Enhanced Membrane Fluidization and Cholesterol Displacement by 1-Heptanol Inhibit Mast Cell Effector Functions
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37626879
PubMed Central
PMC10453462
DOI
10.3390/cells12162069
PII: cells12162069
Knihovny.cz E-zdroje
- Klíčová slova
- FRAP, FcεRI signaling, STIM1-ORAI1 coupling, alkanol, flow-FRET, heat shock response, membrane fluidizer, store-operated calcium entry,
- MeSH
- cholesterol MeSH
- cytokiny MeSH
- heptanol MeSH
- mastocyty * MeSH
- signální transdukce * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cholesterol MeSH
- cytokiny MeSH
- heptanol MeSH
Signal transduction by the high-affinity IgE receptor (FcεRI) depends on membrane lipid and protein compartmentalization. Recently published data show that cells treated with 1-heptanol, a cell membrane fluidizer, exhibit changes in membrane properties. However, the functional consequences of 1-heptanol-induced changes on mast cell signaling are unknown. This study shows that short-term exposure to 1-heptanol reduces membrane thermal stability and dysregulates mast cell signaling at multiple levels. Cells treated with 1-heptanol exhibited increased lateral mobility and decreased internalization of the FcεRI. However, this did not affect the initial phosphorylation of the FcεRI-β chain and components of the SYK/LAT1/PLCγ1 signaling pathway after antigen activation. In contrast, 1-heptanol inhibited SAPK/JNK phosphorylation and effector functions such as calcium response, degranulation, and cytokine production. Membrane hyperfluidization induced a heat shock-like response via increased expression of the heat shock protein 70, increased lateral diffusion of ORAI1-mCherry, and unsatisfactory performance of STIM1-ORAI1 coupling, as determined by flow-FRET. Furthermore, 1-heptanol inhibited the antigen-induced production of reactive oxygen species and potentiated stress-induced plasma membrane permeability by interfering with heat shock protein 70 activity. The combined data suggest that 1-heptanol-mediated membrane fluidization does not interfere with the earliest biochemical steps of FcεRI signaling, such as phosphorylation of the FcεRI-β chain and components of the SYK/LAT/PLCγ1 signaling pathway, instead inhibiting the FcεRI internalization and mast cell effector functions, including degranulation and cytokine production.
Zobrazit více v PubMed
Brown D.A. Lipid rafts, detergent-resistant membranes, and raft targeting signals. Physiology. 2006;21:430–439. doi: 10.1152/physiol.00032.2006. PubMed DOI
Bag N., Wagenknecht-wiesner A., Lee A., Shi S.M., Holowka D.A., Baird B.A. Lipid-based and protein-based interactions synergize transmembrane signaling stimulated by antigen clustering of IgE receptors. Proc. Natl. Acad. Sci. USA. 2021;118:e2026583118. doi: 10.1073/pnas.2026583118. PubMed DOI PMC
Bugajev V., Bambousková M., Dráberová L., Dráber P. What precedes the initial tyrosine phosphorylation of the high affinity IgE receptor in antigen-activated mast cell? FEBS Lett. 2010;584:4949–4955. doi: 10.1016/j.febslet.2010.08.045. PubMed DOI
Balint S., Dustin M.L. Localizing order to boost signaling. Elife. 2017;6:e25375. doi: 10.7554/eLife.25375. PubMed DOI PMC
Kovárová M., Tolar P., Arudchandran R., Dráberová L., Rivera J., Dráber P. Structure-function analysis of Lyn kinase association with lipid rafts and initiation of early signaling events after Fcε receptor I aggregation. Mol. Cell Biol. 2001;21:8318–8328. doi: 10.1128/MCB.21.24.8318-8328.2001. PubMed DOI PMC
Heneberg P., Draberova L., Bambouskova M., Pompach P., Draber P. Down-regulation of protein tyrosine phosphatases activates an immune receptor in the absence of its translocation into lipid rafts. J. Biol. Chem. 2010;285:12787–12802. doi: 10.1074/jbc.M109.052555. PubMed DOI PMC
Reth M. Hydrogen peroxide as second messenger in lymphocyte activation. Nat. Immunol. 2002;3:1129–1134. doi: 10.1038/ni1202-1129. PubMed DOI
Biswas A., Kashyap P., Datta S., Sengupta T., Sinha B. Cholesterol depletion by MβCD enhances cell membrane tension and its variations-reducing integrity. Biophys. J. 2019;116:1456–1468. doi: 10.1016/j.bpj.2019.03.016. PubMed DOI PMC
Zidovetzki R., Levitan I. Use of cyclodextrins to manipulate plasma membrane cholesterol content: Evidence, misconceptions and control strategies. Biochim. Biophys. Acta. 2007;1768:1311–1324. doi: 10.1016/j.bbamem.2007.03.026. PubMed DOI PMC
Ikonen E. Cellular cholesterol trafficking and compartmentalization. Nat. Rev. Mol. Cell Biol. 2008;9:125–138. doi: 10.1038/nrm2336. PubMed DOI
Sheets E.D., Holowka D., Baird B. Critical role for cholesterol in Lyn-mediated tyrosine phosphorylation of FcεRI and their association with detergent-resistant membranes. J. Cell Biol. 1999;145:877–887. doi: 10.1083/jcb.145.4.877. PubMed DOI PMC
Calloway N., Owens T., Corwith K., Rodgers W., Holowka D., Baird B. Stimulated association of STIM1 and Orai1 is regulated by the balance of PtdIns(4,5)P(2) between distinct membrane pools. J. Cell Sci. 2011;124:2602–2610. doi: 10.1242/jcs.084178. PubMed DOI PMC
Dionisio N., Galan C., Jardin I., Salido G.M., Rosado J.A. Lipid rafts are essential for the regulation of SOCE by plasma membrane resident STIM1 in human platelets. Biochim. Biophys. Acta. 2011;1813:431–437. doi: 10.1016/j.bbamcr.2011.01.010. PubMed DOI
Bohorquez-Hernandez A., Gratton E., Pacheco J., Asanov A., Vaca L. Cholesterol modulates the cellular localization of Orai1 channels and its disposition among membrane domains. Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 2017;1862:1481–1490. doi: 10.1016/j.bbalip.2017.09.005. PubMed DOI PMC
Derler I., Jardin I., Stathopulos P.B., Muik M., Fahrner M., Zayats V., Pandey S.K., Poteser M., Lackner B., Absolonova M., et al. Cholesterol modulates Orai1 channel function. Sci. Signal. 2016;9:ra10. doi: 10.1126/scisignal.aad7808. PubMed DOI PMC
Pacheco J., Dominguez L., Bohorquez-Hernandez A., Asanov A., Vaca L. A cholesterol-binding domain in STIM1 modulates STIM1-Orai1 physical and functional interactions. Sci. Rep. 2016;6:29634. doi: 10.1038/srep29634. PubMed DOI PMC
Alifimoff J.K., Firestone L.L., Miller K.W. Anaesthetic potencies of primary alkanols: Implications for the molecular dimensions of the anaesthetic site. Br. J. Pharmacol. 1989;96:9–16. doi: 10.1111/j.1476-5381.1989.tb11777.x. PubMed DOI PMC
Lange Y., Ye J., Duban M.E., Steck T.L. Activation of membrane cholesterol by 63 amphipaths. Biochemistry. 2009;48:8505–8515. doi: 10.1021/bi900951r. PubMed DOI PMC
Lange Y., Ye J., Steck T.L. Activation of membrane cholesterol by displacement from phospholipids. J. Biol. Chem. 2005;280:36126–36131. doi: 10.1074/jbc.M507149200. PubMed DOI
Franks N.P., Lieb W.R. Do general anaesthetics act by competitive binding to specific receptors? Nature. 1984;310:599–601. doi: 10.1038/310599a0. PubMed DOI
Franks N.P., Lieb W.R. Mapping of general anaesthetic target sites provides a molecular basis for cutoff effects. Nature. 1985;316:349–351. doi: 10.1038/316349a0. PubMed DOI
Peoples R.W., Li C., Weight F.F. Lipid vs protein theories of alcohol action in the nervous system. Annu. Rev. Pharmacol. Toxicol. 1996;36:185–201. doi: 10.1146/annurev.pa.36.040196.001153. PubMed DOI
Ingolfsson H.I., Andersen O.S. Alcohol’s effects on lipid bilayer properties. Biophys. J. 2011;101:847–855. doi: 10.1016/j.bpj.2011.07.013. PubMed DOI PMC
Hambalko J., Gajdos P., Nicaud J.M., Ledesma-Amaro R., Tupec M., Pichova I., Certik M. Production of long chain fatty alcohols found in bumblebee pheromones by Yarrowia lipolytica. Front. Bioeng. Biotechnol. 2020;8:593419. doi: 10.3389/fbioe.2020.593419. PubMed DOI PMC
Fernandez-Arche A., Marquez-Martin A., de la Puerta Vazquez R., Perona J.S., Terencio C., Perez-Camino C., Ruiz-Gutierrez V. Long-chain fatty alcohols from pomace olive oil modulate the release of proinflammatory mediators. J. Nutr. Biochem. 2009;20:155–162. doi: 10.1016/j.jnutbio.2008.01.007. PubMed DOI
Montserrat-de la Paz S., Garcia-Gimenez M.D., Angel-Martin M., Perez-Camino M.C., Fernandez A.A. Long-chain fatty alcohols from evening primrose oil inhibit the inflammatory response in murine peritoneal macrophages. J. Ethnopharmacol. 2014;151:131–136. doi: 10.1016/j.jep.2013.10.012. PubMed DOI
Carignan D., Desy O., Ghani K., Caruso M., de Campos-Lima P.O. The size of the unbranched aliphatic chain determines the immunomodulatory potency of short and long chain n-alkanols. J. Biol. Chem. 2013;288:24948–24955. doi: 10.1074/jbc.M113.466334. PubMed DOI PMC
Galli S.J. Mast cells and basophils. Curr. Opin. Hematol. 2000;7:32–39. doi: 10.1097/00062752-200001000-00007. PubMed DOI
Galli S.J., Tsai M., Piliponsky A.M. The development of allergic inflammation. Nature. 2008;454:445–454. doi: 10.1038/nature07204. PubMed DOI PMC
Shaik G.M., Draberova L., Cernohouzova S., Tumova M., Bugajev V., Draber P. Pentacyclic triterpenoid ursolic acid interferes with mast cell activation via a lipid-centric mechanism affecting FcεRI signalosome functions. J. Biol. Chem. 2022;298:102497. doi: 10.1016/j.jbc.2022.102497. PubMed DOI PMC
Gupta A., Lu D., Balasubramanian H., Chi Z., Wohland T. Heptanol-mediated phase separation determines phase preference of molecules in live cell membranes. J. Lipid Res. 2022;63:100220. doi: 10.1016/j.jlr.2022.100220. PubMed DOI PMC
Baba Y., Nishida K., Fujii Y., Hirano T., Hikida M., Kurosaki T. Essential function for the calcium sensor STIM1 in mast cell activation and anaphylactic responses. Nat. Immunol. 2008;9:81–88. doi: 10.1038/ni1546. PubMed DOI
Bugajev V., Halova I., Draberova L., Bambouskova M., Potuckova L., Draberova H., Paulenda T., Junyent S., Draber P. Negative regulatory roles of ORMDL3 in the FcεRI-triggered expression of proinflammatory mediators and chemotactic response in murine mast cells. Cell Mol. Life. Sci. 2016;73:1265–1285. doi: 10.1007/s00018-015-2047-3. PubMed DOI PMC
Bugajev V., Halova I., Demkova L., Cernohouzova S., Vavrova P., Mrkacek M., Utekal P., Draberova L., Kuchar L., Schuster B., et al. ORMDL2 deficiency potentiates the ORMDL3-dependent changes in mast cell signaling. Front. Immunol. 2020;11:591975. doi: 10.3389/fimmu.2020.591975. PubMed DOI PMC
Bugajev V., Paulenda T., Utekal P., Mrkacek M., Halova I., Kuchar L., Kuda O., Vavrova P., Schuster B., Fuentes-Liso S., et al. Crosstalk between ORMDL3, serine palmitoyltransferase, and 5-lipoxygenase in the sphingolipid and eicosanoid metabolic pathways. J. Lipid Res. 2021;62:100121. doi: 10.1016/j.jlr.2021.100121. PubMed DOI PMC
Rudolph A.K., Burrows P.D., Wabl M.R. Thirteen hybridomas secreting hapten-specific immunoglobulin E from mice with Iga or Igb heavy chain haplotype. Eur. J. Immunol. 1981;11:527–529. doi: 10.1002/eji.1830110617. PubMed DOI
Tolar P., Dráberová L., Dráber P. Protein tyrosine kinase Syk is involved in Thy-1 signaling in rat basophilic leukemia cells. Eur. J. Immunol. 1997;27:3389–3397. doi: 10.1002/eji.1830271238. PubMed DOI
Rivera J., Kinet J.-P., Kim J., Pucillo C., Metzger H. Studies with a monoclonal antibody to the β subunit of the receptor with high affinity for immunoglobulin E. Mol. Immunol. 1988;25:647–661. doi: 10.1016/0161-5890(88)90100-9. PubMed DOI
Tolar P., Tumová M., Dráber P. New monoclonal antibodies recognizing the adaptor protein LAT. Folia Biol. 2001;47:215–217. PubMed
Liu F.-T., Bohn J.W., Ferry E.L., Yamanoto H., Molinaro C.A., Sherman L.A., Klinman N.R., Katz D.H. Monoclonal dinitrophenyl-specific murine IgE antibody: Preparation, isolation, and characterization. J. Immunol. 1980;124:2728–2737. doi: 10.4049/jimmunol.124.6.2728. PubMed DOI
Schmitt-Verhulst A.M., Pettinelli C.B., Henkart P.A., Lunney J.K., Shearer G.M. H-2-restricted cytotoxic effectors generated in vitro by the addition of trinitrophenyl-conjugated soluble proteins. J. Exp. Med. 1978;147:352–368. doi: 10.1084/jem.147.2.352. PubMed DOI PMC
Heneberg P., Lebduska P., Draberova L., Korb J., Draber P. Topography of plasma membrane microdomains and its consequences for mast cell signaling. Eur. J. Immunol. 2006;36:2795–2806. doi: 10.1002/eji.200636159. PubMed DOI
Siraganian R.P., McGivney A., Barsumian E.L., Crews F.T., Hirata F., Axelrod J. Variants of the rat basophilic leukemia cell line for the study of histamine release. Fed. Proc. 1982;41:30–34. PubMed
Dráberová L., Dráber P. Functional expression of the endogenous Thy-1 gene and the transfected murine Thy-1.2 gene in rat basophilic leukemia cells. Eur. J. Immunol. 1991;21:1583–1590. doi: 10.1002/eji.1830210703. PubMed DOI
Saleh R., Wedeh G., Herrmann H., Bibi S., Cerny-Reiterer S., Sadovnik I., Blatt K., Hadzijusufovic E., Jeanningros S., Blanc C., et al. A new human mast cell line expressing a functional IgE receptor converts to tumorigenic growth by KIT D816V transfection. Blood. 2014;124:111–120. doi: 10.1182/blood-2013-10-534685. PubMed DOI
Sehgal P., Szalai P., Olesen C., Praetorius H.A., Nissen P., Christensen S.B., Engedal N., Moller J.V. Inhibition of the sarco/endoplasmic reticulum (ER) Ca2+-ATPase by thapsigargin analogs induces cell death via ER Ca2+ depletion and the unfolded protein response. J. Biol. Chem. 2017;292:19656–19673. doi: 10.1074/jbc.M117.796920. PubMed DOI PMC
Draberova L., Bugajev V., Potuckova L., Halova I., Bambouskova M., Polakovicova I., Xavier R.J., Seed B., Draber P. Transmembrane adaptor protein PAG/CBP is involved in both positive and negative regulation of mast cell signaling. Mol. Cell Biol. 2014;34:4285–4300. doi: 10.1128/MCB.00983-14. PubMed DOI PMC
Banning C., Votteler J., Hoffmann D., Koppensteiner H., Warmer M., Reimer R., Kirchhoff F., Schubert U., Hauber J., Schindler M. A flow cytometry-based FRET assay to identify and analyse protein-protein interactions in living cells. PLoS ONE. 2010;5:e9344. doi: 10.1371/journal.pone.0009344. PubMed DOI PMC
Horáková H., Polakovicová I., Shaik G.M., Eitler J., Bugajev V., Dráberová L., Dráber P. 1,2-propanediol-trehalose mixture as a potent quantitative real-time PCR enhancer. BMC Biotechnol. 2011;11:41. doi: 10.1186/1472-6750-11-41. PubMed DOI PMC
Draberova L., Paulenda T., Halova I., Potuckova L., Bugajev V., Bambouskova M., Tumova M., Draber P. Ethanol inhibits high-affinity immunoglobulin E receptor (FcεRI) signaling in mast cells by suppressing the function of FcεRI-cholesterol signalosome. PLoS ONE. 2015;10:e0144596. doi: 10.1371/journal.pone.0144596. PubMed DOI PMC
Lebduska P., Korb J., Tumova M., Heneberg P., Draber P. Topography of signaling molecules as detected by electron microscopy on plasma membrane sheets isolated from non-adherent mast cells. J. Immunol. Methods. 2007;328:139–151. doi: 10.1016/j.jim.2007.08.015. PubMed DOI
Smrz D., Draberova L., Draber P. Non-apoptotic phosphatidylserine externalization induced by engagement of glycosylphosphatidylinositol-anchored proteins. J. Biol. Chem. 2007;282:10487–10497. doi: 10.1074/jbc.M611090200. PubMed DOI
Volná P., Lebduška P., Dráberová L., Šímová S., Heneberg P., Boubelík M., Bugajev V., Malissen B., Wilson B.S., Horejši V., et al. Negative regulation of mast cell signaling and function by the adaptor LAB/NTAL. J. Exp. Med. 2004;200:1001–1013. doi: 10.1084/jem.20041213. PubMed DOI PMC
Surviladze Z., Dráberová L., Kovárová M., Boubelík M., Dráber P. Differential sensitivity to acute cholesterol lowering of activation mediated via the high-affinity IgE receptor and Thy-1 glycoprotein. Eur. J. Immunol. 2001;31:1–10. doi: 10.1002/1521-4141(200101)31:1<1::AID-IMMU1>3.0.CO;2-W. PubMed DOI
Fattakhova G., Masilamani M., Borrego F., Gilfillan A.M., Metcalfe D.D., Coligan J.E. The high-affinity immunoglobulin-E receptor FcεRI is endocytosed by an AP-2/clathrin-independent, dynamin-dependent mechanism. Traffic. 2006;7:673–685. doi: 10.1111/j.1600-0854.2006.00423.x. PubMed DOI
Bambouskova M., Polakovicova I., Halova I., Goel G., Draberova L., Bugajev V., Doan A., Utekal P., Gardet A., Xavier R.J., et al. New regulatory roles of galectin-3 in the high-affinity IgE receptor signaling. Mol. Cell Biol. 2016;36:1366–1382. doi: 10.1128/MCB.00064-16. PubMed DOI PMC
Zhang J., Berenstein E.H., Evans R.L., Siraganian R.P. Transfection of Syk protein tyrosine kinase reconstitutes high affinity IgE receptor-mediated degranulation in a Syk-negative variant of rat basophilic leukemia RBL-2H3 cells. J. Exp. Med. 1996;184:71–79. doi: 10.1084/jem.184.1.71. PubMed DOI PMC
Zhang W., Sloan-Lancaster J., Kitchen J., Trible R.P., Samelson L.E. LAT: The ZAP-70 tyrosine kinase substrate that links T cell receptor to cellular activation. Cell. 1998;92:83–92. doi: 10.1016/S0092-8674(00)80901-0. PubMed DOI
Saitoh S., Arudchandran R., Manetz T.S., Zhang W., Sommers C.L., Love P.E., Rivera J., Samelson L.E. LAT is essential for FcεRI-mediated mast cell activation. Immunity. 2000;12:525–535. doi: 10.1016/S1074-7613(00)80204-6. PubMed DOI
Draber P., Halova I., Levi-Schaffer F., Draberova L. Transmembrane adaptor proteins in the high-affinity IgE receptor signaling. Front. Immunol. 2012;2:95. doi: 10.3389/fimmu.2011.00095. PubMed DOI PMC
Bartelt R.R., Houtman J.C. The adaptor protein LAT serves as an integration node for signaling pathways that drive T cell activation. Wiley. Interdiscip. Rev. Syst. Biol. Med. 2013;5:101–110. doi: 10.1002/wsbm.1194. PubMed DOI PMC
Sekiya F., Poulin B., Kim Y.J., Rhee S.G. Mechanism of tyrosine phosphorylation and activation of phospholipase C-γ1. Tyrosine 783 phosphorylation is not sufficient for lipase activation. J. Biol. Chem. 2004;279:32181–32190. doi: 10.1074/jbc.M405116200. PubMed DOI
Cai X., Zhou Y., Nwokonko R.M., Loktionova N.A., Wang X., Xin P., Trebak M., Wang Y., Gill D.L. The Orai1 store-operated calcium channel functions as a hexamer. J. Biol. Chem. 2016;291:25764–25775. doi: 10.1074/jbc.M116.758813. PubMed DOI PMC
Feske S., Prakriya M. Conformational dynamics of STIM1 activation. Nat. Struct. Mol. Biol. 2013;20:918–919. doi: 10.1038/nsmb.2647. PubMed DOI PMC
Ouwens D.M., de Ruiter N.D., van der Zon G.C., Carter A.P., Schouten J., van der Burgt C., Kooistra K., Bos J.L., Maassen J.A., van Dam H. Growth factors can activate ATF2 via a two-step mechanism: Phosphorylation of Thr71 through the Ras-MEK-ERK pathway and of Thr69 through RalGDS-Src-p38. EMBO J. 2002;21:3782–3793. doi: 10.1093/emboj/cdf361. PubMed DOI PMC
Dorion S., Landry J. Activation of the mitogen-activated protein kinase pathways by heat shock. Cell Stress. Chaperones. 2002;7:200–206. doi: 10.1379/1466-1268(2002)007<0200:AOTMAP>2.0.CO;2. PubMed DOI PMC
Wen X., Jiao L., Tan H. MAPK/ERK Pathway as a central regulator in vertebrate organ regeneration. Int. J. Mol. Sci. 2022;23:1464. doi: 10.3390/ijms23031464. PubMed DOI PMC
Raingeaud J., Gupta S., Rogers J.S., Dickens M., Han J., Ulevitch R.J., Davis R.J. Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine. J. Biol. Chem. 1995;270:7420–7426. doi: 10.1074/jbc.270.13.7420. PubMed DOI
Feske S., Gwack Y., Prakriya M., Srikanth S., Puppel S.H., Tanasa B., Hogan P.G., Lewis R.S., Daly M., Rao A. A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature. 2006;441:179–185. doi: 10.1038/nature04702. PubMed DOI
Hajkova Z., Bugajev V., Draberova E., Vinopal S., Draberova L., Janacek J., Draber P., Draber P. STIM1-directed reorganization of microtubules in activated mast cells. J. Immunol. 2011;186:913–923. doi: 10.4049/jimmunol.1002074. PubMed DOI
Vig M., Dehaven W.I., Bird G.S., Billingsley J.M., Wang H., Rao P.E., Hutchings A.B., Jouvin M.H., Putney J.W., Kinet J.P. Defective mast cell effector functions in mice lacking the CRACM1 pore subunit of store-operated calcium release-activated calcium channels. Nat. Immunol. 2008;9:89–96. doi: 10.1038/ni1550. PubMed DOI PMC
Swindle E.J., Coleman J.W., DeLeo F.R., Metcalfe D.D. FcεRI- and Fcγ receptor-mediated production of reactive oxygen species by mast cells is lipoxygenase- and cyclooxygenase-dependent and NADPH oxidase-independent. J. Immunol. 2007;179:7059–7071. doi: 10.4049/jimmunol.179.10.7059. PubMed DOI
Newcomer M.E., Gilbert N.C. Location, location, location: Compartmentalization of early events in leukotriene biosynthesis. J. Biol. Chem. 2010;285:25109–25114. doi: 10.1074/jbc.R110.125880. PubMed DOI PMC
Balogh G., Horvath I., Nagy E., Hoyk Z., Benko S., Bensaude O., Vigh L. The hyperfluidization of mammalian cell membranes acts as a signal to initiate the heat shock protein response. FEBS J. 2005;272:6077–6086. doi: 10.1111/j.1742-4658.2005.04999.x. PubMed DOI
Kim J.Y., Barua S., Huang M.Y., Park J., Yenari M.A., Lee J.E. Heat shock protein 70 (HSP70) induction: Chaperonotherapy for neuroprotection after brain injury. Cells. 2020;9:2020. doi: 10.3390/cells9092020. PubMed DOI PMC
Nagy E., Balogi Z., Gombos I., Akerfelt M., Bjorkbom A., Balogh G., Torok Z., Maslyanko A., Fiszer-Kierzkowska A., Lisowska K., et al. Hyperfluidization-coupled membrane microdomain reorganization is linked to activation of the heat shock response in a murine melanoma cell line. Proc. Natl. Acad. Sci. USA. 2007;104:7945–7950. doi: 10.1073/pnas.0702557104. PubMed DOI PMC
Yokota S., Kitahara M., Nagata K. Benzylidene lactam compound, KNK437, a novel inhibitor of acquisition of thermotolerance and heat shock protein induction in human colon carcinoma cells. Cancer Res. 2000;60:2942–2948. PubMed
Schlecht R., Scholz S.R., Dahmen H., Wegener A., Sirrenberg C., Musil D., Bomke J., Eggenweiler H.M., Mayer M.P., Bukau B. Functional analysis of Hsp70 inhibitors. PLoS ONE. 2013;8:e78443. doi: 10.1371/annotation/5a7961d9-a7ea-4b10-9b48-5b106c405b02. PubMed DOI PMC
Ahn K.W., Sampson N.S. Cholesterol oxidase senses subtle changes in lipid bilayer structure. Biochemistry. 2004;43:827–836. doi: 10.1021/bi035697q. PubMed DOI
Mortaz E., Redegeld F.A., van der Heijden M.W., Wong H.R., Nijkamp F.P., Engels F. Mast cell activation is differentially affected by heat shock. Exp. Hematol. 2005;33:944–952. doi: 10.1016/j.exphem.2005.05.004. PubMed DOI
Mortaz E., Redegeld F.A., Bloksma N., Dunsmore K., Denenberg A., Wong H.R., Nijkamp F.P., Engels F. Induction of HSP70 is dispensable for anti-inflammatory action of heat shock or NSAIDs in mast cells. Exp. Hematol. 2006;34:414–423. doi: 10.1016/j.exphem.2005.12.017. PubMed DOI
De M.A., Hightower L. The interaction of heat shock proteins with cellular membranes: A historical perspective. Cell Stress. Chaperones. 2021;26:769–783. doi: 10.1007/s12192-021-01228-y. PubMed DOI PMC
Berry C.T., May M.J., Freedman B.D. STIM- and Orai-mediated calcium entry controls NF-κB activity and function in lymphocytes. Cell Calcium. 2018;74:131–143. doi: 10.1016/j.ceca.2018.07.003. PubMed DOI PMC
Gorlach A., Bertram K., Hudecova S., Krizanova O. Calcium and ROS: A mutual interplay. Redox. Biol. 2015;6:260–271. doi: 10.1016/j.redox.2015.08.010. PubMed DOI PMC
Hammarberg T., Radmark O. 5-lipoxygenase binds calcium. Biochemistry. 1999;38:4441–4447. doi: 10.1021/bi9824700. PubMed DOI
Zhang X., Pathak T., Yoast R., Emrich S., Xin P., Nwokonko R.M., Johnson M., Wu S., Delierneux C., Gueguinou M., et al. A calcium/cAMP signaling loop at the ORAI1 mouth drives channel inactivation to shape NFAT induction. Nat. Commun. 2019;10:1971. doi: 10.1038/s41467-019-09593-0. PubMed DOI PMC
Garrington T.P., Ishizuka T., Papst P.J., Chayama K., Webb S., Yujiri T., Sun W., Sather S., Russell D.M., Gibson S.B., et al. MEKK2 gene disruption causes loss of cytokine production in response to IgE and c-Kit ligand stimulation of ES cell-derived mast cells. EMBO J. 2000;19:5387–5395. doi: 10.1093/emboj/19.20.5387. PubMed DOI PMC
Kim J.Y., Ro J.Y. Signal pathway of cytokines produced by reactive oxygen species generated from phorbol myristate acetate-stimulated HMC-1 cells. Scand. J. Immunol. 2005;62:25–35. doi: 10.1111/j.1365-3083.2005.01636.x. PubMed DOI