• This record comes from PubMed

Open field test for the assessment of anxiety-like behavior in Gnathonemus petersii fish

. 2023 ; 17 () : 1280608. [epub] 20240110

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection

Document type Journal Article

The open field test (OFT) is a basic and most widely used test for investigation in animal studies of the neurobiological basis of anxiety and screening for novel drug targets. Here, we present the results of an OFT for weakly electric fish Gnathonemus petersii. This study aimed to describe the behavioral response of G. petersii exposed to an OFT, simultaneously with an evaluation of electrical organ discharges (EOD), to determine whether any association between EOD and patterns of motor behavior in the OFT exists. Treatment of OFT activity and its temporal patterning was assessed for the whole 6-min trial as well as per-minute distributions of activity using a near-infrared camera and an EOD data acquisition system. Our results demonstrated that the time spent, distance moved, and time of activity were significantly higher in the periphery of the OFT arena. The zone preference pattern over the 6-min test session showed that G. petersii prefer the outer zone (83.61%) over the center of the arena (16.39%). The motor behavior of fish measured as distance moved, active time, and swim speed were correlated with the number of EODs; however, no relationship was found between EOD and acceleration.

See more in PubMed

Amar A., Ramachandran B. (2023). Environmental stressors differentially modulate anxiety-like behaviour in male and female zebrafish. Behav. Brain Res. 450:114470. doi: 10.1016/j.bbr.2023.114470, PMID: PubMed DOI

Bell C. C., Myers J. P., Russel C. J. (1974). Electric organ discharge patterns during dominance-related behavioral displays in Gnathonemus petersii (Mormyridae). J. Comp. Physiol. 92, 201–228. doi: 10.1007/BF00694506 DOI

Belzung C., Griebel G. (2001). Measuring normal and pathological anxiety-like behaviour in mice: a review. Behav. Brain Res. 125, 141–149. doi: 10.1016/s0166-4328(01)00291-1 PubMed DOI

Blaser R., Gerlai R. (2006). Behavioural phenotyping in zebrafish: comparison of three behavioural quantification methods. Behav. Res. Methods 38, 456–469. doi: 10.3758/BF03192800, PMID: PubMed DOI

Bolivar V. J., Caldarone B. J., Reilly A. A., Flaherty L. (2000). Habituation of activity in an open field: A survey of inbred strains and F1 hybrids. Behav. Genet. 30, 285–293. doi: 10.1023/A:1026545316455 PubMed DOI

Bouwknecht J. A., Paylor R. (2008). Pitfalls in the interpretation of genetic and pharmacological effects on anxiety-lie behaviour in rodents. Behav. Pharmacol. 19, 385–402. doi: 10.1097/FBP.0b013e32830c3658, PMID: PubMed DOI

Brown C., Jones F., Braithwaite V. (2005). In situ examination of boldness–shyness traits in the tropical poeciliid, Brachyraphis episcopi. Anim. Behav. 70, 1003–1009. doi: 10.1016/j.anbehav.2004.12.022 DOI

Bubeníková-Valešová V., Horáček J., Vrajová M., Höschl C. (2008). Models of schizophrenia in humans and animals based on inhibition of NMDA receptors. Neurosci. Biobehav. Rev. 5, 1014–1023. doi: 10.1016/j.neubiorev.2008.03.012 PubMed DOI

Burns J. G. (2008). The validity of three tests of temperament in guppies (Poecilia reticulata). J. Compar. Psych. 122, 344–356. doi: 10.1037/0735-7036.122.4.344, PMID: PubMed DOI

Cachat J. M., Canavello P. R., Elegante M. F., Bartels B. K., Elkhayat S. I. (2010b). “Modeling stress and anxiety in zebrafish” in Zebrafish models in neurobehavioral research. eds. Kalueff A. V., Cachat J. (New York: Humana Press; )

Cachat J. M., Stewart A., Grossman L., Gaikwad S., Kadri F., Chung K. M., et al. . (2010a). Measuring behavioural and endocrine responses to novelty stress in adult zebrafish. Nat. Prot. 5, 1786–1799. doi: 10.1038/nprot.2010.140, PMID: PubMed DOI

Cachat J., Stewart A., Utterback E., Hart P., Gaikwad S., Wond K., et al. . (2011). Three-dimensional neurophenotyping of adult zebrafish behaviour. PLoS One 6:e17597. doi: 10.1371/journal.pone.0017597, PMID: PubMed DOI PMC

Cain P., Malwal S. (2002). Landmark use and development of navigation behaviour in the weakly electric fish Gnathonemus petersii (Mormyridae; Teleostei). J. Exp. Biol. 205, 3915–3923. doi: 10.1242/jeb.205.24.3915, PMID: PubMed DOI

Carlson B. A. (2002). Electric signaling behavior and the mechanisms of electric organ discharge production in mormyrid fish. J. Physiol. Paris 96, 405–419. doi: 10.1016/S0928-4257(03)00019-6, PMID: PubMed DOI

Carola V., D’Olimpio F., Brunamonti E., Mangia F., Renzi P. (2002). Evaluation of the elevated plus-maze and open-field tests for the assessment of anxiety-related behaviour in inbred mice. Behav. Brain Res. 134, 49–57. doi: 10.1016/s0166-4328(01)00452-1, PMID: PubMed DOI

Champagne D. L., Hoefnagels C. C. M., de Kloet R. E., Richardson M. K. (2010). Translating rodent behavioral repertoire to zebrafish (Danio rerio): relevance for stress research. Behav. Brain Res. 214, 332–342. doi: 10.1016/j.bbr.2010.06.001, PMID: PubMed DOI

Ciali S., Gordon J., Moller P. (1997). Spectral sensitivity of the weakly discharging electric fish Gnathonemus petersii using its electric organ discharges. J. Fish Biol. 50, 1074–1087. doi: 10.1111/j.1095-8649.1997.tb01631.x DOI

Comas V., Borde M. (2010). Neural substrate of an increase in sensory sampling triggered by a motor command in a gymnotid fish. J. Neurophysiol. 104, 2147–2157. doi: 10.1152/jn.00076.2010, PMID: PubMed DOI

Donald R. D., Heal S. D., Lawrence A. B., Rutherford K. M. D. (2011). Emotionality in growing pigs: is the open field a valid test? Physiol. Behav. 104, 906–913. doi: 10.1016/j.physbeh.2011.05.031 PubMed DOI

Eaton R. C., Bombardieri R. A., Meyer D. L. (1977). The mauthner-initiated startle response in teleost fish. J. Exp. Biol. 66, 65–81. doi: 10.1242/jeb.66.1.65, PMID: PubMed DOI

Egan R. J., Bergner C. L., Hart P. C., Cachat J. M., Canavello P. R., Elegante M. F., et al. . (2009). Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafish. Behav. Brain Res. 205, 38–44. doi: 10.1016/j.bbr.2009.06.022, PMID: PubMed DOI PMC

Finger J. S., Dhellemmes F., Guttridge T. L., Kurvers R. H. J. M., Gruber S. H., Krause J. (2016). Rate of movement of juvenile lemon sharks in a novel open field, are we measuring activity or reaction to novelty? Anim. Behav. 116, 75–82. doi: 10.1016/j.anbehav.2016.03.032 DOI

Franks B., Gaffney L. P., Graham C., Weary D. M. (2023). Curiosity in zebrafish (Danio rerio)? Behavioral responses to 30 novel objects. Front. Vet. Sci. 9:106242. doi: 10.3389/fvets.2022.1062420, PMID: PubMed DOI PMC

Gebhardt K., Böhme M., von der Emde G. (2012). Electrocommunication behaviour during social interactions in two species of pulse-type weakly electric fishes (Mormyridae). J. Fish Biol. 81, 2235–2254. doi: 10.1111/j.1095-8649.2012.03448.x, PMID: PubMed DOI

Gromer D., Kiser D. P., Pauli P. (2021). Thigmotaxis in a virtual human open field test. Sci. Rep. 11:6670. doi: 10.1038/s41598-021-85678-5, PMID: PubMed DOI PMC

Haigh A., Chou J. Y., O’Driscoll K. (2020). Variations in the behaviour of pigs during an open field and novel object test. Front. Vet. Sci. 7:607. doi: 10.3389/fvets.2020.00607, PMID: PubMed DOI PMC

Hanika S., Kramer B. (2008). Plasticity of electric organ discharge waveform in the south African bulldog fish, Marcusenius pongolensis: tradeoff between male attractiveness and predator avoidance? Front. Zool. 5:7. doi: 10.1186/1742-9994-5-7, PMID: PubMed DOI PMC

Hofmann H. A., Fernald R. D. (2000). Social status controls somatostatin neuron size and growth. J. Neurosci. 20, 4740–4744. doi: 10.1523/JNEUROSCI.20-12-04740.2000, PMID: PubMed DOI PMC

Hofmann V., Geurten B. R. H., Sanguinetti-Scheck J. I., Gómez-Sena L., Engelmann J. (2014). Motor patterns during active electrosensory acquisition. Front. Behav. Neurosci. 8:186. doi: 10.3389/fnbeh.2014.00186, PMID: PubMed DOI PMC

Jänicke B., Coper H. (1996). Tests in rodents for assessing sensorimotor performance during aging. Adv. Psychol. 114, 201–233. doi: 10.1016/S0166-4115(96)80010-0 DOI

Jun J. J., Longtin A., Maler L. (2014). Enhanced sensory sampling precedes self-initiated locomotion in an electric fish. J. Exp. Biol. 217, 3615–3628. doi: 10.1242/jeb.105502 PubMed DOI

Kallai J., Makany T., Csatho A., Karadi K., Horvath D., Kovacs-Labadi B., et al. . (2007). Cognitive and affective aspects of thigmotaxis strategy in humans. Behav. Neurosci. 121, 21–30. doi: 10.1037/0735-7044.121.1.21, PMID: PubMed DOI

Kareklas K., Arnott G., Elwood R. W., Holland R. A. (2016). Plasticity varies with boldness in a weakly-electric fish. Front. Zool. 13:22. doi: 10.1186/s12983-016-0154-0, PMID: PubMed DOI PMC

Kraeuter A. K., Guest P. C., Sarnyai Z. (2019). The open field test for measuring the locomotor activity and anxiety-like behaviour. Methods Mol. Biol. 1916, 99–103. doi: 10.1007/978-1-4939-8994-2_9, PMID: PubMed DOI

Kramer B., Bauer R. (1976). Agonistic behaviour and electric signalling in a Mormyrid fish, Gnathonemus petersii. Behav. Ecol. Sociobiol. 1, 45–61. doi: 10.1007/BF00299952 DOI

Kunze P., Wezstein H. (1988). Apomorphine and haloperidol influence electric behaviour of a mormyrid fish. Z. Naurforsch. 43, 105–107. doi: 10.1515/znc-1988-1-220 PubMed DOI

Lamprea M. R., Cardenas F. P., Setem J., Morat S. (2008). Thigmotactic responses in an open field. Braz. J. Med. Biol. Res. 41, 135–140. doi: 10.1590/S0100-879X2008000200010 PubMed DOI

Langova V., Horka P., Hubeny J., Novak T., Vales K., Adamek P., et al. . (2023). Ketamine disrupts locomotion and electrolocation in a novel model of schizophrenia, Gnathonemus petersii fish. Gnathonemus petersiiJ. Neurosci. Res. 101, 1098–1106. doi: 10.1002/jnr.25186 PubMed DOI

Langova V., Vales K., Horka P., Horacek J. (2020). The role of zebrafish and laboratory rodents in schizophrenia research. Front. Psych. 11:703. doi: 10.3389/fpsyt.2020.00703, PMID: PubMed DOI PMC

Larke R. K., Toubiana A., Lindsay K. A., Mendoza S. P., Bales K. L. (2017). Infant titi monkey behaviour in the open field test and the effect of early adversity. Am. J. Primatol. 79:10. doi: 10.1002/ajp.22678, PMID: PubMed DOI PMC

Levin E. D., Bencan Z., Cerutti D. T. (2007). Modeling withdrawal syndrome in zebrafish. Physiol. Behav. 90, 54–58. doi: 10.1016/j.physbeh.2006.08.026, PMID: PubMed DOI

Lipska B. K., Weinberger D. R. (2000). To model a psychiatric disorder in animals: schizophrenia as a reality test. Neuropsychopharmacology 23, 223–239. doi: 10.1016/S0893-133X(00)00137-8 PubMed DOI

Mac Rae C. A., Peterson R. T. (2015). Zebrafish as tools for drug discovery. Nat. Rev. Drug Discov. 14, 721–731. doi: 10.1038/nrd4627 PubMed DOI

Maximino C., De Brito T. M., da Silva Batista A. W., Herculano A. M., Morato S., Gouveia A., Jr. (2010a). Measuring anxiety in zebrafish: a critical review. Behav. Brain Res. 214, 157–171. doi: 10.1016/j.bbr.2010.05.031, PMID: PubMed DOI

Maximino C., de Brito T. M., de Mattos Dias C. A. G., Goouveia A., Jr., Morato S. (2010b). Scototaxis as anxiety-like behavior in fish. Nat. Protoc. 5, 209–216. doi: 10.1038/nprot.2009.225 PubMed DOI

Moller P. (1995). Electric fishes: History and behaviour. London: Chapman & Hall.

Okuyama T., Takagi S., Nakada T., Tsuda S., Takahashi T. (2020). Neurochemical and behavioral responses to acute and chronic social defeat stress in zebrafish. Behav. Brain Res. 377:112232. PubMed

Oliveira R. F., Silva J. F., Simões J. M. (2011). Fighting zebrafish: characterization of aggressive behavior and winner-loser effects. Zebrafish 8, 73–81. doi: 10.1089/zeb.2011.0690 PubMed DOI

Onyeche V. E. O., Onyeche L. E., Akankali J. A., Enodiana I. O., Ebenuwa P. (2013). Food and fish feeding habits in Anwai stream ichthyofauna, Niger-Delta. Int. J. Fish. Aquac. 5, 286–294. doi: 10.5897/IJFA DOI

Oostenveld R., Fries P., Maris E., Schoffelen J. M. (2011). Field trip: open-source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput. Intell. Neurosci. 2011, 1–9. doi: 10.1155/2011/156869, PMID: PubMed DOI PMC

Powell S. B., Zhou X., Geyer M. A. (2009). Prepulse inhibition and genetic mouse models of schizophrenia. Behav. Brain Res. 204, 282–294. doi: 10.1016/j.bbr.2009.04.021, PMID: PubMed DOI PMC

Prut L., Belzung C. (2003). The open field as a paradigm to measure the effects of drugs on anxiety-like behaviours: A review. Eur. J. Pharmacol. 463, 3–33. doi: 10.1016/s0014-2999(03)01272-x PubMed DOI

R Core Team (2021). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

Ramos A., Pereira E., Martins G. C., Wehrmeister T. D., Izídio G. S. (2008). Integrating the open field, elevated plus maze and light/dark box to assess different types of emotional behaviours in one single trial. Behav. Brain Res. 193, 277–288. doi: 10.1016/j.bbr.2008.06.007, PMID: PubMed DOI

Richendrfer H., Pelkowski S. D., Colwill R. M., Creton R. (2012). On the edge: pharmacological evidence for anxiety-related behaviour in zebrafish larvae. Behav. Brain Res. 228, 99–106. doi: 10.1016/j.bbr.2011.11.041, PMID: PubMed DOI PMC

Riehl R., Kyzar E., Allain A., Green J., Hook M., Monnig L., et al. . (2011). Behavioural and physiological effects of acute ketamine exposure in adult zebrafish. Neurotoxicol. Teratol. 33, 658–667. doi: 10.1016/j.ntt.2011.05.011, PMID: PubMed DOI

Rodgers R. J., Cao B. J., Dalvi A., Holmes A. (1997). Animal models of anxiety: an ethological perspective. Braz. J. Med. Biol. Res. 30, 289–304. doi: 10.1590/s0100-879x1997000300002, PMID: PubMed DOI

Rosemberg D. B., Rico E. P., Mussulini B. H. M., Piato A. L., Calcagnotto M. E., Bonan C. D., et al. . (2011). Differences in spatio-temporal behavior of zebrafish in the open tank paradigm after a short-period confinement into dark and bright environment. PLoS One 6:e19397. doi: 10.1371/journal.pone.0019397, PMID: PubMed DOI PMC

Schmitt U., Hiemke C. (1998). Combination of open field and elevated plus-maze: a suitable test battery to assess strain as well as treatment differences in rat behaviour. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 22, 1197–1215. doi: 10.1016/s0278-5846(98)00051-7 PubMed DOI

Seibenhener M. L., Wooten M. C. (2015). Use of the open field maze to measure locomotor and anxiety-like behaviour in mice. J. Vis. Exp. 96:5243. doi: 10.3791/52434, PMID: PubMed DOI PMC

Simon P., Dupuis R., Costentin J. (1994). Thigmotaxis as an index of anxiety in mice: influence of dopaminergic transmissions. Behav. Brain Res. 61, 59–64. doi: 10.1016/0166-4328(94)90008-6, PMID: PubMed DOI

Speedie N., Gerlai R. (2008). Alarm substance induced behavioral responses in zebrafish (Danio rerio). Behav. Brain Res. 188, 168–177. doi: 10.1016/j.bbr.2007.10.031, PMID: PubMed DOI PMC

Stewart A., Cachat J., Wong K., Gaikwad S., Gilder T., Dileo J., et al. . (2010). Homebase behaviour of zebrafish in novelty-based paradigms. Behav. Process. 85, 198–203. doi: 10.1016/j.beproc.2010.07.009, PMID: PubMed DOI

Stewart A., Gaikwad S., Kyzar E., Green J., Roth A., Kalueff A. V. (2012). Modeling anxiety using adult zebrafish: A conceptual review. Neuropharmacology 62, 135–143. doi: 10.1016/j.neuropharm.2011.07.037, PMID: PubMed DOI PMC

Stewart A. M., Gajkwad S., Kyzar E., Kalueff A. V. (2012). Understanding spatiotemporal strategies of adult zebrafish exploration in the open field test. Brain Res. 1451, 44–52. doi: 10.1016/j.brainres.2012.02.064, PMID: PubMed DOI

Toerring M. J., Belbenoit P. (1979). Motor programmes and electroreception in Mormyrid fish. Behav. Ecol. Sociobiol. 4, 369–379. doi: 10.1007/BF00303243 DOI

Treit D., Fundytus M. (1988). Thigmotaxis as a test for anxiolytic activity in rats. Pharmacol. Biochem. Behav. 31, 959–962. doi: 10.1016/0091-3057(88)90413-3, PMID: PubMed DOI

von der Emde G. (1993). The sensing of electrical capacitances by weakly electric mormyrid fish: effects of water conductivity. J. Exp. Biol. 181, 157–173. doi: 10.1242/jeb.181.1.157 DOI

von der Emde G. (1999). Active electrolocation of objects in weakly electric fish. J. Exp. Biol. 202, 1205–1215. doi: 10.1242/jeb.202.10.1205 PubMed DOI

von der Emde G., Amey M., Engelmann J., Fetz S., Folde C., Hollmann M., et al. . (2008). Active electrolocation in Gnathonemus petersii: behaviour, sensory performance, and receptor systems. J. Physiol. Paris 102, 279–290. doi: 10.1016/j.jphysparis.2008.10.017, PMID: PubMed DOI

von der Emde G., Fetz S. (2007). Distance, shape and more: recognition of object features during active electrolocation in a weakly electric fish. J. Exp. Biol. 210, 3082–3095. doi: 10.1242/jeb.005694 PubMed DOI

von der Emde G., Zelick R. (1995). Behavioral detection of electric signal waveform distortion in the weakly electric fish, Gnathonemus petersii. J. Comp. Physiol. 177, 493–501. doi: 10.1007/BF00187484 DOI

Walsh R. N., Cummins R. A. (1976). The open field test: A critical review. Psychol. Bull. 83, 482–504. doi: 10.1037/0033-2909.83.3.482 PubMed DOI

Wong K., Elegante M., Bartels B., Elkhayat S., Tien D., Roy S., et al. . (2010). Analyzing habituation responses to novelty in zebrafish (Danio rerio). Behav. Brain Res. 208, 450–457. doi: 10.1016/j.bbr.2009.12.023, PMID: PubMed DOI

Yue S., Kandel E. R. (2020). Visual learning and memory in goldfish: from cellular to circuit level. Curr. Opin. Neurobiol. 60, 135–144.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...