Down-regulation of protein-tyrosine phosphatases activates an immune receptor in the absence of its translocation into lipid rafts

. 2010 Apr 23 ; 285 (17) : 12787-802. [epub] 20100215

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid20157115

Grantová podpora
Canadian Institutes of Health Research - Canada

Odkazy

PubMed 20157115
PubMed Central PMC2857068
DOI 10.1074/jbc.m109.052555
PII: S0021-9258(20)55059-X
Knihovny.cz E-zdroje

The earliest known biochemical step that occurs after ligand binding to the multichain immune recognition receptor is tyrosine phosphorylation of the receptor subunits. In mast cells and basophils activated by multivalent antigen-IgE complexes, this step is mediated by Src family kinase Lyn, which phosphorylates the high affinity IgE receptor (Fc epsilonRI). However, the exact molecular mechanism of this phosphorylation step is incompletely understood. In this study, we tested the hypothesis that changes in activity and/or topography of protein-tyrosine phosphatases (PTPs) could play a major role in the Fc epsilonRI triggering. We found that exposure of rat basophilic leukemia cells or mouse bone marrow-derived mast cells to PTP inhibitors, H(2)O(2) or pervanadate, induced phosphorylation of the Fc epsilonRI subunits, similarly as Fc epsilonRI triggering. Interestingly, and in sharp contrast to antigen-induced activation, neither H(2)O(2) nor pervanadate induced any changes in the association of Fc epsilonRI with detergent-resistant membranes and in the topography of Fc epsilonRI detectable by electron microscopy on isolated plasma membrane sheets. In cells stimulated with pervanadate, H(2)O(2) or antigen, enhanced oxidation of active site cysteine of several PTPs was detected. Unexpectedly, most of oxidized phosphatases bound to the plasma membrane were associated with the actin cytoskeleton. Several PTPs (SHP-1, SHP-2, hematopoietic PTP, and PTP-MEG2) showed changes in their enzymatic activity and/or oxidation state during activation. Based on these and other data, we propose that down-regulation of enzymatic activity of PTPs and/or changes in their accessibility to the substrates play a key role in initial tyrosine phosphorylation of the Fc epsilonRI and other multichain immune receptors.

Zobrazit více v PubMed

Gilfillan A. M., Tkaczyk C. (2006) Nat. Rev. Immunol. 6, 218–230 PubMed

Gilfillan A. M., Rivera J. (2009) Immunol. Rev. 228, 149–169 PubMed PMC

Heneberg P., Dráber P. (2002) Int. Arch. Allergy Immunol. 128, 253–263 PubMed

Pao L. I., Badour K., Siminovitch K. A., Neel B. G. (2007) Annu. Rev. Immunol. 25, 473–523 PubMed

Vang T., Miletic A. V., Arimura Y., Tautz L., Rickert R. C., Mustelin T. (2008) Annu. Rev. Immunol. 26, 29–55 PubMed

Denu J. M., Tanner K. G. (1998) Biochemistry 37, 5633–5642 PubMed

Meng T. C., Fukada T., Tonks N. K. (2002) Mol. Cell 9, 387–399 PubMed

Zick Y., Sagi-Eisenberg R. (1990) Biochemistry 29, 10240–10245 PubMed

Heffetz D., Bushkin I., Dror R., Zick Y. (1990) J. Biol. Chem. 265, 2896–2902 PubMed

Teshima R., Ikebuchi H., Nakanishi M., Sawada J. (1994) Biochem. J. 302, 867–874 PubMed PMC

Amoui M., Dráberová L., Tolar P., Dráber P. (1997) Eur. J. Immunol. 27, 321–328 PubMed

Huyer G., Liu S., Kelly J., Moffat J., Payette P., Kennedy B., Tsaprailis G., Gresser M. J., Ramachandran C. (1997) J. Biol. Chem. 272, 843–851 PubMed

Eiseman E., Bolen J. B. (1992) Nature 355, 78–80 PubMed

Pribluda V. S., Pribluda C., Metzger H. (1994) Proc. Natl. Acad. Sci. U.S.A. 91, 11246–11250 PubMed PMC

Sil D., Lee J. B., Luo D., Holowka D., Baird B. (2007) ACS Chem. Biol. 2, 674–684 PubMed PMC

Vonakis B. M., Gibbons S. P., Jr., Rotté M. J., Brothers E. A., Kim S. C., Chichester K., MacDonald S. M. (2005) J. Immunol. 175, 4543–4554 PubMed

Wilson B. S., Pfeiffer J. R., Oliver J. M. (2000) J. Cell Biol. 149, 1131–1142 PubMed PMC

Field K. A., Holowka D., Baird B. (1995) Proc. Natl. Acad. Sci. U.S.A. 92, 9201–9205 PubMed PMC

Field K. A., Holowka D., Baird B. (1997) J. Biol. Chem. 272, 4276–4280 PubMed

Simons K., Toomre D. (2000) Nat. Rev. Mol. Cell Biol. 1, 31–39 PubMed

Munro S. (2003) Cell 115, 377–388 PubMed

Brown D. A. (2006) Physiology 21, 430–439 PubMed

Dráberová L., Lebduška P., Hálová I., Tolar P., Štokrová J., Tolarová H., Korb J., Dráber P. (2004) Eur. J. Immunol. 34, 2209–2219 PubMed

Kovářová M., Tolar P., Arudchandran R., Dráberová L., Rivera J., Dráber P. (2001) Mol. Cell. Biol. 21, 8318–8328 PubMed PMC

Swindle E. J., Hunt J. A., Coleman J. W. (2002) J. Immunol. 169, 5866–5873 PubMed

Swieter M., Berenstein E. H., Swaim W. D., Siraganian R. P. (1995) J. Biol. Chem. 270, 21902–21906 PubMed

Xie Z. H., Zhang J., Siraganian R. P. (2000) J. Immunol. 164, 1521–1528 PubMed

Kimura T., Zhang J., Sagawa K., Sakaguchi K., Appella E., Siraganian R. P. (1997) J. Immunol. 159, 4426–4434 PubMed

Nakata K., Yoshimaru T., Suzuki Y., Inoue T., Ra C., Yakura H., Mizuno K. (2008) J. Immunol. 181, 5414–5424 PubMed

Barsumian E. L., Isersky C., Petrino M. G., Siraganian R. P. (1981) Eur. J. Immunol. 11, 317–323 PubMed

Chen T. R. (1977) Exp. Cell Res. 104, 255–262 PubMed

Rudolph A. K., Burrows P. D., Wabl M. R. (1981) Eur. J. Immunol. 11, 527–529 PubMed

Liu F. T., Bohn J. W., Ferry E. L., Yamamoto H., Molinaro C. A., Sherman L. A., Klinman N. R., Katz D. H. (1980) J. Immunol. 124, 2728–2737 PubMed

Dráberová L., Amoui M., Dráber P. (1996) Immunology 87, 141–148 PubMed PMC

Rivera J., Kinet J. P., Kim J., Pucillo C., Metzger H. (1988) Mol. Immunol. 25, 647–661 PubMed

Andersen J. N., Mortensen O. H., Peters G. H., Drake P. G., Iversen L. F., Olsen O. H., Jansen P. G., Andersen H. S., Tonks N. K., Møller N. P. (2001) Mol. Cell. Biol. 21, 7117–7136 PubMed PMC

Persson C., Kappert K., Engström U., Östman A., Sjöblom T. (2005) Methods 35, 37–43 PubMed

Lebduška P., Korb J., Tůmová M., Heneberg P., Dráber P. (2007) J. Immunol. Methods 328, 139–151 PubMed

Philimonenko A. A., Janáček J., Hozák P. (2000) J. Struct. Biol. 132, 201–210 PubMed

Dráberová L., Dudková L., Boubelík M., Tolarová H., Šmíd F., Dráber P. (2003) J. Immunol. 171, 3585–3593 PubMed

Weibrecht I., Böhmer S. A., Dagnell M., Kappert K., Östman A., Böhmer F. D. (2007) Free Radic. Biol. Med. 43, 100–110 PubMed

Tolarová H., Dráberová L., Heneberg P., Dráber P. (2004) Eur. J. Immunol. 34, 1627–1636 PubMed

Suzuki Y., Yoshimaru T., Matsui T., Inoue T., Niide O., Nunomura S., Ra C. (2003) J. Immunol. 171, 6119–6127 PubMed

O'Shea J. J., McVicar D. W., Bailey T. L., Burns C., Smyth M. J. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 10306–10310 PubMed PMC

Wienands J., Larbolette O., Reth M. (1996) Proc. Natl. Acad. Sci. U.S.A. 93, 7865–7870 PubMed PMC

Dráber P., Dráberová L., Heneberg P., Šmíd F., Farghali H., Dráber P. (2007) Cell. Signal. 19, 2400–2412 PubMed

Antunes F., Cadenas E. (2000) FEBS Lett. 475, 121–126 PubMed

Wilson B. S., Pfeiffer J. R., Surviladze Z., Gaudet E. A., Oliver J. M. (2001) J. Cell Biol. 154, 645–658 PubMed PMC

Surviladze Z., Harrison K. A., Murphy R. C., Wilson B. S. (2007) J. Lipid Res. 48, 1325–1335 PubMed

Mikalsen S. O., Kaalhus O. (1998) J. Biol. Chem. 273, 10036–10045 PubMed

Heneberg P., Dráber P. (2005) Curr. Med. Chem. 12, 1859–1871 PubMed

Tonks N. K. (2005) Cell 121, 667–670 PubMed

Persson C., Sjöblom T., Groen A., Kappert K., Engström U., Hellman U., Heldin C. H., den Hertog J., Östman A. (2004) Proc. Natl. Acad. Sci. U.S.A. 101, 1886–1891 PubMed PMC

Keilhack H., Müller M., Böhmer S. A., Frank C., Weidner K. M., Birchmeier W., Ligensa T., Berndt A., Kosmehl H., Günther B., Müller T., Birchmeier C., Böhmer F. D. (2001) J. Cell Biol. 152, 325–334 PubMed PMC

Simoneau M., Boulanger J., Coulombe G., Renaud M. A., Duchesne C., Rivard N. (2008) J. Biol. Chem. 283, 25544–25556 PubMed

Peirce M., Metzger H. (2000) J. Biol. Chem. 275, 34976–34982 PubMed

Gulati P., Markova B., Göttlicher M., Böhmer F. D., Herrlich P. A. (2004) EMBO Rep. 5, 812–817 PubMed PMC

Wulf E., Deboben A., Bautz F. A., Faulstich H., Wieland T. (1979) Proc. Natl. Acad. Sci. U.S.A. 76, 4498–4502 PubMed PMC

Lachapelle M., Aldrich H. C. (1988) J. Histochem. Cytochem. 36, 1197–1202 PubMed

Steinmetz M. O., Stoffler D., Müller S. A., Jahn W., Wolpensinger B., Goldie K. N., Engel A., Faulstich H., Aebi U. (1998) J. Mol. Biol. 276, 1–6 PubMed

den Hertog J., Groen A., van der Wijk T. (2005) Arch. Biochem. Biophys. 434, 11–15 PubMed

Wilson B. S., Pfeiffer J. R., Oliver J. M. (2002) Mol. Immunol. 38, 1259–1268 PubMed

Field K. A., Holowka D., Baird B. (1999) J. Biol. Chem. 274, 1753–1758 PubMed

Volná P., Lebduška P., Dráberová L., Šímová S., Heneberg P., Boubelík M., Bugajev V., Malissen B., Wilson B. S., Hořejší V., Malissen M., Dráber P. (2004) J. Exp. Med. 200, 1001–1013 PubMed PMC

Zhang W., Sloan-Lancaster J., Kitchen J., Trible R. P., Samelson L. E. (1998) Cell 92, 83–92 PubMed

Swindle E. J., Coleman J. W., DeLeo F. R., Metcalfe D. D. (2007) J. Immunol. 179, 7059–7071 PubMed

Tolar P., Sohn H. W., Pierce S. K. (2005) Nat. Immunol. 6, 1168–1176 PubMed

Reth M. (2002) Nat. Immunol. 3, 1129–1134 PubMed

Barr A. J., Ugochukwu E., Lee W. H., King O. N., Filippakopoulos P., Alfano I., Savitsky P., Burgess-Brown N. A., Müller S., Knapp S. (2009) Cell 136, 352–363 PubMed PMC

Stauffer T. P., Meyer T. (1997) J. Cell Biol. 139, 1447–1454 PubMed PMC

Chen C. H., Cheng T. H., Lin H., Shih N. L., Chen Y. L., Chen Y. S., Cheng C. F., Lian W. S., Meng T. C., Chiu W. T., Chen J. J. (2006) Mol. Pharmacol. 69, 1347–1355 PubMed

Swindle E. J., Metcalfe D. D., Coleman J. W. (2004) J. Biol. Chem. 279, 48751–48759 PubMed

Lou Y. W., Chen Y. Y., Hsu S. F., Chen R. K., Lee C. L., Khoo K. H., Tonks N. K., Meng T. C. (2008) FEBS J. 275, 69–88 PubMed

Barford D., Neel B. G. (1998) Structure 6, 249–254 PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Enhanced Membrane Fluidization and Cholesterol Displacement by 1-Heptanol Inhibit Mast Cell Effector Functions

. 2023 Aug 15 ; 12 (16) : . [epub] 20230815

Positive and Negative Regulatory Roles of C-Terminal Src Kinase (CSK) in FcεRI-Mediated Mast Cell Activation, Independent of the Transmembrane Adaptor PAG/CSK-Binding Protein

. 2018 ; 9 () : 1771. [epub] 20180802

Tetraspanins and Transmembrane Adaptor Proteins As Plasma Membrane Organizers-Mast Cell Case

. 2016 ; 4 () : 43. [epub] 20160510

Ethanol Inhibits High-Affinity Immunoglobulin E Receptor (FcεRI) Signaling in Mast Cells by Suppressing the Function of FcεRI-Cholesterol Signalosome

. 2015 ; 10 (12) : e0144596. [epub] 20151214

Transmembrane adaptor protein PAG/CBP is involved in both positive and negative regulation of mast cell signaling

. 2014 Dec 01 ; 34 (23) : 4285-300. [epub] 20140922

Cytoskeleton in mast cell signaling

. 2012 ; 3 () : 130. [epub] 20120525

Transmembrane adaptor proteins in the high-affinity IgE receptor signaling

. 2011 ; 2 () : 95. [epub] 20120111

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace