New Regulatory Roles of Galectin-3 in High-Affinity IgE Receptor Signaling

. 2016 May ; 36 (9) : 1366-82. [epub] 20160415

Jazyk angličtina Země Spojené státy americké Médium electronic-print

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26929198

Grantová podpora
P30 DK043351 NIDDK NIH HHS - United States
DK43351 NIDDK NIH HHS - United States

Aggregation of the high-affinity receptor for IgE (FcεRI) in mast cells initiates activation events that lead to degranulation and release of inflammatory mediators. To better understand the signaling pathways and genes involved in mast cell activation, we developed a high-throughput mast cell degranulation assay suitable for RNA interference experiments using lentivirus-based short hairpin RNA (shRNA) delivery. We tested 432 shRNAs specific for 144 selected genes for effects on FcεRI-mediated mast cell degranulation and identified 15 potential regulators. In further studies, we focused on galectin-3 (Gal3), identified in this study as a negative regulator of mast cell degranulation. FcεRI-activated cells with Gal3 knockdown exhibited upregulated tyrosine phosphorylation of spleen tyrosine kinase and several other signal transduction molecules and enhanced calcium response. We show that Gal3 promotes internalization of IgE-FcεRI complexes; this may be related to our finding that Gal3 is a positive regulator of FcεRI ubiquitination. Furthermore, we found that Gal3 facilitates mast cell adhesion and motility on fibronectin but negatively regulates antigen-induced chemotaxis. The combined data indicate that Gal3 is involved in both positive and negative regulation of FcεRI-mediated signaling events in mast cells.

Zobrazit více v PubMed

Galli SJ, Grimbaldeston M, Tsai M. 2008. Immunomodulatory mast cells: negative, as well as positive, regulators of immunity. Nat Rev Immunol 8:478–486. doi:10.1038/nri2327. PubMed DOI PMC

Galli SJ, Nakae S, Tsai M. 2005. Mast cells in the development of adaptive immune responses. Nat Immunol 6:135–142. doi:10.1038/ni1158. PubMed DOI

Galli SJ, Tsai M. 2012. IgE and mast cells in allergic disease. Nat Med 18:693–704. doi:10.1038/nm.2755. PubMed DOI PMC

Moon TC, Befus AD, Kulka M. 2014. Mast cell mediators: their differential release and the secretory pathways involved. Front Immunol 5:569. doi:10.3389/fimmu.2014.00569. PubMed DOI PMC

Kalesnikoff J, Galli SJ. 2008. New developments in mast cell biology. Nat Immunol 9:1215–1223. doi:10.1038/ni.f.216. PubMed DOI PMC

Gilfillan AM, Rivera J. 2009. The tyrosine kinase network regulating mast cell activation. Immunol Rev 228:149–169. doi:10.1111/j.1600-065X.2008.00742.x. PubMed DOI PMC

Suzuki R, Leach S, Liu W, Ralston E, Scheffel J, Zhang W, Lowell CA, Rivera J. 2014. Molecular editing of cellular responses by the high-affinity receptor for IgE. Science 343:1021–1025. doi:10.1126/science.1246976. PubMed DOI PMC

Bugajev V, Bambousková M, Dráberová L, Dráber P. 2010. What precedes the initial tyrosine phosphorylation of the high affinity IgE receptor in antigen-activated mast cell? FEBS Lett 584:4949–4955. doi:10.1016/j.febslet.2010.08.045. PubMed DOI

Zhang J, Mendoza M, Guiraldelli MF, Barbu EA, Siraganian RP. 2010. Small interfering RNA screen for phosphatases involved in IgE-mediated mast cell degranulation. J Immunol 184:7178–7185. doi:10.4049/jimmunol.0904169. PubMed DOI PMC

Liao J, Jijon HB, Kim IR, Goel G, Doan A, Sokol H, Bauer H, Herrmann BG, Lassen KG, Xavier RJ. 2014. An image-based genetic assay identifies genes in T1D susceptibility loci controlling cellular antiviral immunity in mouse. PLoS One 9:e108777. doi:10.1371/journal.pone.0108777. PubMed DOI PMC

Sharma S, Quintana A, Findlay GM, Mettlen M, Baust B, Jain M, Nilsson R, Rao A, Hogan PG. 2013. An siRNA screen for NFAT activation identifies septins as coordinators of store-operated Ca2+ entry. Nature 499:238–242. doi:10.1038/nature12229. PubMed DOI PMC

Zhang SL, Yeromin AV, Zhang XH, Yu Y, Safrina O, Penna A, Roos J, Stauderman KA, Cahalan MD. 2006. Genome-wide RNAi screen of Ca2+ influx identifies genes that regulate Ca2+ release-activated Ca2+ channel activity. Proc Natl Acad Sci U S A 103:9357–9362. doi:10.1073/pnas.0603161103. PubMed DOI PMC

Rudolph AK, Burrows PD, Wabl MR. 1981. Thirteen hybridomas secreting hapten-specific immunoglobulin E from mice with Iga or Igb heavy chain haplotype. Eur J Immunol 11:527–529. doi:10.1002/eji.1830110617. PubMed DOI

Tolar P, Dráberová L, Dráber P. 1997. Protein tyrosine kinase Syk is involved in Thy-1 signaling in rat basophilic leukemia cells. Eur J Immunol 27:3389–3397. doi:10.1002/eji.1830271238. PubMed DOI

Kovářová M, Tolar P, Arudchandran R, Dráberová L, Rivera J, Dráber P. 2001. Structure-function analysis of Lyn kinase association with lipid rafts and initiation of early signaling events after Fcε receptor I aggregation. Mol Cell Biol 21:8318–8328. doi:10.1128/MCB.21.24.8318-8328.2001. PubMed DOI PMC

Rivera J, Kinet J-P, Kim J, Pucillo C, Metzger H. 1988. Studies with a monoclonal antibody to the β subunit of the receptor with high affinity for immunoglobulin E. Mol Immunol 25:647–661. doi:10.1016/0161-5890(88)90100-9. PubMed DOI

Schmitt-Verhulst AM, Pettinelli CB, Henkart PA, Lunney JK, Shearer GM. 1978. H-2-restricted cytotoxic effectors generated in vitro by the addition of trinitrophenyl-conjugated soluble proteins. J Exp Med 147:352–368. doi:10.1084/jem.147.2.352. PubMed DOI PMC

Hájková Z, Bugajev V, Dráberová E, Vinopal S, Dráberová L, Janáček J, Dráber P, Dráber P. 2011. STIM1-directed reorganization of microtubules in activated mast cells. J Immunol 186:913–923. doi:10.4049/jimmunol.1002074. PubMed DOI

Hibbs ML, Tarlinton DM, Armes J, Grail D, Hodgson G, Maglitto R, Stacker SA, Dunn AR. 1995. Multiple defects in the immune system of Lyn-deficient mice, culminating in autoimmune disease. Cell 83:301–311. doi:10.1016/0092-8674(95)90171-X. PubMed DOI

Draberova L, Bugajev V, Potuckova L, Halova I, Bambouskova M, Polakovicova I, Xavier RJ, Seed B, Draber P. 2014. Transmembrane adaptor protein PAG/CBP is involved in both positive and negative regulation of mast cell signaling. Mol Cell Biol 34:4285–4300. doi:10.1128/MCB.00983-14. PubMed DOI PMC

Polakovicova I, Draberova L, Simicek M, Draber P. 2014. Multiple regulatory roles of the mouse transmembrane adaptor protein NTAL in gene transcription and mast cell physiology. PLoS One 9:e105539. doi:10.1371/journal.pone.0105539. PubMed DOI PMC

Horáková H, Polakovičová I, Shaik GM, Eitler J, Bugajev V, Dráberová L, Dráber P. 2011. 1,2-Propanediol-trehalose mixture as a potent quantitative real-time PCR enhancer. BMC Biotechnol 11:41. doi:10.1186/1472-6750-11-41. PubMed DOI PMC

Hsu DK, Zuberi RI, Liu FT. 1992. Biochemical and biophysical characterization of human recombinant IgE-binding protein, an S-type animal lectin. J Biol Chem 267:14167–14174. PubMed

Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. doi:10.1038/227680a0. PubMed DOI

Haan C, Behrmann I. 2007. A cost effective non-commercial ECL-solution for Western blot detections yielding strong signals and low background. J Immunol Methods 318:11–19. doi:10.1016/j.jim.2006.07.027. PubMed DOI

Cleyrat C, Darehshouri A, Anderson KL, Page C, Lidke DS, Volkmann N, Hanein D, Wilson BS. 2013. The architectural relationship of components controlling mast cell endocytosis. J Cell Sci 126:4913–4925. doi:10.1242/jcs.128876. PubMed DOI PMC

Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH, Friman O, Guertin DA, Chang JH, Lindquist RA, Moffat J, Golland P, Sabatini DM. 2006. CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol 7:R100. doi:10.1186/gb-2006-7-10-r100. PubMed DOI PMC

Hálová I, Dráberová L, Bambousková M, Machyna M, Stegurová L, Smrž D, Dráber P. 2013. Crosstalk between tetraspanin CD9 and transmembrane adaptor protein non-T cell activation linker (NTAL) in mast cell activation and chemotaxis. J Biol Chem 288:9801–9814. doi:10.1074/jbc.M112.449231. PubMed DOI PMC

Bambousková M, Hájkovà Z, Dráber P, Dráber P. 2014. Microscopy assays for evaluation of mast cell migration and chemotaxis. Methods Mol Biol 1192:161–176. doi:10.1007/978-1-4939-1173-8_12. PubMed DOI

Birmingham A, Selfors LM, Forster T, Wrobel D, Kennedy CJ, Shanks E, Santoyo-Lopez J, Dunican DJ, Long A, Kelleher D, Smith Q, Beijersbergen RL, Ghazal P, Shamu CE. 2009. Statistical methods for analysis of high-throughput RNA interference screens. Nat Methods 6:569–575. doi:10.1038/nmeth.1351. PubMed DOI PMC

Chen HY, Sharma BB, Yu L, Zuberi R, Weng IC, Kawakami Y, Kawakami T, Hsu DK, Liu FT. 2006. Role of galectin-3 in mast cell functions: galectin-3-deficient mast cells exhibit impaired mediator release and defective JNK expression. J Immunol 177:4991–4997. doi:10.4049/jimmunol.177.8.4991. PubMed DOI

Grutzkau A, Smorodchenko A, Lippert U, Kirchhof L, Artuc M, Henz BM. 2004. LAMP-1 and LAMP-2, but not LAMP-3, are reliable markers for activation-induced secretion of human mast cells. Cytometry A 61:62–68. PubMed

Chen HY, Fermin A, Vardhana S, Weng IC, Lo KF, Chang EY, Maverakis E, Yang RY, Hsu DK, Dustin ML, Liu FT. 2009. Galectin-3 negatively regulates TCR-mediated CD4+ T-cell activation at the immunological synapse. Proc Natl Acad Sci U S A 106:14496–14501. doi:10.1073/pnas.0903497106. PubMed DOI PMC

Fattakhova G, Masilamani M, Borrego F, Gilfillan AM, Metcalfe DD, Coligan JE. 2006. The high-affinity immunoglobulin-E receptor FcεRI is endocytosed by an AP-2/clathrin-independent, dynamin-dependent mechanism. Traffic 7:673–685. doi:10.1111/j.1600-0854.2006.00423.x. PubMed DOI

Fattakhova GV, Masilamani M, Narayanan S, Borrego F, Gilfillan AM, Metcalfe DD, Coligan JE. 2009. Endosomal trafficking of the ligated FcεRI receptor. Mol Immunol 46:793–802. doi:10.1016/j.molimm.2008.09.002. PubMed DOI PMC

Molfetta R, Gasparrini F, Peruzzi G, Vian L, Piccoli M, Frati L, Santoni A, Paolini R. 2009. Lipid raft-dependent FcεRI ubiquitination regulates receptor endocytosis through the action of ubiquitin binding adaptors. PLoS One 4:e5604. doi:10.1371/journal.pone.0005604. PubMed DOI PMC

Lafont F, Simons K. 2001. Raft-partitioning of the ubiquitin ligases Cbl and Nedd4 upon IgE-triggered cell signaling. Proc Natl Acad Sci U S A 98:3180–3184. doi:10.1073/pnas.051003498. PubMed DOI PMC

Ota Y, Beitz LO, Scharenberg AM, Donovan JA, Kinet JP, Samelson LE. 1996. Characterization of Cbl tyrosine phosphorylation and a Cbl-Syk complex in RBL-2H3 cells. J Exp Med 184:1713–1723. doi:10.1084/jem.184.5.1713. PubMed DOI PMC

Liu W, Hsu DK, Chen HY, Yang RY, Carraway KL III, Isseroff RR, Liu FT. 2012. Galectin-3 regulates intracellular trafficking of EGFR through Alix and promotes keratinocyte migration. J Investig Dermatol 132:2828–2837. doi:10.1038/jid.2012.211. PubMed DOI PMC

Hsu DK, Chernyavsky AI, Chen HY, Yu L, Grando SA, Liu FT. 2009. Endogenous galectin-3 is localized in membrane lipid rafts and regulates migration of dendritic cells. J Investig Dermatol 129:573–583. doi:10.1038/jid.2008.276. PubMed DOI PMC

Dastych J, Costa JJ, Thompson HL, Metcalfe DD. 1991. Mast cell adhesion to fibronectin. Immunology 73:478–484. PubMed PMC

Bazzoni G, Shih DT, Buck CA, Hemler ME. 1995. Monoclonal antibody 9EG7 defines a novel β1 integrin epitope induced by soluble ligand and manganese, but inhibited by calcium. J Biol Chem 270:25570–25577. doi:10.1074/jbc.270.43.25570. PubMed DOI

Kuehn HS, Jung MY, Beaven MA, Metcalfe DD, Gilfillan AM. 2011. Prostaglandin E2 activates and utilizes mTORC2 as a central signaling locus for the regulation of mast cell chemotaxis and mediator release. J Biol Chem 286:391–402. doi:10.1074/jbc.M110.164772. PubMed DOI PMC

Amir-Moazami O, Alexia C, Charles N, Launay P, Monteiro RC, Benhamou M. 2008. Phospholipid scramblase 1 modulates a selected set of IgE receptor-mediated mast cell responses through LAT-dependent pathway. J Biol Chem 283:25514–25523. doi:10.1074/jbc.M705320200. PubMed DOI

Ahmad N, Gabius HJ, Andre S, Kaltner H, Sabesan S, Roy R, Liu B, Macaluso F, Brewer CF. 2004. Galectin-3 precipitates as a pentamer with synthetic multivalent carbohydrates and forms heterogeneous cross-linked complexes. J Biol Chem 279:10841–10847. doi:10.1074/jbc.M312834200. PubMed DOI

Rabinovich GA, Toscano MA. 2009. Turning ‘sweet’ on immunity: galectin-glycan interactions in immune tolerance and inflammation. Nat Rev Immunol 9:338–352. doi:10.1038/nri2536. PubMed DOI

Bhaumik P, St-Pierre G, Milot V, St-Pierre C, Sato S. 2013. Galectin-3 facilitates neutrophil recruitment as an innate immune response to a parasitic protozoa cutaneous infection. J Immunol 190:630–640. doi:10.4049/jimmunol.1103197. PubMed DOI

Jia W, Kidoya H, Yamakawa D, Naito H, Takakura N. 2013. Galectin-3 accelerates M2 macrophage infiltration and angiogenesis in tumors. Am J Pathol 182:1821–1831. doi:10.1016/j.ajpath.2013.01.017. PubMed DOI

MacKinnon AC, Farnworth SL, Hodkinson PS, Henderson NC, Atkinson KM, Leffler H, Nilsson UJ, Haslett C, Forbes SJ, Sethi T. 2008. Regulation of alternative macrophage activation by galectin-3. J Immunol 180:2650–2658. doi:10.4049/jimmunol.180.4.2650. PubMed DOI

Hsu DK, Yang RY, Pan Z, Yu L, Salomon DR, Fung-Leung WP, Liu FT. 2000. Targeted disruption of the galectin-3 gene results in attenuated peritoneal inflammatory responses. Am J Pathol 156:1073–1083. doi:10.1016/S0002-9440(10)64975-9. PubMed DOI PMC

Cherayil BJ, Weiner SJ, Pillai S. 1989. The Mac-2 antigen is a galactose-specific lectin that binds IgE. J Exp Med 170:1959–1972. doi:10.1084/jem.170.6.1959. PubMed DOI PMC

Dhirapong A, Lleo A, Leung P, Gershwin ME, Liu FT. 2009. The immunological potential of galectin-1 and -3. Autoimmun Rev 8:360–363. doi:10.1016/j.autrev.2008.11.009. PubMed DOI

Thyagarajan T, Totey S, Danton MJ, Kulkarni AB. 2003. Genetically altered mouse models: the good, the bad, and the ugly. Crit Rev Oral Biol Med 14:154–174. doi:10.1177/154411130301400302. PubMed DOI

Wright J, Morales MM, Sousa-Menzes J, Ornellas D, Sipes J, Cui Y, Cui I, Hulamm P, Cebotaru V, Cebotaru L, Guggino WB, Guggino SE. 2008. Transcriptional adaptation to Clcn5 knockout in proximal tubules of mouse kidney. Physiol Genomics 33:341–354. doi:10.1152/physiolgenomics.00024.2008. PubMed DOI

Reaume AG, de Sousa PA, Kulkarni S, Langille BL, Zhu D, Davies TC, Juneja SC, Kidder GM, Rossant J. 1995. Cardiac malformation in neonatal mice lacking connexin43. Science 267:1831–1834. doi:10.1126/science.7892609. PubMed DOI

Nangia-Makker P, Honjo Y, Sarvis R, Akahani S, Hogan V, Pienta KJ, Raz A. 2000. Galectin-3 induces endothelial cell morphogenesis and angiogenesis. Am J Pathol 156:899–909. doi:10.1016/S0002-9440(10)64959-0. PubMed DOI PMC

Lantz CS, Huff TF. 1995. Differential responsiveness of purified mouse c-kit+ mast cells and their progenitors to IL-3 and stem cell factor. J Immunol 155:4024–4029. PubMed

Partridge EA, Le RC, Di Guglielmo GM, Pawling J, Cheung P, Granovsky M, Nabi IR, Wrana JL, Dennis JW. 2004. Regulation of cytokine receptors by Golgi N-glycan processing and endocytosis. Science 306:120–124. doi:10.1126/science.1102109. PubMed DOI

Andrews NL, Pfeiffer JR, Martinez AM, Haaland DM, Davis RW, Kawakami T, Oliver JM, Wilson BS, Lidke DS. 2009. Small, mobile FcεRI receptor aggregates are signaling competent. Immunity 31:469–479. doi:10.1016/j.immuni.2009.06.026. PubMed DOI PMC

Oliver C, Fujimura A, Silveira E Souza AM, de Orlandini CR, Siraganian RP, Jamur MC. 2007. Mast cell-specific gangliosides and FcεRI follow the same endocytic pathway from lipid rafts in RBL-2H3 cells. J Histochem Cytochem 55:315–325. PubMed

Lakshminarayan R, Wunder C, Becken U, Howes MT, Benzing C, Arumugam S, Sales S, Ariotti N, Chambon V, Lamaze C, Loew D, Shevchenko A, Gaus K, Parton RG, Johannes L. 2014. Galectin-3 drives glycosphingolipid-dependent biogenesis of clathrin-independent carriers. Nat Cell Biol 16:595–606. doi:10.1038/ncb2970. PubMed DOI

Sigismund S, Argenzio E, Tosoni D, Cavallaro E, Polo S, Di Fiore PP. 2008. Clathrin-mediated internalization is essential for sustained EGFR signaling but dispensable for degradation. Dev Cell 15:209–219. doi:10.1016/j.devcel.2008.06.012. PubMed DOI

Benzing C, Rossy J, Gaus K. 2013. Do signalling endosomes play a role in T cell activation? FEBS J 280:5164–5176. doi:10.1111/febs.12427. PubMed DOI

Obata Y, Toyoshima S, Wakamatsu E, Suzuki S, Ogawa S, Esumi H, Abe R. 2014. Oncogenic kit signals on endolysosomes and endoplasmic reticulum are essential for neoplastic mast cell proliferation. Nat Commun 5:5715. doi:10.1038/ncomms6715. PubMed DOI PMC

Frigeri L, Apgar JR. 1999. The role of actin microfilaments in the down-regulation of the degranulation response in RBL-2H3 cells. J Immunol 162:2243–2250. PubMed

Tolarová H, Dráberová L, Heneberg P, Dráber P. 2004. Involvement of filamentous actin in setting the threshold for degranulation in mast cells. Eur J Immunol 34:1627–1636. doi:10.1002/eji.200424991. PubMed DOI

Sigismund S, Woelk T, Puri C, Maspero E, Tacchetti C, Transidico P, Di Fiore PP, Polo S. 2005. Clathrin-independent endocytosis of ubiquitinated cargos. Proc Natl Acad Sci U S A 102:2760–2765. doi:10.1073/pnas.0409817102. PubMed DOI PMC

Furuichi K, Rivera J, Buonocore LM, Isersky C. 1986. Recycling of receptor-bound IgE by rat basophilic leukemia cells. J Immunol 136:1015–1022. PubMed

Greer AM, Wu N, Putnam AL, Woodruff PG, Wolters P, Kinet JP, Shin JS. 2014. Serum IgE clearance is facilitated by human FcεRI internalization. J Clin Invest 124:1187–1198. doi:10.1172/JCI68964. PubMed DOI PMC

Molfetta R, Gasparrini F, Santoni A, Paolini R. 2010. Ubiquitination and endocytosis of the high affinity receptor for IgE. Mol Immunol 47:2427–2434. doi:10.1016/j.molimm.2010.06.003. PubMed DOI

Paolini R, Molfetta R, Beitz LO, Zhang J, Scharenberg AM, Piccoli M, Frati L, Siraganian R, Santoni A. 2002. Activation of Syk tyrosine kinase is required for c-Cbl-mediated ubiquitination of FcεRI and Syk in RBL cells. J Biol Chem 277:36940–36947. doi:10.1074/jbc.M204948200. PubMed DOI

Feshchenko EA, Langdon WY, Tsygankov AY. 1998. Fyn, Yes, and Syk phosphorylation sites in c-Cbl map to the same tyrosine residues that become phosphorylated in activated T cells. J Biol Chem 273:8323–8331. doi:10.1074/jbc.273.14.8323. PubMed DOI

Schmidt MH, Dikic I. 2005. The Cbl interactome and its functions. Nat Rev Mol Cell Biol 6:907–918. doi:10.1038/nrm1762. PubMed DOI

Demetriou M, Granovsky M, Quaggin S, Dennis JW. 2001. Negative regulation of T-cell activation and autoimmunity by Mgat5 N-glycosylation. Nature 409:733–739. doi:10.1038/35055582. PubMed DOI

Dumic J, Dabelic S, Flogel M. 2006. Galectin-3: an open-ended story. Biochim Biophys Acta 1760:616–635. doi:10.1016/j.bbagen.2005.12.020. PubMed DOI

Shimura T, Takenaka Y, Tsutsumi S, Hogan V, Kikuchi A, Raz A. 2004. Galectin-3, a novel binding partner of β-catenin. Cancer Res 64:6363–6367. doi:10.1158/0008-5472.CAN-04-1816. PubMed DOI

Furtak V, Hatcher F, Ochieng J. 2001. Galectin-3 mediates the endocytosis of β-1 integrins by breast carcinoma cells. Biochem Biophys Res Commun 289:845–850. doi:10.1006/bbrc.2001.6064. PubMed DOI

Kitaura J, Kinoshita T, Matsumoto M, Chung S, Kawakami Y, Leitges M, Wu D, Lowell CA, Kawakami T. 2005. IgE- and IgE+Ag-mediated mast cell migration in an autocrine/paracrine fashion. Blood 105:3222–3229. doi:10.1182/blood-2004-11-4205. PubMed DOI PMC

Kuehn HS, Radinger M, Brown JM, Ali K, Vanhaesebroeck B, Beaven MA, Metcalfe DD, Gilfillan AM. 2010. Btk-dependent Rac activation and actin rearrangement following FcεRI aggregation promotes enhanced chemotactic responses of mast cells. J Cell Sci 123:2576–2585. doi:10.1242/jcs.071043. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...