Open field test for the assessment of anxiety-like behavior in Gnathonemus petersii fish
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38268794
PubMed Central
PMC10806096
DOI
10.3389/fnbeh.2023.1280608
Knihovny.cz E-zdroje
- Klíčová slova
- EOD, Gnathonemus petersii, anxiety, exploratory behavior, motor behavior, open field, thigmotaxis,
- Publikační typ
- časopisecké články MeSH
The open field test (OFT) is a basic and most widely used test for investigation in animal studies of the neurobiological basis of anxiety and screening for novel drug targets. Here, we present the results of an OFT for weakly electric fish Gnathonemus petersii. This study aimed to describe the behavioral response of G. petersii exposed to an OFT, simultaneously with an evaluation of electrical organ discharges (EOD), to determine whether any association between EOD and patterns of motor behavior in the OFT exists. Treatment of OFT activity and its temporal patterning was assessed for the whole 6-min trial as well as per-minute distributions of activity using a near-infrared camera and an EOD data acquisition system. Our results demonstrated that the time spent, distance moved, and time of activity were significantly higher in the periphery of the OFT arena. The zone preference pattern over the 6-min test session showed that G. petersii prefer the outer zone (83.61%) over the center of the arena (16.39%). The motor behavior of fish measured as distance moved, active time, and swim speed were correlated with the number of EODs; however, no relationship was found between EOD and acceleration.
3rd Faculty of Medicine Charles University Prague Czechia
Institute for Environmental Studies Faculty of Science Charles University Prague Czechia
Zobrazit více v PubMed
Amar A., Ramachandran B. (2023). Environmental stressors differentially modulate anxiety-like behaviour in male and female zebrafish. Behav. Brain Res. 450:114470. doi: 10.1016/j.bbr.2023.114470, PMID: PubMed DOI
Bell C. C., Myers J. P., Russel C. J. (1974). Electric organ discharge patterns during dominance-related behavioral displays in Gnathonemus petersii (Mormyridae). J. Comp. Physiol. 92, 201–228. doi: 10.1007/BF00694506 DOI
Belzung C., Griebel G. (2001). Measuring normal and pathological anxiety-like behaviour in mice: a review. Behav. Brain Res. 125, 141–149. doi: 10.1016/s0166-4328(01)00291-1 PubMed DOI
Blaser R., Gerlai R. (2006). Behavioural phenotyping in zebrafish: comparison of three behavioural quantification methods. Behav. Res. Methods 38, 456–469. doi: 10.3758/BF03192800, PMID: PubMed DOI
Bolivar V. J., Caldarone B. J., Reilly A. A., Flaherty L. (2000). Habituation of activity in an open field: A survey of inbred strains and F1 hybrids. Behav. Genet. 30, 285–293. doi: 10.1023/A:1026545316455 PubMed DOI
Bouwknecht J. A., Paylor R. (2008). Pitfalls in the interpretation of genetic and pharmacological effects on anxiety-lie behaviour in rodents. Behav. Pharmacol. 19, 385–402. doi: 10.1097/FBP.0b013e32830c3658, PMID: PubMed DOI
Brown C., Jones F., Braithwaite V. (2005). In situ examination of boldness–shyness traits in the tropical poeciliid, Brachyraphis episcopi. Anim. Behav. 70, 1003–1009. doi: 10.1016/j.anbehav.2004.12.022 DOI
Bubeníková-Valešová V., Horáček J., Vrajová M., Höschl C. (2008). Models of schizophrenia in humans and animals based on inhibition of NMDA receptors. Neurosci. Biobehav. Rev. 5, 1014–1023. doi: 10.1016/j.neubiorev.2008.03.012 PubMed DOI
Burns J. G. (2008). The validity of three tests of temperament in guppies (Poecilia reticulata). J. Compar. Psych. 122, 344–356. doi: 10.1037/0735-7036.122.4.344, PMID: PubMed DOI
Cachat J. M., Canavello P. R., Elegante M. F., Bartels B. K., Elkhayat S. I. (2010b). “Modeling stress and anxiety in zebrafish” in Zebrafish models in neurobehavioral research. eds. Kalueff A. V., Cachat J. (New York: Humana Press; )
Cachat J. M., Stewart A., Grossman L., Gaikwad S., Kadri F., Chung K. M., et al. . (2010a). Measuring behavioural and endocrine responses to novelty stress in adult zebrafish. Nat. Prot. 5, 1786–1799. doi: 10.1038/nprot.2010.140, PMID: PubMed DOI
Cachat J., Stewart A., Utterback E., Hart P., Gaikwad S., Wond K., et al. . (2011). Three-dimensional neurophenotyping of adult zebrafish behaviour. PLoS One 6:e17597. doi: 10.1371/journal.pone.0017597, PMID: PubMed DOI PMC
Cain P., Malwal S. (2002). Landmark use and development of navigation behaviour in the weakly electric fish Gnathonemus petersii (Mormyridae; Teleostei). J. Exp. Biol. 205, 3915–3923. doi: 10.1242/jeb.205.24.3915, PMID: PubMed DOI
Carlson B. A. (2002). Electric signaling behavior and the mechanisms of electric organ discharge production in mormyrid fish. J. Physiol. Paris 96, 405–419. doi: 10.1016/S0928-4257(03)00019-6, PMID: PubMed DOI
Carola V., D’Olimpio F., Brunamonti E., Mangia F., Renzi P. (2002). Evaluation of the elevated plus-maze and open-field tests for the assessment of anxiety-related behaviour in inbred mice. Behav. Brain Res. 134, 49–57. doi: 10.1016/s0166-4328(01)00452-1, PMID: PubMed DOI
Champagne D. L., Hoefnagels C. C. M., de Kloet R. E., Richardson M. K. (2010). Translating rodent behavioral repertoire to zebrafish (Danio rerio): relevance for stress research. Behav. Brain Res. 214, 332–342. doi: 10.1016/j.bbr.2010.06.001, PMID: PubMed DOI
Ciali S., Gordon J., Moller P. (1997). Spectral sensitivity of the weakly discharging electric fish Gnathonemus petersii using its electric organ discharges. J. Fish Biol. 50, 1074–1087. doi: 10.1111/j.1095-8649.1997.tb01631.x DOI
Comas V., Borde M. (2010). Neural substrate of an increase in sensory sampling triggered by a motor command in a gymnotid fish. J. Neurophysiol. 104, 2147–2157. doi: 10.1152/jn.00076.2010, PMID: PubMed DOI
Donald R. D., Heal S. D., Lawrence A. B., Rutherford K. M. D. (2011). Emotionality in growing pigs: is the open field a valid test? Physiol. Behav. 104, 906–913. doi: 10.1016/j.physbeh.2011.05.031 PubMed DOI
Eaton R. C., Bombardieri R. A., Meyer D. L. (1977). The mauthner-initiated startle response in teleost fish. J. Exp. Biol. 66, 65–81. doi: 10.1242/jeb.66.1.65, PMID: PubMed DOI
Egan R. J., Bergner C. L., Hart P. C., Cachat J. M., Canavello P. R., Elegante M. F., et al. . (2009). Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafish. Behav. Brain Res. 205, 38–44. doi: 10.1016/j.bbr.2009.06.022, PMID: PubMed DOI PMC
Finger J. S., Dhellemmes F., Guttridge T. L., Kurvers R. H. J. M., Gruber S. H., Krause J. (2016). Rate of movement of juvenile lemon sharks in a novel open field, are we measuring activity or reaction to novelty? Anim. Behav. 116, 75–82. doi: 10.1016/j.anbehav.2016.03.032 DOI
Franks B., Gaffney L. P., Graham C., Weary D. M. (2023). Curiosity in zebrafish (Danio rerio)? Behavioral responses to 30 novel objects. Front. Vet. Sci. 9:106242. doi: 10.3389/fvets.2022.1062420, PMID: PubMed DOI PMC
Gebhardt K., Böhme M., von der Emde G. (2012). Electrocommunication behaviour during social interactions in two species of pulse-type weakly electric fishes (Mormyridae). J. Fish Biol. 81, 2235–2254. doi: 10.1111/j.1095-8649.2012.03448.x, PMID: PubMed DOI
Gromer D., Kiser D. P., Pauli P. (2021). Thigmotaxis in a virtual human open field test. Sci. Rep. 11:6670. doi: 10.1038/s41598-021-85678-5, PMID: PubMed DOI PMC
Haigh A., Chou J. Y., O’Driscoll K. (2020). Variations in the behaviour of pigs during an open field and novel object test. Front. Vet. Sci. 7:607. doi: 10.3389/fvets.2020.00607, PMID: PubMed DOI PMC
Hanika S., Kramer B. (2008). Plasticity of electric organ discharge waveform in the south African bulldog fish, Marcusenius pongolensis: tradeoff between male attractiveness and predator avoidance? Front. Zool. 5:7. doi: 10.1186/1742-9994-5-7, PMID: PubMed DOI PMC
Hofmann H. A., Fernald R. D. (2000). Social status controls somatostatin neuron size and growth. J. Neurosci. 20, 4740–4744. doi: 10.1523/JNEUROSCI.20-12-04740.2000, PMID: PubMed DOI PMC
Hofmann V., Geurten B. R. H., Sanguinetti-Scheck J. I., Gómez-Sena L., Engelmann J. (2014). Motor patterns during active electrosensory acquisition. Front. Behav. Neurosci. 8:186. doi: 10.3389/fnbeh.2014.00186, PMID: PubMed DOI PMC
Jänicke B., Coper H. (1996). Tests in rodents for assessing sensorimotor performance during aging. Adv. Psychol. 114, 201–233. doi: 10.1016/S0166-4115(96)80010-0 DOI
Jun J. J., Longtin A., Maler L. (2014). Enhanced sensory sampling precedes self-initiated locomotion in an electric fish. J. Exp. Biol. 217, 3615–3628. doi: 10.1242/jeb.105502 PubMed DOI
Kallai J., Makany T., Csatho A., Karadi K., Horvath D., Kovacs-Labadi B., et al. . (2007). Cognitive and affective aspects of thigmotaxis strategy in humans. Behav. Neurosci. 121, 21–30. doi: 10.1037/0735-7044.121.1.21, PMID: PubMed DOI
Kareklas K., Arnott G., Elwood R. W., Holland R. A. (2016). Plasticity varies with boldness in a weakly-electric fish. Front. Zool. 13:22. doi: 10.1186/s12983-016-0154-0, PMID: PubMed DOI PMC
Kraeuter A. K., Guest P. C., Sarnyai Z. (2019). The open field test for measuring the locomotor activity and anxiety-like behaviour. Methods Mol. Biol. 1916, 99–103. doi: 10.1007/978-1-4939-8994-2_9, PMID: PubMed DOI
Kramer B., Bauer R. (1976). Agonistic behaviour and electric signalling in a Mormyrid fish, Gnathonemus petersii. Behav. Ecol. Sociobiol. 1, 45–61. doi: 10.1007/BF00299952 DOI
Kunze P., Wezstein H. (1988). Apomorphine and haloperidol influence electric behaviour of a mormyrid fish. Z. Naurforsch. 43, 105–107. doi: 10.1515/znc-1988-1-220 PubMed DOI
Lamprea M. R., Cardenas F. P., Setem J., Morat S. (2008). Thigmotactic responses in an open field. Braz. J. Med. Biol. Res. 41, 135–140. doi: 10.1590/S0100-879X2008000200010 PubMed DOI
Langova V., Horka P., Hubeny J., Novak T., Vales K., Adamek P., et al. . (2023). Ketamine disrupts locomotion and electrolocation in a novel model of schizophrenia, Gnathonemus petersii fish. Gnathonemus petersiiJ. Neurosci. Res. 101, 1098–1106. doi: 10.1002/jnr.25186 PubMed DOI
Langova V., Vales K., Horka P., Horacek J. (2020). The role of zebrafish and laboratory rodents in schizophrenia research. Front. Psych. 11:703. doi: 10.3389/fpsyt.2020.00703, PMID: PubMed DOI PMC
Larke R. K., Toubiana A., Lindsay K. A., Mendoza S. P., Bales K. L. (2017). Infant titi monkey behaviour in the open field test and the effect of early adversity. Am. J. Primatol. 79:10. doi: 10.1002/ajp.22678, PMID: PubMed DOI PMC
Levin E. D., Bencan Z., Cerutti D. T. (2007). Modeling withdrawal syndrome in zebrafish. Physiol. Behav. 90, 54–58. doi: 10.1016/j.physbeh.2006.08.026, PMID: PubMed DOI
Lipska B. K., Weinberger D. R. (2000). To model a psychiatric disorder in animals: schizophrenia as a reality test. Neuropsychopharmacology 23, 223–239. doi: 10.1016/S0893-133X(00)00137-8 PubMed DOI
Mac Rae C. A., Peterson R. T. (2015). Zebrafish as tools for drug discovery. Nat. Rev. Drug Discov. 14, 721–731. doi: 10.1038/nrd4627 PubMed DOI
Maximino C., De Brito T. M., da Silva Batista A. W., Herculano A. M., Morato S., Gouveia A., Jr. (2010a). Measuring anxiety in zebrafish: a critical review. Behav. Brain Res. 214, 157–171. doi: 10.1016/j.bbr.2010.05.031, PMID: PubMed DOI
Maximino C., de Brito T. M., de Mattos Dias C. A. G., Goouveia A., Jr., Morato S. (2010b). Scototaxis as anxiety-like behavior in fish. Nat. Protoc. 5, 209–216. doi: 10.1038/nprot.2009.225 PubMed DOI
Moller P. (1995). Electric fishes: History and behaviour. London: Chapman & Hall.
Okuyama T., Takagi S., Nakada T., Tsuda S., Takahashi T. (2020). Neurochemical and behavioral responses to acute and chronic social defeat stress in zebrafish. Behav. Brain Res. 377:112232. PubMed
Oliveira R. F., Silva J. F., Simões J. M. (2011). Fighting zebrafish: characterization of aggressive behavior and winner-loser effects. Zebrafish 8, 73–81. doi: 10.1089/zeb.2011.0690 PubMed DOI
Onyeche V. E. O., Onyeche L. E., Akankali J. A., Enodiana I. O., Ebenuwa P. (2013). Food and fish feeding habits in Anwai stream ichthyofauna, Niger-Delta. Int. J. Fish. Aquac. 5, 286–294. doi: 10.5897/IJFA DOI
Oostenveld R., Fries P., Maris E., Schoffelen J. M. (2011). Field trip: open-source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput. Intell. Neurosci. 2011, 1–9. doi: 10.1155/2011/156869, PMID: PubMed DOI PMC
Powell S. B., Zhou X., Geyer M. A. (2009). Prepulse inhibition and genetic mouse models of schizophrenia. Behav. Brain Res. 204, 282–294. doi: 10.1016/j.bbr.2009.04.021, PMID: PubMed DOI PMC
Prut L., Belzung C. (2003). The open field as a paradigm to measure the effects of drugs on anxiety-like behaviours: A review. Eur. J. Pharmacol. 463, 3–33. doi: 10.1016/s0014-2999(03)01272-x PubMed DOI
R Core Team (2021). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
Ramos A., Pereira E., Martins G. C., Wehrmeister T. D., Izídio G. S. (2008). Integrating the open field, elevated plus maze and light/dark box to assess different types of emotional behaviours in one single trial. Behav. Brain Res. 193, 277–288. doi: 10.1016/j.bbr.2008.06.007, PMID: PubMed DOI
Richendrfer H., Pelkowski S. D., Colwill R. M., Creton R. (2012). On the edge: pharmacological evidence for anxiety-related behaviour in zebrafish larvae. Behav. Brain Res. 228, 99–106. doi: 10.1016/j.bbr.2011.11.041, PMID: PubMed DOI PMC
Riehl R., Kyzar E., Allain A., Green J., Hook M., Monnig L., et al. . (2011). Behavioural and physiological effects of acute ketamine exposure in adult zebrafish. Neurotoxicol. Teratol. 33, 658–667. doi: 10.1016/j.ntt.2011.05.011, PMID: PubMed DOI
Rodgers R. J., Cao B. J., Dalvi A., Holmes A. (1997). Animal models of anxiety: an ethological perspective. Braz. J. Med. Biol. Res. 30, 289–304. doi: 10.1590/s0100-879x1997000300002, PMID: PubMed DOI
Rosemberg D. B., Rico E. P., Mussulini B. H. M., Piato A. L., Calcagnotto M. E., Bonan C. D., et al. . (2011). Differences in spatio-temporal behavior of zebrafish in the open tank paradigm after a short-period confinement into dark and bright environment. PLoS One 6:e19397. doi: 10.1371/journal.pone.0019397, PMID: PubMed DOI PMC
Schmitt U., Hiemke C. (1998). Combination of open field and elevated plus-maze: a suitable test battery to assess strain as well as treatment differences in rat behaviour. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 22, 1197–1215. doi: 10.1016/s0278-5846(98)00051-7 PubMed DOI
Seibenhener M. L., Wooten M. C. (2015). Use of the open field maze to measure locomotor and anxiety-like behaviour in mice. J. Vis. Exp. 96:5243. doi: 10.3791/52434, PMID: PubMed DOI PMC
Simon P., Dupuis R., Costentin J. (1994). Thigmotaxis as an index of anxiety in mice: influence of dopaminergic transmissions. Behav. Brain Res. 61, 59–64. doi: 10.1016/0166-4328(94)90008-6, PMID: PubMed DOI
Speedie N., Gerlai R. (2008). Alarm substance induced behavioral responses in zebrafish (Danio rerio). Behav. Brain Res. 188, 168–177. doi: 10.1016/j.bbr.2007.10.031, PMID: PubMed DOI PMC
Stewart A., Cachat J., Wong K., Gaikwad S., Gilder T., Dileo J., et al. . (2010). Homebase behaviour of zebrafish in novelty-based paradigms. Behav. Process. 85, 198–203. doi: 10.1016/j.beproc.2010.07.009, PMID: PubMed DOI
Stewart A., Gaikwad S., Kyzar E., Green J., Roth A., Kalueff A. V. (2012). Modeling anxiety using adult zebrafish: A conceptual review. Neuropharmacology 62, 135–143. doi: 10.1016/j.neuropharm.2011.07.037, PMID: PubMed DOI PMC
Stewart A. M., Gajkwad S., Kyzar E., Kalueff A. V. (2012). Understanding spatiotemporal strategies of adult zebrafish exploration in the open field test. Brain Res. 1451, 44–52. doi: 10.1016/j.brainres.2012.02.064, PMID: PubMed DOI
Toerring M. J., Belbenoit P. (1979). Motor programmes and electroreception in Mormyrid fish. Behav. Ecol. Sociobiol. 4, 369–379. doi: 10.1007/BF00303243 DOI
Treit D., Fundytus M. (1988). Thigmotaxis as a test for anxiolytic activity in rats. Pharmacol. Biochem. Behav. 31, 959–962. doi: 10.1016/0091-3057(88)90413-3, PMID: PubMed DOI
von der Emde G. (1993). The sensing of electrical capacitances by weakly electric mormyrid fish: effects of water conductivity. J. Exp. Biol. 181, 157–173. doi: 10.1242/jeb.181.1.157 DOI
von der Emde G. (1999). Active electrolocation of objects in weakly electric fish. J. Exp. Biol. 202, 1205–1215. doi: 10.1242/jeb.202.10.1205 PubMed DOI
von der Emde G., Amey M., Engelmann J., Fetz S., Folde C., Hollmann M., et al. . (2008). Active electrolocation in Gnathonemus petersii: behaviour, sensory performance, and receptor systems. J. Physiol. Paris 102, 279–290. doi: 10.1016/j.jphysparis.2008.10.017, PMID: PubMed DOI
von der Emde G., Fetz S. (2007). Distance, shape and more: recognition of object features during active electrolocation in a weakly electric fish. J. Exp. Biol. 210, 3082–3095. doi: 10.1242/jeb.005694 PubMed DOI
von der Emde G., Zelick R. (1995). Behavioral detection of electric signal waveform distortion in the weakly electric fish, Gnathonemus petersii. J. Comp. Physiol. 177, 493–501. doi: 10.1007/BF00187484 DOI
Walsh R. N., Cummins R. A. (1976). The open field test: A critical review. Psychol. Bull. 83, 482–504. doi: 10.1037/0033-2909.83.3.482 PubMed DOI
Wong K., Elegante M., Bartels B., Elkhayat S., Tien D., Roy S., et al. . (2010). Analyzing habituation responses to novelty in zebrafish (Danio rerio). Behav. Brain Res. 208, 450–457. doi: 10.1016/j.bbr.2009.12.023, PMID: PubMed DOI
Yue S., Kandel E. R. (2020). Visual learning and memory in goldfish: from cellular to circuit level. Curr. Opin. Neurobiol. 60, 135–144.