Diel movement of brown trout, Salmo trutta, is reduced in dense populations with high site fidelity
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
29760890
PubMed Central
PMC5938464
DOI
10.1002/ece3.3981
PII: ECE33981
Knihovny.cz E-zdroje
- Klíčová slova
- density‐dependent process, diel cycle, movement, radio‐telemetry, subpopulation site fidelity,
- Publikační typ
- časopisecké články MeSH
The movement of individuals within preferred areas is reduced by a high availability of food and information about its distribution, while high number of competitors promotes increased movement. Experienced animals use information about social and physical environment to improve resources exploitation, tended to maintain positions within the preferred areas and reuse the environment that is often referred to as site fidelity. In this study, radio-telemetry was used to observe the movements of 98 adult brown trout, Salmo trutta, in oligotrophic streams with different population densities; to determine subpopulation site fidelity, 5,195 conspecifics from 14 subpopulations were individually tagged during spring and autumn. During a 7-year-long field study, we tested the hypothesis that brown trout individuals from subpopulations with high site fidelity would display lower movement. The hypothesis was supported, and reduced movement was further related to high subpopulation density in association with high slope indicating the physical environment-influenced movement. The probability of contact between individuals increased with subpopulation site fidelity and subpopulation density. No influence of food abundance on brown trout movement was found. Furthermore, increased body size predicted higher movement (and vice versa). The least movement occurred during the day and during the full moons. Our study tended to show that individuals reused preferred areas and needed less movement to exploit available resources.
Zobrazit více v PubMed
Armstrong, J. D. , Braithwaite, V. A. , & Huntingford, F. A. (1997). Spatial strategies of wild Atlantic salmon parr: Exploration and settlement in unfamiliar areas. Journal of Animal Ecology, 66, 203–211. https://doi.org/10.2307/6022 DOI
Armstrong, J. D. , & Griffiths, S. W. (2001). Density‐dependent refuge use among over‐wintering wild Atlantic salmon juveniles. Journal of Fish Biology, 58, 1524–1530. https://doi.org/10.1111/j.1095-8649.2001.tb02309.x DOI
Armstrong, J. D. , Kemp, P. S. , Kennedy, G. J. A. , Ladle, M. , & Milner, N. J. (2003). Habitat requirements of Atlantic salmon and brown trout in rivers and streams. Fisheries Research, 62, 143–170. https://doi.org/10.1016/S0165-7836(02)00160-1 DOI
Bachman, R. A. (1984). Foraging behaviour of free‐ranging wild and hatchery brown trout in a stream. Transactions of the American Fisheries Society, 113, 1–32. https://doi.org/10.1577/1548-8659(1984)113<1:FBOFWA>2.0.CO;2 DOI
Beisner, B. A. , & Isbell, L. A. (2009). Movement ecology in a captive environment: The effects of ground substrate on movement paths of captive rhesus macaques, Macaca mulatta . Animal Behaviour, 78, 1269–1277. https://doi.org/10.1016/j.anbehav.2009.09.004 DOI
Benhamou, S. (2007). How animals really do the levy walk? Ecology, 88, 1962–1969. https://doi.org/10.1890/06-1769.1 PubMed DOI
Boiten, W. (2000). Hydrometry. IHE Delft lecture note series. Rotterdam, the Netherlands: A. A. Balkema.
Bond, M. E. , Babcock, E. A. , Pikitch, E. K. , Abercombie, D. L. , Lambs, N. F. , & Chapman, D. D. (2012). Reef sharks exhibit site‐fidelity and higher relative abundance in marine reserves on the Mesoamerican Barrier Reef. PLoS One, 7, e32983 https://doi.org/10.1371/journal.pone.0032983 PubMed DOI PMC
Bridcut, E. E. , & Giller, P. S. (1993). Movement and site fidelity in young brown trout Salmo trutta in a southern Irish stream. Journal of Fish Biology, 43, 889–998. https://doi.org/10.1111/j.1095-8649.1993.tb01163.x DOI
Brown, C. , & Braithwaite, V. A. (2004). Size matters: A test of boldness and body mass in natural populations of the poecilid Brachyrhaphis episcopi . Animal Behavior, 68, 1325–1329. https://doi.org/10.1016/j.anbehav.2004.04.004 DOI
Bruinzeel, L. W. , & van de Pol, M. (2004). Site attachment of floaters predicts success in territory acquisition. Behavioral Ecology, 15, 290–296. https://doi.org/10.1093/beheco/arh019 DOI
Bucciarelli, G. M. , Green, D. B. , Shaffer, H. , Bradley, H. , & Kats, L. B. (2016). Individual fluctuations in toxin levels affect breeding site fidelity in a chemically defended amphibian. Proceedings of the Royal Society B, 283, 20160468 https://doi.org/0.1098/rspb.2016.0468 PubMed PMC
Burnham, K. P. , & Anderson, D. R. (1998). Model selection and inference: A practical information‐theoretic approach. New York, NY: Springer‐Verlag; https://doi.org/10.1007/978-1-4757-2917-7 DOI
Calisi, R. M. , & Bentley, G. E. (2009). Lab and field experiments: Are they the same animal? Hormones and Behavior, 56, 1–10. https://doi.org/10.1016/j.yhbeh.2009.02.010 PubMed DOI
Chow, V. T. (1959). Open‐channel hydraulics (pp. 680). New York, NY: McGraw‐Hill.
Dall, S. R. X. , Giraldeau, L.‐A. , Olsson, O. , McNamara, J. M. , & Stephens, D. W. (2005). Information and its use by animals in evolutionary ecology. Trends in Ecology & Evolution, 20, 187–193. https://doi.org/10.1016/j.tree.2005.01.010 PubMed DOI
Davey, A. J. H. , Doncaster, C. P. , & Jones, O. D. (2009). Distinguishing between interference and exploitation competition for shelter in a mobile fish population. Environmental Modeling and Assessment, 14, 555–562. https://doi.org/10.1007/s10666-008-9171-5 DOI
Dias, M. P. , Granadeiro, J. P. , & Palmeirim, J. M. (2009). Searching behaviour of foraging waders: Does feeding success influence their walking? Animal Behavior, 77, 1203–1209. https://doi.org/10.1016/j.anbehav.2009.02.002 DOI
Edwards, M. A. , Nagy, J. A. , & Derocher, A. E. (2009). Low site fidelity and home range drift in a wide‐ranging, large Arctic omnivore. Animal Behavior, 77, 23–28. https://doi.org/10.1016/j.anbehav.2008.09.025 DOI
Einum, S. , Sundt‐Hansen, L. , & Nislow, K. H. (2006). The partitioning of density‐dependent dispersal, growth and survival throughout ontogeny in a highly fecund organism. Oikos, 113, 489–496. https://doi.org/10.1111/j.2006.0030-1299.14806.x DOI
Elliott, J. M. (1973). The food of brown and rainbow trout (Salmo trutta and S. gairdneri) in relation to the abundance of drifting invertebrates in a mountain stream. Oecolgia, 12, 329–347. https://doi.org/10.1007/BF00345047 PubMed DOI
Elliott, J. M. (1990). Mechanisms responsible for population regulation in young migratory trout, Salmo trutta. III. The role of territorial behaviour. Journal of Animal Ecology, 59, 803–818. https://doi.org/10.2307/5015 DOI
Elliott, J. M. (1994). Quantitative ecology and the brown trout. Oxford, UK: Oxford University Press.
Fausch, K. D. (1984). Profitable stream position for salmonids: Relating specific growth rate to net energy gain. Canadian Journal of Zoology, 62, 441–452. https://doi.org/10.1139/z84-067 DOI
Fingerle, A. , Larranga, N. , & Steingrímsson, S. Ó. (2016). Density‐dependent diel activity in stream‐dwelling Arctic charr Salvelinus alpinus . Ecology and Evolution, 20, 3965–3976. https://doi.org/10.1002/ece3.2177 PubMed DOI PMC
Forrester, D. T. , Cassady, D. S. , & Wittmer, H. U. (2015). Home sweet home: Fitness consequences of site familiarity in female black‐tailed deer. Behavioral Ecology and Sociobiology, 69, 603–612. https://doi.org/10.1007/s00265-014-1871-z DOI
Fretwell, S. D. , & Lucas, H. L. Jr (1970). On territorial behavior and other factors influencing habitat distribution in birds I. Theoretical development. Acta Biotheoretica, 19, 16–36.
Geinapp, P. , & Merilä, J. (2011). Sex‐specific fitness consequences of dispersal in Siberian jays. Behavioral Ecology and Sociobiology, 65, 131–140. https://doi.org/10.1007/s00265-010-1017-x DOI
Grant, J. W. A. , & Kramer, D. L. (1990). Territory size as a predictor of the upper limit to population density of juvenile salmonids in streams. Canadian Journal of Fisheries and Aquatic Science, 47, 1724–1737. https://doi.org/10.1139/f90-197 DOI
Grant, J. W. A. , Noakes, D. L. G. , & Jonas, K. M. (1989). Spatial distribution of defense and foraging in young‐of‐the‐year brook charr, Salvelinus fontinalis . Journal of Animal Ecology, 58, 773–784. https://doi.org/10.2307/5123 DOI
Griffiths, S. W. , & Armstrong, J. D. (2002). Rearing conditions influence refuge use among over‐wintering Atlantic salmon juveniles. Journal of Fish Biology, 60, 363–369. https://doi.org/10.1111/j.1095-8649.2002.tb00286.x DOI
Griffiths, S. W. , Brockmark, S. , Höjesjö, J. , & Johnsson, J. I. (2004). Coping with divided attention: The advantage of familiarity. Proceedings of the Royal Society of London, Series B: Biological Sciences, 271, 695–699. https://doi.org/10.1098/rspb.2003.2648 PubMed DOI PMC
Guénard, G. , Boisclair, D. , Ugedal, O. , Forseth, T. , Fleming, I. A. , & Jonsson, B. (2012). The bioenergetics of density‐dependent growth in Arctic charr (Salvelinus alpinus). Canadian Journal of Fisheries and Aquatic Science, 69, 1651–1662. https://doi.org/10.1139/f2012-093 DOI
Gunnarsson, G. S. , & Steingrímsson, S. Ó. (2011). Contrasting patterns of territoriality and foraging mode in two stream‐dwelling salmonids, Arctic charr (Salvelinus alpinus) and brown trout (Salmo trutta). Canadian Journal of Fisheries and Aquatic Science, 68, 2090–2100. https://doi.org/10.1139/f2011-127 DOI
Hansen, E. A. , & Closs, G. P. (2005). Diel activity and home range size in relation to food supply in a drift‐feeding stream fish. Behavioral Ecology, 3, 640–648. https://doi.org/10.1093/beheco/ari036 DOI
Harrison, X. A. , Blount, J. D. , Inger, R. , Norris, D. R. , & Bearhop, S. (2011). Carry‐over effects as a drivers of fitness differences in animals. Journal of Animal Ecology, 80, 4–18. https://doi.org/10.1111/j.1365-2656.2010.01740.x PubMed DOI
Harwood, A. J. , Griffiths, S. W. , Metcalfe, N. B. , & Armstrong, J. D. (2003). The relative influence of prior residency and dominance on the early feeding behaviour of juvenile Atlantic salmon. Animal Behavior, 65, 902–908.
Heggenes, J. , Krog, W. M. O. , Lindås, R. O. , Dokk, G. J. , & Bremnes, T. (1993). Homeostatic behavioural responses in a changing environment: Brown trout (Salmo trutta) become nocturnal during winter. Journal of Animal Ecology, 62, 295–308. https://doi.org/10.2307/5361 DOI
Höjesjö, J. , Johnsson, J. I. , & Bohlin, T. (2004). Habitat complexity reduces the growth of aggressive and dominant brown trout (Salmo trutta) relative to subordinates. Behavioral Ecology and Sociobiology, 56, 286–289.
Höjesjö, J. , Johnsson, J. I. , Petersson, E. , & Järvi, T. (1998). The importance of being familiar: Individual recognition and social behaviour in sea trout (Salmo trutta). Behavioral Ecology, 9, 445–451. https://doi.org/10.1093/beheco/9.5.445 DOI
Höjesjö, J. , Kaspersson, R. , & Armstrong, J. D. (2016). Size‐related habitat use in juvenile Atlantic salmon: The importance of intercohort competition. Canadian Journal of Fisheries and Aquatic Science, 73, 1182–1189. https://doi.org/10.1139/cjfas-2015-0446 DOI
Höjesjö, J. , Økland, F. , Sundström, L. F. , Pettersson, J. , & Johnsson, J. I. (2007). Movement and home range in relation to dominance; a telemetry study on brown trout Salmo trutta . Journal of Fish Biology, 70, 257–268. https://doi.org/10.1111/j.1095-8649.2006.01299.x DOI
Horký, P. , Slavík, O. , Bartoš, L. , Kolářová, J. , & Randák, T. (2006). The effect of the moon phase and seasonality on the behaviour of pikeperch in the Elbe River. Folia Zoologica, 55, 411–417.
Hut, R. A. , Kronfeld‐Schor, N. , van der Vinne, V. , & de la Iglesia, H. O. (2012). In search of a temporal niche: Environmental factors In Kalsbeek A., Merrow M., Roenneberg T., & Foster R. G. (Eds.), The neurobiology of circadian timing (pp. 281–304). Oxford, UK: Elsevier; https://doi.org/10.1016/B978-0-444-59427-3.00017-4 PubMed DOI
Imre, I. , & Boisclair, D. (2005). Moon phase and nocturnal density of Atlantic salmon parr in the Sainte‐Marguerite River, Quebec. Journal of Fish Biology, 66, 198–207. https://doi.org/10.1111/j.0022-1112.2005.00592.x DOI
Imre, I. , Grant, J. W. A. , & Cunjak, R. A. (2005). Density‐dependent growth of young‐of‐the‐year Atlantic salmon Salmo salar in Catamaran Brook, New Brunswick. Journal of Animal Ecology, 74, 508–516. https://doi.org/10.1111/j.1365-2656.2005.00949.x DOI
Imre, I. , Grant, J. W. A. , & Keeley, E. R. (2002). The effect of visual isolation on territory size and population density of juvenile steelhead trout (Oncorhynchus mykkis). Canadian Journal of Fisheries and Aquatic Science, 59, 303–309. https://doi.org/10.1139/f02-010 DOI
Kalleberg, H. (1958). Observation in a stream tank of territoriality and competition in juvenile salmon and trout (Salmo salar L. and S. trutta L.). Institute of Freshwater Research Drottningholm Report, 39, 55–98.
Kaspersson, R. , Höjesjö, J. , & Pedersen, S. (2010). Effects of density on foraging success and aggression in age‐structured groups of brown trout. Animal Behavior, 79, 709–715. https://doi.org/10.1016/j.anbehav.2009.12.025 DOI
Keeley, E. R. , & Grant, J. W. A. (1995). Allometry of diet selectivity in juvenile Atlantic salmon (Salmo salar). Canadian Journal of Fisheries and Aquatic Science, 54, 1894–1902.
Kenward, M. G. , & Roger, J. H. (1997). Small sample inference for fixed effects from restricted maximum likelihood. Biometrics, 53, 983–997. https://doi.org/10.2307/2533558 PubMed DOI
Klaassen, R. H. G. , Nolet, B. A. , & Bankert, D. (2006). Movement of foraging Tundra swans explained by spatial pattern in cryptic food densities. Ecology, 87, 2244–2254. https://doi.org/10.1890/0012-9658(2006)87[2244:MOFTSE]2.0.CO;2 PubMed DOI
Klaassen, R. H. G. , Nolet, B. A. , van Gils, J. A. , & Bauer, S. (2006). Optimal movement between patches under incomplete information about the spatial distribution of food items. Theoretical Population Biology, 70, 452–463. https://doi.org/10.1016/j.tpb.2006.04.002 PubMed DOI
Klaassen, R. H. G. , Nolet, B. A. , & van Leeuwen, C. H. (2007). Prior knowledge about spatial pattern affects patch assessment rather than movement between patches in tactile‐feeding mallard. Journal of Animal Ecology, 76, 20–29. https://doi.org/10.1111/j.1365-2656.2006.01184.x PubMed DOI
Klemetsen, A. , Amundsen, P.‐A. , Dempson, J. B. , Jonsson, B. , Jonsson, N. , O′Connell, M. F. , & Mortensen, E. (2003). Atlantic salmon Salmo salar L., brown trout Salmo trutta L. and Arctic charr Salvelinus alpinus (L.): A review of aspects of their life histories. Ecology of Freshwater Fish, 12, 1–59. https://doi.org/10.1034/j.1600-0633.2003.00010.x DOI
Knope, M. L. , Tice, T. A. , & Rypkema, D. C. (2017). Site fidelity and homing behavior of intertidal sculpins revisited. Journal of Fish Biology, 90, 341–355. https://doi.org/10.1111/jfb.13182 PubMed DOI
Kobler, A. , Klefoth, T. , Wolter, C. , Fredrich, F. , & Arlinghaus, R. (2008). Contrasting pike (Esox lucius L.) movement and habitat choice between summer and winter in a small lake. Hydrobiologia, 601, 17–27. https://doi.org/10.1007/s10750-007-9263-2 DOI
Kotler, B. P. , Brown, J. S. , & Hasson, O. (1991). Factors affecting gerbil foraging behaviour and rates of owl predation. Ecology, 72, 2249–2260. https://doi.org/10.2307/1941575 DOI
Krause, J. , Loader, P. S. , McDermott, J. , & Ruxton, D. G. (1998). Refuge use by fish as a function of body length‐related metabolic expenditure and predation risk. Proceedings of the Royal Society of London, Series B: Biological Sciences, 265, 2373–2379. https://doi.org/10.1098/rspb.1998.0586 DOI
Kronfeld‐Schor, N. , & Dayan, T. (2003). Partitioning of time as an ecological resource. Annual Review of Ecology and Systematics, 34, 153–181. https://doi.org/10.1146/annurev.ecolsys.34.011802.132435 DOI
Kruse, C. G. , Hubert, W. A. , & Rahel, F. J. (1998). Single‐pass electrofishing predicts trout abundance in mountain streams with sparse habitat. North American Journal of Fisheries Management, 18, 940–946. https://doi.org/10.1577/1548-8675(1998)018<0940:SPEPTA>2.0.CO;2 DOI
Kuefler, D. , Avgar, T. , & Fryxell, J. M. (2013). Density‐ and resource‐dependent movement characteristic in a rotifer. Functional Ecology, 27, 232–328.
Landsman, S. J. , Martins, G. E. , Gutowsky, F. L. , Suski, D. C. , Arlinghaus, R. , & Cooke, S. J. (2015). Locomotor activity patterns of muskellunge (Esox masquinongy) assessed using tri‐axial acceleration sensing acoustic transmitters. Environmental Biology of Fishes, 98, 2109–2121. https://doi.org/10.1007/s10641-015-0433-1 DOI
Larranaga, N. , & Steingrímsson, S. Ó. (2015). Shelter availability alters diel activity and space use in a stream fish. Behavioral Ecology, 26, 578–586. https://doi.org/10.1093/beheco/aru234 DOI
Leibold, M. A. (1995). The niche concept revisited: Mechanistic models and community context. Ecology, 76, 1371–1382. https://doi.org/10.2307/1938141 DOI
Liang, K. Y. , & Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models. Biometrika, 73, 13–22. https://doi.org/10.1093/biomet/73.1.13 DOI
Longland, W. S. , & Price, M. V. (1991). Direct observations of owls and heteromyid rodents: Can predation risk explain microhabitat use? Ecology, 72, 2261–2273. https://doi.org/10.2307/1941576 DOI
Lourenco, P. M. , Alves, J. A. , Reneerkens, J. , Jelle Loonstra, A. H. , Potts, P. M. , Granadeiro, J. P. , & Catry, T. (2016). Influence of age and sex on winter site fidelity of sanderlings Calidris alba . PeerJ, 4, e2517 https://doi.org/10.7717/peerj.2517 PubMed DOI PMC
Marnane, M. J. (2000). Site fidelity and homing behaviour in coral reef cardinalfishes. Journal of Fish Biology, 57, 1590–1600. https://doi.org/10.1111/j.1095-8649.2000.tb02234.x DOI
Marzeole, M. J. (2001). Amphibian activity, movement patterns, and body size in fragmented peat bogs. Journal of Herpetology, 35, 13–20.
Matthysen, E. (2005). Density‐dependent dispersal in birds and mammals. Ecography, 28, 403–416. https://doi.org/10.1111/j.0906-7590.2005.04073.x DOI
McDougall, P. T. , & Kramer, D. L. (2007). Short‐term behavioural consequences of territory relocation in a Caribbean damselfish, Stegastes diencaeus . Behavioral Ecology, 18, 53–61. https://doi.org/10.1093/beheco/arl055 DOI
McIntire, T. , Bester, M. N. , Bornemann, H. , Tosh, C. A. , & Nico de Bruyn, P. J. (2017). Slow to change? Individual fidelity to three‐dimensional foraging habitats in southern elephant seals, Mirounga leonina . Animal Behavior, 127, 91–99. https://doi.org/10.1016/j.anbehav.2017.03.006 DOI
Metcalfe, N. B. , Fraser, N. H. C. , & Burns, M. D. (1999). Food availability and the nocturnal vs. diurnal foraging trade‐off in juvenile salmon. Journal of Animal Ecology, 68, 371–381. https://doi.org/10.1046/j.1365-2656.1999.00289.x DOI
Metcalfe, N. B. , Valdimarsson, S. K. , & Fraser, N. H. C. (1997). Habitat profitability and choice in sit a wait predator: Juvenile salmon prefer slower currents on darker nights. Journal of Animal Ecology, 66, 866–875. https://doi.org/10.2307/6002 DOI
Morales, J. M. , Moorcroft, P. R. , Matthiopoulos, J. , Merrill, E. H. , & Haydon, D. T. (2010). Building the bridge between animal movement and population dynamics. Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 2289–2301. https://doi.org/10.1098/rstb.2010.0082 PubMed DOI PMC
Morrison, D. W. (1978). Lunar phobia in a neotropical fruit bat, Artibevs jamaicensis (Chiroptera: Phyllostomidae). Animal Behavior, 26, 852–855. https://doi.org/10.1016/0003-3472(78)90151-3 DOI
Nakano, S. (1995). Individual differences in resource use, growth and emigration under the influence of a dominance hierarchy in fluvial red‐spotted masu salmon in a natural habitat. Journal of Animal Ecology, 64, 75–84. https://doi.org/10.2307/5828 DOI
Nicola, G. G. , Ayllón, D. , Elvira, B. , & Almódovar, A. (2016). Territorial and foraging behaviour of juvenile Mediterranean trout under changing conditions of food and competitors. Canadian Journal of Fisheries and Aquatic Science, 73, 990–998. https://doi.org/10.1139/cjfas-2015-0304 DOI
Parra, I. , Almódovar, A. , Ayllón, D. , Nicola, G. G. , & Elvira, B. (2011). Ontogenetic variation in density‐dependent growth of brown trout through habitat competition. Freshwater Biology, 56, 530–540. https://doi.org/10.1111/j.1365-2427.2010.02520.x DOI
Penteriani, V. , Kuparinen, A. , Delgado, M. M. , Lourenco, R. , & Campioni, L. (2011). Individual status, foraging effort and need for conspicuousness shape behavioural responses of a predator to moon phases. Animal Behavior, 82, 413–420. https://doi.org/10.1016/j.anbehav.2011.05.027 DOI
Piotr, M. (2016). Reproduction and survival in the city: Which fitness components drive urban colonization in a reed‐nesting waterbird? Current Zoology, 62, 79–87. PubMed PMC
Piper, W. H. (2011). Making habitat selection more “familiar”: A review. Behavioral Ecology and Sociobiology, 65, 1329–1351. https://doi.org/10.1007/s00265-011-1195-1 DOI
Polverino, G. , Bierbach, D. , Killen, S. S. , Uusi‐Heikkilä, S. , & Arlinghaus, R. (2016). Body length rather than routine metabolic rate and body condition correlates with activity and risk‐taking in juvenile zebrafish Danio rerio . Journal of Fish Biology, 89, 2251–2267. https://doi.org/10.1111/jfb.13100 PubMed DOI PMC
Price, M. V. , Waser, N. V. , & Bass, T. A. (1984). Effects of moonlight on microhabitat use by desert rodents. Journal of Mammalogy, 65, 353–356. https://doi.org/10.2307/1381183 DOI
Resh, V. H. (1979). Sampling variability and life history features: Basic considerations in the design of aquatic insect studies. Journal of the Fisheries Research Board of Canada, 36, 290–311. https://doi.org/10.1139/f79-047 DOI
Riou, S. , & Hamer, K. C. (2008). Predation risk and reproductive effort: Impacts of moonlight on food provisioning and hick growth in Manx shearwaters. Animal Behavior, 76, 1743–1748. https://doi.org/10.1016/j.anbehav.2008.08.012 DOI
Rose, K. A. , Cowan, J. H. , Winemiller, K. O. , Myers, R. A. , & Hilborn, R. (2001). Compensatory density dependence in fish populations: Importance, controversy, understanding and prognosis. Fish and Fisheries, 2, 293–327. https://doi.org/10.1046/j.1467-2960.2001.00056.x DOI
Sábato, M. A. L. , de Melo, L. F. B. , Magni, E. M. V. , Young, R. J. , & Coelho, C. M. (2006). A note on the effect of the fool moon on the activity of wild maned wolves, Chrysocyon brachyurus . Behavioural Processes, 73, 228–230. https://doi.org/10.1016/j.beproc.2006.05.012 PubMed DOI
Slavík, O. , Horký, P. , Bartoš, L. , Kolářová, J. , & Randák, T. (2007). Diurnal and seasonal behaviour of adult and juvenile European catfish as determined by radio‐telemetry in the River Berounka, Czech Republic. Journal of Fish Biology, 71, 101–114. https://doi.org/10.1111/j.1095-8649.2007.01471.x DOI
Slavík, O. , Horký, P. , Maciak, M. , & Wackermannova, M. (2016). Familiarity, prior residency, resource availability and body mass as predictors of the movement activity of the European catfish. Journal of Ethology, 34, 23–30. https://doi.org/10.1007/s10164-015-0441-9 DOI
Slavík, O. , Horký, P. , Randák, T. , Balvín, P. , & Bílý, M. (2012). Brown trout spawning migration in fragmented central European headwaters: Effect of isolation by artificial obstacles and the moon phase. Transactions of the American Fisheries Society, 141, 673–680. https://doi.org/10.1080/00028487.2012.675897 DOI
Stamps, J. A. (1991). Why evolutionary issues are reviving interest in proximate behavioral mechanisms. American Zoologist, 31, 338–348. https://doi.org/10.1093/icb/31.2.338 DOI
Steingrímsson, S. Ó. , & Grant, J. W. A. (2003). patterns and correlates of movement and site fidelity in individually tagged young‐of‐the‐year Atlantic salmon (Salmo salar). Canadian Journal of Fisheries and Aquatic Science, 60, 193–202. https://doi.org/10.1139/f03-012 DOI
Steingrímsson, S. Ó. , & Grant, J. W. A. (2008). Multiple central‐place territories in wild young‐of‐the‐year Atlantic salmon Salmo salar . Journal of Animal Ecology, 77, 448–457. https://doi.org/10.1111/j.1365-2656.2008.01360.x PubMed DOI
Surber, E. W. (1936). Rainbow trout and bottom fauna production in one mile of stream. Transactions of the American Fisheries Society, 66, 193–202.
Switzer, P. V. (1993). Side fidelity in predictable and unpredictable habitats. Evolutionary Ecology, 7, 533–555. https://doi.org/10.1007/BF01237820 DOI
Switzer, P. V. (1997). Factors affecting site fidelity in a territorial animal. Animal Behavior, 53, 865–877. https://doi.org/10.1006/anbe.1996.0352 DOI
Thode, H. J. (2002). Testing for normality. New York, NY: Marcel Dekker; https://doi.org/10.1201/9780203910894 DOI
Tunney, D. T. , & Steingrímsson, S. O. (2012). Foraging mode variation in three stream‐dwelling salmonid fishes. Ecology of Freshwater Fish, 21, 570–580. https://doi.org/10.1111/j.1600-0633.2012.00577.x DOI
Valdimarsson, S. K. , & Metcalfe, N. B. (2001). Is the level of aggression and dispersion in territorial fish dependent on light intensity? Animal Behavior, 61, 1143–1149. https://doi.org/10.1006/anbe.2001.1710 DOI
Valdimarsson, S. K. , Metcalfe, N. B. , Thorpe, J. E. , & Huntingford, F. A. (1997). Seasonal changes in sheltering: Effect of light and temperature on diel activity in juvenile salmon. Animal Behavior, 54, 1405–1412. https://doi.org/10.1006/anbe.1997.0550 PubMed DOI
Ward, A. J. W. , James, R. , Wilson, A. D. M. , & Webster, M. M. (2013). Site fidelity and localized homing behaviour in three‐spined sticklebacks (Gasterosteus aculeatus). Behaviour, 150, 689–1708.
White, G. C. , & Garrott, R. A. (1990). Analysis of wildlife radio‐tracking data. New York, NY: Academic Press.
Winter, J. D. (1983). Underwater biotelemetry In Nielsen A. L., & Johnsen D. (Eds.), Fisheries techniques (pp. 371–395). Bethesda, MD: American Fisheries Society.
Wittmer, H. U. , McLellan, B. N. , & Hovey, F. W. (2006). Factors influencing variation in the site fidelity of woodland caribou (Rangifer tarandus caribou) in southeastern British Columbia. Canadian Journal of Zoology, 84, 537–545. https://doi.org/10.1139/z06-026 DOI
Wolf, W. B. J. , & Trillmich, F. (2007). Beyond habitat requirements: Individual fine‐scale site fidelity in a colony of the Galapagos sea lion (Zalophus wollebaeki) creates conditions for social structuring. Oecologia, 152, 553–567. https://doi.org/10.1007/s00442-007-0665-7 PubMed DOI
Wolman, M. G. (1954). A method of sampling coarse riverbed material. Transactions American Geophysical Union, 35, 951–956. https://doi.org/10.1029/TR035i006p00951 DOI
Young, M. K. (1999). Summer diel activity and movement of adult brown trout in high‐elevation streams in Wyoming, USA. Journal of Fish Biology, 54, 181–189. https://doi.org/10.1111/j.1095-8649.1999.tb00621.x DOI
Závorka, L. , Horký, P. , Höjesjö, J. , & Slavík, O. (2016). Effect of individuals ‘local persistence, and spatial and temporal scale, on density‐dependent growth: A study in brown trout Salmo truta . Ethology Ecology & Evolution, 28, 272–283. https://doi.org/10.1080/03949370.2015.1037360 DOI
Závorka, L. , Horký, P. , & Slavík, O. (2013). Distribution and growth of brown trout in pristine headwaters of Central Europe. Central European Journal of Biology, 8, 263–271.