1,2-propanediol-trehalose mixture as a potent quantitative real-time PCR enhancer
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
21501492
PubMed Central
PMC3102612
DOI
10.1186/1472-6750-11-41
PII: 1472-6750-11-41
Knihovny.cz E-zdroje
- MeSH
- DNA chemie genetika MeSH
- fluorescenční barviva chemie MeSH
- lidé MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- polymerázová řetězová reakce přístrojové vybavení MeSH
- propylenglykol chemie MeSH
- trehalosa chemie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA MeSH
- fluorescenční barviva MeSH
- propylenglykol MeSH
- trehalosa MeSH
BACKGROUND: Quantitative real-time PCR (qPCR) is becoming increasingly important for DNA genotyping and gene expression analysis. For continuous monitoring of the production of PCR amplicons DNA-intercalating dyes are widely used. Recently, we have introduced a new qPCR mix which showed improved amplification of medium-size genomic DNA fragments in the presence of DNA dye SYBR green I (SGI). In this study we tested whether the new PCR mix is also suitable for other DNA dyes used for qPCR and whether it can be applied for amplification of DNA fragments which are difficult to amplify. RESULTS: We found that several DNA dyes (SGI, SYTO-9, SYTO-13, SYTO-82, EvaGreen, LCGreen or ResoLight) exhibited optimum qPCR performance in buffers of different salt composition. Fidelity assays demonstrated that the observed differences were not caused by changes in Taq DNA polymerase induced mutation frequencies in PCR mixes of different salt composition or containing different DNA dyes. In search for a PCR mix compatible with all the DNA dyes, and suitable for efficient amplification of difficult-to-amplify DNA templates, such as those in whole blood, of medium size and/or GC-rich, we found excellent performance of a PCR mix supplemented with 1 M 1,2-propanediol and 0.2 M trehalose (PT enhancer). These two additives together decreased DNA melting temperature and efficiently neutralized PCR inhibitors present in blood samples. They also made possible more efficient amplification of GC-rich templates than betaine and other previously described additives. Furthermore, amplification in the presence of PT enhancer increased the robustness and performance of routinely used qPCRs with short amplicons. CONCLUSIONS: The combined data indicate that PCR mixes supplemented with PT enhancer are suitable for DNA amplification in the presence of various DNA dyes and for a variety of templates which otherwise can be amplified with difficulty.
Zobrazit více v PubMed
Bustin SA. A-Z of Quantitative PCR. International University Line. La Jolla, California; 2004.
Zipper H, Brunner H, Bernhagen J, Vitzthum F. Investigations on DNA intercalation and surface binding by SYBR Green I, its structure determination and methodological implications. Nucleic Acids Res. 2004;32(12):e103. doi: 10.1093/nar/gnh101. PubMed DOI PMC
Mao F, Leung WY, Xin X. Characterization of EvaGreen and the implication of its physicochemical properties for qPCR applications. BMC Biotechnol. 2007;7:76. doi: 10.1186/1472-6750-7-76. PubMed DOI PMC
Monis PT, Giglio S, Saint CP. Comparison of SYTO9 and SYBR Green I for real-time polymerase chain reaction and investigation of the effect of dye concentration on amplification and DNA melting curve analysis. Anal Biochem. 2005;340(1):24–34. doi: 10.1016/j.ab.2005.01.046. PubMed DOI
Shaik GM, Draberova L, Draber P, Boubelik M, Draber P. Tetraalkylammonium derivatives as real-time PCR enhancers and stabilizers of the qPCR mixtures containing SYBR Green I. Nucleic Acids Res. 2008;36(15):e93. doi: 10.1093/nar/gkn421. PubMed DOI PMC
Higuchi R, Dollinger G, Walsh PS, Griffith R. Simultaneous amplification and detection of specific DNA sequences. Biotechnology (N Y ) 1992;10(4):413–7. doi: 10.1038/nbt0492-413. PubMed DOI
Wittwer CT, Herrmann MG, Moss AA, Rasmussen RP. Continuous fluorescence monitoring of rapid cycle DNA amplification. BioTechniques. 1997;22(1):130–8. PubMed
Ishiguro T, Saitoh J, Yawata H, Yamagishi H, Iwasaki S, Mitoma Y. Homogeneous quantitative assay of hepatitis C virus RNA by polymerase chain reaction in the presence of a fluorescent intercalater. Anal Biochem. 1995;229(2):207–13. doi: 10.1006/abio.1995.1404. PubMed DOI
Bengtsson M, Karlsson HJ, Westman G, Kubista M. A new minor groove binding asymmetric cyanine reporter dye for real-time PCR. Nucleic Acids Res. 2003;31(8):e45. doi: 10.1093/nar/gng045. PubMed DOI PMC
Wittwer CT, Reed GH, Gundry CN, Vandersteen JG, Pryor RJ. High-resolution genotyping by amplicon melting analysis using LCGreen. Clin Chem. 2003;49(6):853–60. doi: 10.1373/49.6.853. PubMed DOI
Gudnason H, Dufva M, Bang DD, Wolff A. Comparison of multiple DNA dyes for real-time PCR: effects of dye concentration and sequence composition on DNA amplification and melting temperature. Nucleic Acids Res. 2007;35(19):e127. doi: 10.1093/nar/gkm671. PubMed DOI PMC
Takano EA, Mitchell G, Fox SB, Dobrovic A. Rapid detection of carriers with BRCA1 and BRCA2 mutations using high resolution melting analysis. BMC Cancer. 2008;8:59. doi: 10.1186/1471-2407-8-59. PubMed DOI PMC
Mackay JF, Wright CD, Bonfiglioli RG. A new approach to varietal identification in plants by microsatellite high resolution melting analysis: application to the verification of grapevine and olive cultivars. Plant Methods. 2008;4:8. doi: 10.1186/1746-4811-4-8. PubMed DOI PMC
Barnes WM. PCR amplification of up to 35-kb DNA with high fidelity and high yield from λ bacteriophage templates. Proc Natl Acad Sci USA. 1994;91(6):2216–20. doi: 10.1073/pnas.91.6.2216. PubMed DOI PMC
Fujii S, Akiyama M, Aoki K, Sugaya Y, Higuchi K, Hiraoka M, Miki Y, Saitoh N, Yoshiyama K, Ihara K, Seki M, Ohtsubo E, Maki H. DNA replication errors produced by the replicative apparatus of Escherichia coli. J Mol Biol. 1999;289(4):835–50. doi: 10.1006/jmbi.1999.2802. PubMed DOI
Al-Soud WA, Jönsson LJ, Rådström P. Identification and characterization of immunoglobulin G in blood as a major inhibitor of diagnostic PCR. J Clin Microbiol. 2000;38(1):345–50. PubMed PMC
Al-Soud WA, Rådström P. Purification and characterization of PCR-inhibitory components in blood cells. J Clin Microbiol. 2001;39(2):485–93. doi: 10.1128/JCM.39.2.485-493.2001. PubMed DOI PMC
Spiess AN, Mueller N, Ivell R. Trehalose is a potent PCR enhancer: lowering of DNA melting temperature and thermal stabilization of Taq polymerase by the disaccharide trehalose. Clin Chem. 2004;50(7):1256–9. doi: 10.1373/clinchem.2004.031336. PubMed DOI
Sidhu MK, Liao MJ, Rashidbaigi A. Dimethyl sulfoxide improves RNA amplification. BioTechniques. 1996;21(1):44–7. PubMed
Jung M, Muche JM, Lukowsky A, Jung K, Loening SA. Dimethyl sulfoxide as additive in ready-to-use reaction mixtures for real-time polymerase chain reaction analysis with SYBR Green I dye. Anal Biochem. 2001;289(2):292–5. doi: 10.1006/abio.2000.4931. PubMed DOI
Weissensteiner T, Lanchbury JS. Strategy for controlling preferential amplification and avoiding false negatives in PCR typing. BioTechniques. 1996;21(6):1102–8. PubMed
Henke W, Herdel K, Jung K, Schnorr D, Loening SA. Betaine improves the PCR amplification of GC-rich DNA sequences. Nucleic Acids Res. 1997;25(19):3957–8. doi: 10.1093/nar/25.19.3957. PubMed DOI PMC
Baskaran N, Kandpal RP, Bhargava AK, Glynn MW, Bale A, Weissman SM. Uniform amplification of a mixture of deoxyribonucleic acids with varying GC content. Genome Res. 1996;6(7):633–8. doi: 10.1101/gr.6.7.633. PubMed DOI
Zhang Z, Yang X, Meng L, Liu F, Shen C, Yang W. Enhanced amplification of GC-rich DNA with two organic reagents. BioTechniques. 2009;47(3):775–9. doi: 10.2144/000113203. PubMed DOI
Motz M, Paabo S, Kilger C. Improved cycle sequencing of GC-rich templates by a combination of nucleotide analogs. BioTechniques. 2000;29(2):268–70. PubMed
Musso M, Bocciardi R, Parodi S, Ravazzolo R, Ceccherini I. Betaine, dimethyl sulfoxide, and 7-deaza-dGTP, a powerful mixture for amplification of GC-rich DNA sequences. J Mol Diagn. 2006;8(5):544–50. doi: 10.2353/jmoldx.2006.060058. PubMed DOI PMC
Zhang Z, Kermekchiev MB, Barnes WM. Direct DNA amplification from crude clinical samples using a PCR enhancer cocktail and novel mutants of taq. J Mol Diagn. 2010;12(2):152–61. doi: 10.2353/jmoldx.2010.090070. PubMed DOI PMC
Don RH, Cox PT, Wainwright BJ, Baker K, Mattick JS. 'Touchdown' PCR to circumvent spurious priming during gene amplification. Nucleic Acids Res. 1991;19(14):4008. doi: 10.1093/nar/19.14.4008. PubMed DOI PMC
Hubé F, Reverdiau P, Iochmann S, Gruel Y. Improved PCR method for amplification of GC-rich DNA sequences. Mol Biotechnol. 2005;31(1):81–4. PubMed
Kermekchiev MB, Kirilova LI, Vail EE, Barnes WM. Mutants of Taq DNA polymerase resistant to PCR inhibitors allow DNA amplification from whole blood and crude soil samples. Nucleic Acids Res. 2009;37(5):e40. doi: 10.1093/nar/gkn1055. PubMed DOI PMC
Owczarzy R, Moreira BG, You Y, Behlke MA, Walder JA. Predicting stability of DNA duplexes in solutions containing magnesium and monovalent cations. Biochemistry. 2008;47(19):5336–53. doi: 10.1021/bi702363u. PubMed DOI
McDowell DG, Burns NA, Parkes HC. Localised sequence regions possessing high melting temperatures prevent the amplification of a DNA mimic in competitive PCR. Nucleic Acids Res. 1998;26(14):3340–7. doi: 10.1093/nar/26.14.3340. PubMed DOI PMC
Carninci P, Nishiyama Y, Westover A, Itoh M, Nagaoka S, Sasaki N, Okazaki Y, Muramatsu M, Hayashizaki Y. Thermostabilization and thermoactivation of thermolabile enzymes by trehalose and its application for the synthesis of full length cDNA. Proc Natl Acad Sci USA. 1998;95(2):520–4. doi: 10.1073/pnas.95.2.520. PubMed DOI PMC
Chakrabarti R, Schutt C. Chemical PCR: Composition for enhancing polynucleotide amplification reactions. US patent 7772383. 2004.
Kovárová M, Dráber P. New specificity and yield enhancer of polymerase chain reactions. Nucleic Acids Res. 2000;28(13):e70. PubMed PMC
Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55(4):611–22. doi: 10.1373/clinchem.2008.112797. PubMed DOI
Wolff R, Gemmill R. In: Genome Analysis: A Laboratory Manual. Birren B, Green ED, Klapholz S, Myers RM, Roskams J, editor. Cold Spring Harbor, New York, NY, Cold Spring Harbor Laboratory Press; 1977. Purifying and Analyzing Genomic DNA; pp. 1–81.
Gregory TR. Animal Genome Size Database. 2010. http://www.genomesize.com
Volná P, Lebduška P, Dráberová L, Šímová S, Heneberg P, Boubelík M, Bugajev V, Malissen B, Wilson BS, Hořejší V, Malissen M, Dráber P. Negative Regulation of Mast Cell Signaling and Function by the Adaptor LAB/NTAL. J Exp Med. 2004;200(8):1001–13. PubMed PMC
Lackovich KK, Lee JE, Chang P, Rashtchian A. Measuring the fidelity of Platinum Pfx DNA polymerase. Focus. 2001;23:6–7.
Scalice ER, Sharkey DJ, Daiss JL. Monoclonal antibodies prepared against the DNA polymerase from Thermus aquaticus are potent inhibitors of enzyme activity. J Immunol Methods. 1994;172(2):147–63. doi: 10.1016/0022-1759(94)90102-3. PubMed DOI
Aposhian HV, Kornberg A. Enzymatic synthesis of deoxyribonucleic acid. IX. The polymerase formed after T2 bacteriophage infection of Escherichia coli: a new enzyme. J Biol Chem. 1962;237(2):519–25. PubMed
ORMDL2 Deficiency Potentiates the ORMDL3-Dependent Changes in Mast Cell Signaling
New Regulatory Roles of Galectin-3 in High-Affinity IgE Receptor Signaling