Transmembrane adaptor protein PAG/CBP is involved in both positive and negative regulation of mast cell signaling
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25246632
PubMed Central
PMC4248753
DOI
10.1128/mcb.00983-14
PII: MCB.00983-14
Knihovny.cz E-zdroje
- MeSH
- anafylaxe genetika MeSH
- buňky kostní dřeně metabolismus fyziologie MeSH
- C-terminální Src kinasa MeSH
- degranulace buněk MeSH
- fosfolipasy typu C metabolismus MeSH
- fosfoproteiny genetika MeSH
- fosforylace MeSH
- intracelulární signální peptidy a proteiny metabolismus MeSH
- kinasa Syk MeSH
- malá interferující RNA MeSH
- mastocyty metabolismus fyziologie MeSH
- membránové proteiny genetika MeSH
- myši inbrední C57BL MeSH
- myši knockoutované MeSH
- myši MeSH
- protoonkogenní proteiny c-fyn biosyntéza MeSH
- protoonkogenní proteiny c-kit metabolismus MeSH
- receptory IgE metabolismus MeSH
- RNA interference MeSH
- signální transdukce MeSH
- skupina kinas odvozených od src-genu biosyntéza metabolismus MeSH
- tyrosinkinasy metabolismus MeSH
- vápník metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- C-terminální Src kinasa MeSH
- fosfolipasy typu C MeSH
- fosfoproteiny MeSH
- Fyn protein, mouse MeSH Prohlížeč
- intracelulární signální peptidy a proteiny MeSH
- kinasa Syk MeSH
- lyn protein-tyrosine kinase MeSH Prohlížeč
- malá interferující RNA MeSH
- membránové proteiny MeSH
- Pag1 protein, mouse MeSH Prohlížeč
- protoonkogenní proteiny c-fyn MeSH
- protoonkogenní proteiny c-kit MeSH
- receptory IgE MeSH
- skupina kinas odvozených od src-genu MeSH
- Syk protein, mouse MeSH Prohlížeč
- tyrosinkinasy MeSH
- vápník MeSH
The transmembrane adaptor protein PAG/CBP (here, PAG) is expressed in multiple cell types. Tyrosine-phosphorylated PAG serves as an anchor for C-terminal SRC kinase, an inhibitor of SRC-family kinases. The role of PAG as a negative regulator of immunoreceptor signaling has been examined in several model systems, but no functions in vivo have been determined. Here, we examined the activation of bone marrow-derived mast cells (BMMCs) with PAG knockout and PAG knockdown and the corresponding controls. Our data show that PAG-deficient BMMCs exhibit impaired antigen-induced degranulation, extracellular calcium uptake, tyrosine phosphorylation of several key signaling proteins (including the high-affinity IgE receptor subunits, spleen tyrosine kinase, and phospholipase C), production of several cytokines and chemokines, and chemotaxis. The enzymatic activities of the LYN and FYN kinases were increased in nonactivated cells, suggesting the involvement of a LYN- and/or a FYN-dependent negative regulatory loop. When BMMCs from PAG-knockout mice were activated via the KIT receptor, enhanced degranulation and tyrosine phosphorylation of the receptor were observed. In vivo experiments showed that PAG is a positive regulator of passive systemic anaphylaxis. The combined data indicate that PAG can function as both a positive and a negative regulator of mast cell signaling, depending upon the signaling pathway involved.
Zobrazit více v PubMed
Galli SJ, Borregaard N, Wynn TA. 2011. Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils. Nat. Immunol. 12:1035–1044. 10.1038/ni.2109. PubMed DOI PMC
Eiseman E, Bolen JB. 1992. Engagement of the high-affinity IgE receptor activates src protein-related tyrosine kinases. Nature 355:78–80. 10.1038/355078a0. PubMed DOI
Yamashita T, Mao S-Y, Metzger H. 1994. Aggregation of the high-affinity IgE receptor and enhanced activity of p53/p56lyn protein-tyrosine kinase. Proc. Natl. Acad. Sci. U. S. A. 91:11251–11255. 10.1073/pnas.91.23.11251. PubMed DOI PMC
Pribluda VS, Pribluda C, Metzger H. 1994. Transphosphorylation as the mechanism by which the high-affinity receptor for IgE is phosphorylated upon aggregation. Proc. Natl. Acad. Sci. U. S. A. 91:11246–11250. 10.1073/pnas.91.23.11246. PubMed DOI PMC
Field KA, Holowka D, Baird B. 1995. FcεRI-mediated recruitment of p53/56lyn to detergent-resistant membrane domains accompanies cellular signaling. Proc. Natl. Acad. Sci. U. S. A. 92:9201–9205. 10.1073/pnas.92.20.9201. PubMed DOI PMC
Heneberg P, Dráberová L, Bambousková M, Pompach P, Dráber P. 2010. Down-regulation of protein tyrosine phosphatases activates an immune receptor in the absence of its translocation into lipid rafts. J. Biol. Chem. 285:12787–12802. 10.1074/jbc.M109.052555. PubMed DOI PMC
Tolar P, Dráberová L, Tolarová H, Dráber P. 2004. Positive and negative regulation of Fcε receptor I-mediated signaling events by Lyn kinase C-terminal tyrosine phosphorylation. Eur. J. Immunol. 34:1136–1145. 10.1002/eji.200324505. PubMed DOI
Bergman M, Mustelin T, Oetken C, Partanen J, Flint NA, Amrein KA, Autero M, Burn P, Alitalo K. 1992. The human p50 csk tyrosine kinase phosphorylates p56 lck at tyr-505 and down regulates its catalytic activity. EMBO J. 11:2919–2924. PubMed PMC
Plas DR, Thomas ML. 1998. Negative regulation of antigen receptor signaling in lymphocytes. J. Mol. Med. (Berl.) 76:589–595. 10.1007/s001090050254. PubMed DOI
Nada S, Okada M, MacAuley A, Cooper JA, Nakagawa H. 1991. Cloning of a complementary DNA for a protein-tyrosine kinase that specifically phosphorylates a negative regulatory site for p60c-src. Nature 351:69–72. 10.1038/351069a0. PubMed DOI
Brdička T, Pavlistová D, Leo A, Bruyns E, Kořínek V, Angelisová P, Scherer J, Shevchenko A, Hilgert I, Černý J, Drbal K, Kuramitsu Y, Kornacker B, Hořejší V, Schraven B. 2000. Phosphoprotein associated with glycosphingolipid-enriched microdomains (PAG), a novel ubiquitously expressed transmembrane adaptor protein, binds the protein tyrosine kinase csk and is involved in regulation of T cell activation. J. Exp. Med. 191:1591–1604. 10.1084/jem.191.9.1591. PubMed DOI PMC
Kawabuchi M, Satomi Y, Takao T, Shimonishi Y, Nada S, Nagai K, Tarakhovsky A, Okada M. 2000. Transmembrane phosphoprotein Cbp regulates the activities of Src-family tyrosine kinases. Nature 404:999–1003. 10.1038/35010121. PubMed DOI
Brdičková N, Brdička T, ěra L, Špička J, Angelisová P, Milgram SL, Hořejší V. 2001. Interaction between two adapter proteins, PAG and EBP50: a possible link between membrane rafts and actin cytoskeleton. FEBS Lett. 507:133–136. 10.1016/S0014-5793(01)02955-6. PubMed DOI
Draber P, Halova I, Levi-Schaffer F, Draberova L. 2012. Transmembrane adaptor proteins in the high-affinity IgE receptor signaling. Front. Immunol. 2:1–11. 10.3389/fimmu.2011.00095. PubMed DOI PMC
Hrdinka M, Horejsi V. 11 November 2013. PAG—a multipurpose transmembrane adaptor protein. Oncogene 10.1038/onc.2013.485. PubMed DOI
Smida M, Cammann C, Gurbiel S, Kerstin N, Lingel H, Lindquist S, Simeoni L, Brunner-Weinzierl MC, Suchanek M, Schraven B, Lindquist JA. 2013. PAG/Cbp suppression reveals a contribution of CTLA-4 to setting the activation threshold in T cells. Cell Commun. Signal. 11:28. 10.1186/1478-811X-11-28. PubMed DOI PMC
Dobenecker MW, Schmedt C, Okada M, Tarakhovsky A. 2005. The ubiquitously expressed Csk adaptor protein Cbp is dispensable for embryogenesis and T-cell development and function. Mol. Cell. Biol. 25:10533–10542. 10.1128/MCB.25.23.10533-10542.2005. PubMed DOI PMC
Xu S, Huo J, Tan JE, Lam KP. 2005. Cbp deficiency alters Csk localization in lipid rafts but does not affect T-cell development. Mol. Cell. Biol. 25:8486–8495. 10.1128/MCB.25.19.8486-8495.2005. PubMed DOI PMC
Odom S, Gomez G, Kovarova M, Furumoto Y, Ryan JJ, Wright HV, Gonzalez-Espinosa C, Hibbs ML, Harder KW, Rivera J. 2004. Negative regulation of immunoglobulin E-dependent allergic responses by Lyn kinase. J. Exp. Med. 199:1491–1502. 10.1084/jem.20040382. PubMed DOI PMC
Kitaura J, Kawakami Y, Maeda-Yamamoto M, Horejsi V, Kawakami T. 2007. Dysregulation of Src family kinases in mast cells from epilepsy-resistant ASK versus epilepsy-prone EL mice. J. Immunol. 178:455–462. 10.4049/jimmunol.178.1.455. PubMed DOI
Ohtake H, Ichikawa N, Okada M, Yamashita T. 2002. Cutting edge: transmembrane phosphoprotein Csk-binding protein/phosphoprotein associated with glycosphingolipid-enriched microdomains as a negative feedback regulator of mast cell signaling through the FcεRI. J. Immunol. 168:2087–2090. 10.4049/jimmunol.168.5.2087. PubMed DOI
Nishizumi H, Horikawa K, Mlinaric-Rascan I, Yamamoto T. 1998. A double-edged kinase Lyn: a positive and negative regulator for antigen receptor-mediated signals. J. Exp. Med. 187:1343–1348. 10.1084/jem.187.8.1343. PubMed DOI PMC
Kawakami Y, Kitaura J, Satterthwaite AB, Kato RM, Asai K, Hartman SE, Maeda-Yamamoto M, Lowell CA, Rawlings DJ, Witte ON, Kawakami T. 2000. Redundant and opposing functions of two tyrosine kinases, Btk and Lyn, in mast cell activation. J. Immunol. 165:1210–1219. 10.4049/jimmunol.165.3.1210. PubMed DOI
Parravicini V, Gadina M, Kovarova M, Odom S, Gonzalez-Espinosa C, Furumoto Y, Saitoh S, Samelson LE, O'Shea JJ, Rivera J. 2002. Fyn kinase initiates complementary signals required for IgE-dependent mast cell degranulation. Nat. Immunol. 3:741–748. 10.1038/ni817. PubMed DOI
Yang Y, Seed B. 2003. Site-specific gene targeting in mouse embryonic stem cells with intact bacterial artificial chromosomes. Nat. Biotechnol. 21:447–451. 10.1038/nbt803. PubMed DOI
Lindquist S, Karitkina D, Langnaese K, Posevitz-Fejfar A, Schraven B, Xavier R, Seed B, Lindquist JA. 2011. Phosphoprotein associated with glycosphingolipid-enriched microdomains differentially modulates SRC kinase activity in brain maturation. PLoS One 6:e23978. 10.1371/journal.pone.0023978. PubMed DOI PMC
National Research Council. 2011. Guide for the care and use of laboratory animals, 8th ed. National Academies Press, Washington, DC.
Tolar P, Tůmová M, Dráber P. 2001. New monoclonal antibodies recognizing the adaptor protein LAT. Folia Biol. (Praha) 47:215–217. PubMed
Dráberová L, Amoui M, Dráber P. 1996. Thy-1-mediated activation of rat mast cells: the role of Thy-1 membrane microdomains. Immunology 87:141–148. PubMed PMC
Rivera J, Kinet J-P, Kim J, Pucillo C, Metzger H. 1988. Studies with a monoclonal antibody to the β subunit of the receptor with high affinity for immunoglobulin E. Mol. Immunol. 25:647–661. 10.1016/0161-5890(88)90100-9. PubMed DOI
Rudolph AK, Burrows PD, Wabl MR. 1981. Thirteen hybridomas secreting hapten-specific immunoglobulin E from mice with Iga or Igb heavy chain haplotype. Eur. J. Immunol. 11:527–529. 10.1002/eji.1830110617. PubMed DOI
Kovářová M, Tolar P, Arudchandran R, Dráberová L, Rivera J, Dráber P. 2001. Structure-function analysis of Lyn kinase association with lipid rafts and initiation of early signaling events after Fcε receptor I aggregation. Mol. Cell. Biol. 21:8318–8328. 10.1128/MCB.21.24.8318-8328.2001. PubMed DOI PMC
Surviladze Z, Dráberová L, Kovářová M, Boubelík M, Dráber P. 2001. Differential sensitivity to acute cholesterol lowering of activation mediated via the high-affinity IgE receptor and Thy-1 glycoprotein. Eur. J. Immunol. 31:1–10. 10.1002/1521-4141(200101)31:1<1::AID-IMMU1>3.0.CO;2-W. PubMed DOI
Dráberová L. 1990. Cyclosporin A inhibits rat mast cell activation. Eur. J. Immunol. 20:1469–1473. 10.1002/eji.1830200710. PubMed DOI
Surviladze Z, Dráberová L, Kubínová L, Dráber P. 1998. Functional heterogeneity of Thy-1 membrane microdomains in rat basophilic leukemia cells. Eur. J. Immunol. 28:1847–1858. 10.1002/(SICI)1521-4141(199806)28:06<1847::AID-IMMU1847>3.0.CO;2-O. PubMed DOI
Amoui M, Dráber P, Dráberová L. 1997. Src family-selective tyrosine kinase inhibitor, PP1, inhibits both FcεRI- and Thy-1-mediated activation of rat basophilic leukemia cells. Eur. J. Immunol. 27:1881–1886. 10.1002/eji.1830270810. PubMed DOI
Horáková H, Polakovičová I, Shaik GM, Eitler J, Bugajev V, Dráberová L, Dráber P. 2011. 1,2-Propanediol-trehalose mixture as a potent quantitative real-time PCR enhancer. BMC Biotechnol. 11:41. 10.1186/1472-6750-11-41. PubMed DOI PMC
Potůčková L, Franko F, Bambousková M, Dráber P. 2011. Rapid and sensitive detection of cytokines using functionalized gold nanoparticle-based immuno-PCR, comparison with immuno-PCR and ELISA. J. Immunol. Methods 371:38–47. 10.1016/j.jim.2011.06.012. PubMed DOI
Makabe-Kobayashi Y, Hori Y, Adachi T, Ishigaki-Suzuki S, Kikuchi Y, Kagaya Y, Shirato K, Nagy A, Ujike A, Takai T, Watanabe T, Ohtsu H. 2002. The control effect of histamine on body temperature and respiratory function in IgE-dependent systemic anaphylaxis. J. Allergy Clin. Immunol. 110:298–303. 10.1067/mai.2002.125977. PubMed DOI
Thastrup O, Dawson AP, Scharff O, Foder B, Cullen PJ, Drobak BK, Bjerrum PJ, Christensen SB, Hanley MR. 1989. Thapsigargin, a novel molecular probe for studying intracellular calcium release and storage. Agents Actions 27:17–23. 10.1007/BF02222186. PubMed DOI
Putney JW., Jr 2005. Capacitative calcium entry: sensing the calcium stores. J. Cell Biol. 169:381–382. 10.1083/jcb.200503161. PubMed DOI PMC
Volná P, Lebduška P, Dráberová L, Šímová S, Heneberg P, Boubelík M, Bugajev V, Malissen B, Wilson BS, Hořejší V, Malissen M, Dráber P. 2004. Negative regulation of mast cell signaling and function by the adaptor LAB/NTAL. J. Exp. Med. 200:1001–1013. 10.1084/jem.20041213. PubMed DOI PMC
Gilfillan AM, Rivera J. 2009. The tyrosine kinase network regulating mast cell activation. Immunol. Rev. 228:149–169. 10.1111/j.1600-065X.2008.00742.x. PubMed DOI PMC
Huang C, Jacobson K, Schaller MD. 2004. MAP kinases and cell migration. J. Cell Sci. 117:4619–4628. 10.1242/jcs.01481. PubMed DOI
Nocka KH, Levine BA, Ko JL, Burch PM, Landgraf BE, Segal R, Lobell R. 1997. Increased growth promoting but not mast cell degranulation potential of a covalent dimer of c-Kit ligand. Blood 90:3874–3883. PubMed
Heneberg P, Dráber P. 2002. Nonreceptor protein tyrosine and lipid phosphatases in type I Fcε receptor-mediated activation of mast cells and basophils. Int. Arch. Allergy Immunol. 128:253–263. 10.1159/000063864. PubMed DOI
Hernandez-Hansen V, Smith AJ, Surviladze Z, Chigaev A, Mazel T, Kalesnikoff J, Lowell CA, Krystal G, Sklar LA, Wilson BS, Oliver JM. 2004. Dysregulated FcεRI signaling and altered Fyn and SHIP activities in Lyn-deficient mast cells. J. Immunol. 173:100–112. 10.4049/jimmunol.173.1.100. PubMed DOI
Huber M, Helgason CD, Damen JE, Liu L, Humphries RK, Krystal G. 1998. The src homology 2-containing inositol phosphatase (SHIP) is the gatekeeper of mast cell degranulation. Proc. Natl. Acad. Sci. U. S. A. 95:11330–11335. 10.1073/pnas.95.19.11330. PubMed DOI PMC
Gilfillan AM, Tkaczyk C. 2006. Integrated signalling pathways for mast-cell activation. Nat. Rev. Immunol. 6:218–230. 10.1038/nri1782. PubMed DOI
Iwaki S, Tkaczyk C, Satterthwaite AB, Halcomb K, Beaven MA, Metcalfe DD, Gilfillan AM. 2005. Btk plays a crucial role in the amplification of FcεRI-mediated mast cell activation by kit. J. Biol. Chem. 280:40261–40270. 10.1074/jbc.M506063200. PubMed DOI
Iwaki S, Spicka J, Tkaczyk C, Jensen BM, Furumoto Y, Charles N, Kovarova M, Rivera J, Horejsi V, Metcalfe DD, Gilfillan AM. 2008. Kit- and FcεRI-induced differential phosphorylation of the transmembrane adaptor molecule NTAL/LAB/LAT2 allows flexibility in its scaffolding function in mast cells. Cell. Signal. 20:195–205. 10.1016/j.cellsig.2007.10.013. PubMed DOI PMC
Halova I, Draberova L, Draber P. 2012. Mast cell chemotaxis—chemoattractants and signaling pathways. Front. Immunol. 3:119. 10.3389/fimmu.2012.00119. PubMed DOI PMC
Pullen NA, Barnstein BO, Falanga YT, Wang Z, Suzuki R, Tamang TD, Khurana MC, Harry EA, Draber P, Bunting KD, Mizuno K, Wilson BS, Ryan JJ. 2012. Novel mechanism for FcεRI-mediated signal transducer and activator of transcription 5 (STAT5) tyrosine phosphorylation and the selective influence of STAT5B over mast cell cytokine production. J. Biol. Chem. 287:2045–2054. 10.1074/jbc.M111.311142. PubMed DOI PMC
Grange M, Verdeil G, Arnoux F, Griffon A, Spicuglia S, Maurizio J, Buferne M, Schmitt-Verhulst AM, Auphan-Anezin N. 2013. Active STAT5 regulates T-bet and eomesodermin expression in CD8 T cells and imprints a T-bet-dependent Tc1 program with repressed IL-6/TGF-beta1 signaling. J. Immunol. 191:3712–3724. 10.4049/jimmunol.1300319. PubMed DOI
Pullen NA, Falanga YT, Morales JK, Ryan JJ. 2012. The Fyn-STAT5 pathway: a new frontier in IgE- and IgG-mediated mast cell signaling. Front. Immunol. 3:117. 10.3389/fimmu.2012.00117. PubMed DOI PMC
Huber M, Helgason CD, Scheid MP, Duronio V, Humphries RK, Krystal G. 1998. Targeted disruption of SHIP leads to Steel factor-induced degranulation of mast cells. EMBO J. 17:7311–7319. 10.1093/emboj/17.24.7311. PubMed DOI PMC
Deakin NO, Turner CE. 2008. Paxillin comes of age. J. Cell Sci. 121:2435–2444. 10.1242/jcs.018044. PubMed DOI PMC
Fang X, Lang Y, Wang Y, Mo W, Wei H, Xie J, Yu M. 2012. Shp2 activates Fyn and Ras to regulate RBL-2H3 mast cell activation following FcεRI aggregation. PLoS One 7:e40566. 10.1371/journal.pone.0040566. PubMed DOI PMC
Broad LM, Braun FJ, Lievremont JP, Bird GS, Kurosaki T, Putney JW., Jr 2001. Role of the phospholipase C-inositol 1,4,5-trisphosphate pathway in calcium release-activated calcium current and capacitative calcium entry. J. Biol. Chem. 276:15945–15952. 10.1074/jbc.M011571200. PubMed DOI
Litjens T, Nguyen T, Castro J, Aromataris EC, Jones L, Barritt GJ, Rychkov GY. 2007. Phospholipase C-γ1 is required for the activation of store-operated Ca2+ channels in liver cells. Biochem. J. 405:269–276. 10.1042/BJ20061762. PubMed DOI PMC
Antigny F, Jousset H, Konig S, Frieden M. 2011. Thapsigargin activates Ca2+ entry both by store-dependent, STIM1/Orai1-mediated, and store-independent, TRPC3/PLC/PKC-mediated pathways in human endothelial cells. Cell Calcium 49:115–127. 10.1016/j.ceca.2010.12.001. PubMed DOI
Baba Y, Nishida K, Fujii Y, Hirano T, Hikida M, Kurosaki T. 2008. Essential function for the calcium sensor STIM1 in mast cell activation and anaphylactic responses. Nat. Immunol. 9:81–88. 10.1038/ni1546. PubMed DOI
Hájková Z, Bugajev V, Dráberová E, Vinopal S, Dráberová L, Janáček J, Dráber P, Dráber P. 2011. STIM1-directed reorganization of microtubules in activated mast cells. J. Immunol. 186:913–923. 10.4049/jimmunol.1002074. PubMed DOI
Chung SC, Limnander A, Kurosaki T, Weiss A, Korenbrot JI. 2007. Coupling Ca2+ store release to Icrac channel activation in B lymphocytes requires the activity of Lyn and Syk kinases. J. Cell Biol. 177:317–328. 10.1083/jcb.200702050. PubMed DOI PMC
Timokhina I, Kissel H, Stella G, Besmer P. 1998. Kit signaling through PI 3-kinase and Src kinase pathways: an essential role for Rac1 and JNK activation in mast cell proliferation. EMBO J. 17:6250–6262. 10.1093/emboj/17.21.6250. PubMed DOI PMC
Linnekin D, DeBerry CS, Mou S. 1997. Lyn associates with the juxtamembrane region of c-Kit and is activated by stem cell factor in hematopoietic cell lines and normal progenitor cells. J. Biol. Chem. 272:27450–27455. 10.1074/jbc.272.43.27450. PubMed DOI
Lennartsson J, Ronnstrand L. 2012. Stem cell factor receptor/c-Kit: from basic science to clinical implications. Physiol. Rev. 92:1619–1649. 10.1152/physrev.00046.2011. PubMed DOI
Barnstein BO, Li G, Wang Z, Kennedy S, Chalfant C, Nakajima H, Bunting KD, Ryan JJ. 2006. Stat5 expression is required for IgE-mediated mast cell function. J. Immunol. 177:3421–3426. 10.4049/jimmunol.177.5.3421. PubMed DOI
Morales JK, Falanga YT, Depcrynski A, Fernando J, Ryan JJ. 2010. Mast cell homeostasis and the JAK-STAT pathway. Genes Immun. 11:599–608. 10.1038/gene.2010.35. PubMed DOI PMC
Hálová I, Dráberová L, Bambousková M, Machyna M, Stegurová L, Smrž D, Dráber P. 2013. Crosstalk between tetraspanin CD9 and transmembrane adaptor protein non-T cell activation linker (NTAL) in mast cell activation and chemotaxis. J. Biol. Chem. 288:9801–9814. 10.1074/jbc.M112.449231. PubMed DOI PMC
Samayawardhena LA, Hu J, Stein PL, Craig AW. 2006. Fyn kinase acts upstream of Shp2 and p38 mitogen-activated protein kinase to promote chemotaxis of mast cells towards stem cell factor. Cell. Signal. 18:1447–1454. 10.1016/j.cellsig.2005.11.005. PubMed DOI
Samayawardhena LA, Kapur R, Craig AW. 2007. Involvement of Fyn kinase in Kit and integrin-mediated Rac activation, cytoskeletal reorganization, and chemotaxis of mast cells. Blood 109:3679–3686. 10.1182/blood-2006-11-057315. PubMed DOI PMC
Metcalfe DD, Baram D, Mekori YA. 1997. Mast cells. Physiol. Rev. 77:1033–1079. PubMed
Williams CM, Galli SJ. 2000. The diverse potential effector and immunoregulatory roles of mast cells in allergic disease. J. Allergy Clin. Immunol. 105:847–859. 10.1067/mai.2000.106485. PubMed DOI
Schuck S, Honsho M, Ekroos K, Shevchenko A, Simons K. 2003. Resistance of cell membranes to different detergents. Proc. Natl. Acad. Sci. U. S. A. 100:5795–5800. 10.1073/pnas.0631579100. PubMed DOI PMC
Garner AE, Smith DA, Hooper NM. 2008. Visualization of detergent solubilization of membranes: implications for the isolation of rafts. Biophys. J. 94:1326–1340. 10.1529/biophysj.107.114108. PubMed DOI PMC
Mast Cell Migration and Chemotaxis Assayed by Microscopy
Tetraspanins and Transmembrane Adaptor Proteins As Plasma Membrane Organizers-Mast Cell Case
Signal transduction and chemotaxis in mast cells
New Regulatory Roles of Galectin-3 in High-Affinity IgE Receptor Signaling