: relevance to negative symptoms associated with schizophrenia? Pharmacol Biochem Behav (2010) 95:223–9. PubMed
Wedzony K, Gołembiowska K, Zazula M. Differential effects of CGP 37849 and MK-801, competitive and noncompetitive NMDA antagonists, with respect to the modulation of sensorimotor gating and dopamine outflow in the prefrontal cortex of rats. Naunyn Schmiedebergs Arch Pharmacol (1994) 350:555–62. PubMed
Kesby JP, Burne TH, McGrath JJ, Eyles DW. Developmental vitamin D deficiency alters MK801-induced hyperlocomotion in the adult rat: an animal model of schizophrenia. Biol Psychiatry (2006) 60:591–6. PubMed
Sams-Dodd F. Effects of dopamine agonists and antagonists on PCP-induced stereotyped behaviour and social isolation in the rat social interaction test. Psychopharmacol (Berl) (1998) 135:182–93. PubMed
Pietraszek M, Ossowska K. Chronic treatment with haloperidol diminishes the phencyclidine-induced sensorimotor gating deficit in rats. Naunyn Schmiedebergs Arch Pharmacol (1998) 357:466–71. PubMed
Rueter LE, Ballard ME, Gallagher KB, Basso AM, Curzon P, Kohlhaas KL. Chronic low dose risperidone and clozapine alleviate positive but not negative symptoms in the rat neonatal ventral hippocampal lesion model of schizophrenia. Psychopharmacol (Berl) (2004) 176:312–9. PubMed
Shimazaki T, Kaku A, Chaki S. D-serine and a glycine transporter-1 inhibitor enhance social memory in rats. Psychopharmacol (Berl) (2010) 209:263–70. PubMed
Coutureau E, Gosselin O, Di Scala G. Restoration of latent inhibition by olanzapine but not haloperidol in entorhinal cortex-lesioned rats. Psychopharmacol (Berl) (2000) 150:226–32. PubMed
Orsetti M, Colella L, Dellarole A, Canonico PL, Ghi P. Modification of spatial recognition memory and object discrimination after chronic administration of haloperidol, amitriptyline, sodium valproate or olanzapine in normal and anhedonic rats. Int J Neuropsychopharmacol (2007) 10:345–57. PubMed
Chatterjee M, Jaiswal M, Palit G. Comparative evaluation of forced swim test and tail suspension test as models of negative symptom of schizophrenia in rodents. ISRN Psychiatry (2012) 2012:595141. PubMed PMC
Noda Y, Kamei H, Mamiya T, Furukawa H, Nabeshima T. Repeated phencyclidine treatment induces negative symptom-like behavior in forced swimming test in mice: imbalance of prefrontal serotonergic and dopaminergic functions. Neuropsychopharmacology (2000) 23:375–87. PubMed
Orsetti M, Colella L, Dellarole A, Canonico PL, Ferri S, Ghi P. Effects of chronic administration of olanzapine, amitriptyline, haloperidol or sodium valproate in naive and anhedonic rats. Int J Neuropsychopharmacol (2006) 9:427–36. PubMed
Torrisi SA, Salomone S, Geraci F, Caraci F, Bucolo C, Drago F, et al. Buspirone counteracts MK-801-induced schizophrenia-like phenotypes through dopamine D3 receptor blockade. Front Pharmacol (2017) 8:1–13. PubMed PMC
Wang Y, Yang X, Song X, Zhao L, Wei J, Wang J, et al. Co-treatment of buspirone with atypical antipsychotic drugs (AAPDs) improved neurocognitive function in chronic schizophrenia. Schizophr Res (2019) 209:135–40. PubMed
Kane J, Honigfeld G, Singer J, Meltzer H. Clozapine for the treatment-resistant schizophrenic. A Double-blind comparison with chlorpromazine. Arch Gen Psychiatry (1988) 45:789–96. PubMed
Sommer IEC, Slotema CW, Daskalakis ZJ, Derks EM, Blom JD, van der Gaag M. The treatment of hallucinations in schizophrenia spectrum disorders. Schizophr Bull (2012) 38:704–14. PubMed PMC
Svensson KA, Heinz BA, Schaus JM, Beck JP, Hao J, Krushinski JH, et al. An allosteric potentiator of the dopamine D1 receptor increases locomotor activity in human D1 knock-in mice without causing stereotypy or tachyphylaxis. J Pharmacol Exp Ther (2017) 360:117–28. PubMed PMC
Sison M, Gerlai R. Behavioral performance altering effects of MK-801 in zebrafish (Danio rerio). Behav Brain Res (2012) 220:331–7. PubMed PMC
Zabegalov KN, Khatsko SL, Lakstygal AM, Demin KA, Cleal M, Fontana BD, et al. Abnormal repetitive behaviours in zebrafish and their relevance to human brain disorders. Behav Brain Res (2019) 367:101–10. PubMed
van den Buuse M. Modeling the positive symptoms of schizophrenia in genetically modified mice: pharmacology and methodology aspects. Schizophr Bull (2010) 36:246–70. PubMed PMC
Kumari V, Peters ER, Fannon D, Premkumar P, Aasen I, Cooke MA, et al. Uncontrollable voices and their relationship to gating deficits in schizophrenia. Schizophr Res (2008) 101:185–94. PubMed PMC
Aleman A, Lincoln TM, Bruggeman R, Melle I, Arends J, Arango C, et al. Treatment of negative symptoms: where do we stand, and where do we go? Schizophr Res (2017) 186:55–62. PubMed
Abekawa T, Ito K, Nakagawa S Nakato Y, Koyama T. Effects of aripiprazole and haloperidol on progression to schizophrenia-like behavioural abnormalities and apoptosis in rodents. Schizophr Res (2011) 125:77–87. PubMed
Wang L, Zhang Y, Wang C, Zhang X, Wang Z, Liang X, et al. A natural product with high affinity to sigma and 5-HT7 receptors as novel therapeutic drug for negative and cognitive symptoms of schizophrenia. Neurochem Res (2019) 44:2536–45. PubMed
Fulford D, Campellone T, Gard DE. Social motivation in schizophrenia: how research on basic reward processes informs and limits our understanding. Clin Psychol Rev (2018) 63:12–24. PubMed
Scheggi S, Pelliccia T, Gambarana C, De Montis MG. Aripiprazole relieves motivational anhedonia in rats. J Affect Disord (2017) 227:192–7. PubMed
Kanungo J, Cuevas E, Ali SF, Paule MG. Ketamine induces motor neuron toxicity and alters neurogenic and proneural gene expression in zebrafish. J Appl Toxicol (2013) 33:410–7. PubMed PMC
Open field test for the assessment of anxiety-like behavior in Gnathonemus petersii fish