Down-regulation of protein-tyrosine phosphatases activates an immune receptor in the absence of its translocation into lipid rafts
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
Canadian Institutes of Health Research - Canada
PubMed
20157115
PubMed Central
PMC2857068
DOI
10.1074/jbc.m109.052555
PII: S0021-9258(20)55059-X
Knihovny.cz E-zdroje
- MeSH
- aktivace enzymů účinky léků genetika imunologie MeSH
- antigeny imunologie metabolismus farmakologie MeSH
- fosforylace účinky léků genetika imunologie MeSH
- inhibitory enzymů farmakologie MeSH
- krysa rodu Rattus MeSH
- mastocyty imunologie metabolismus MeSH
- membránové mikrodomény genetika imunologie metabolismus MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- oxidace-redukce účinky léků MeSH
- oxidancia farmakologie MeSH
- peroxid vodíku farmakologie MeSH
- receptory IgE genetika imunologie metabolismus MeSH
- skupina kinas odvozených od src-genu genetika imunologie metabolismus MeSH
- transport proteinů účinky léků genetika imunologie MeSH
- tyrosinfosfatasy antagonisté a inhibitory genetika imunologie metabolismus MeSH
- vanadáty farmakologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antigeny MeSH
- inhibitory enzymů MeSH
- lyn protein-tyrosine kinase MeSH Prohlížeč
- oxidancia MeSH
- peroxid vodíku MeSH
- pervanadate MeSH Prohlížeč
- receptory IgE MeSH
- skupina kinas odvozených od src-genu MeSH
- tyrosinfosfatasy MeSH
- vanadáty MeSH
The earliest known biochemical step that occurs after ligand binding to the multichain immune recognition receptor is tyrosine phosphorylation of the receptor subunits. In mast cells and basophils activated by multivalent antigen-IgE complexes, this step is mediated by Src family kinase Lyn, which phosphorylates the high affinity IgE receptor (Fc epsilonRI). However, the exact molecular mechanism of this phosphorylation step is incompletely understood. In this study, we tested the hypothesis that changes in activity and/or topography of protein-tyrosine phosphatases (PTPs) could play a major role in the Fc epsilonRI triggering. We found that exposure of rat basophilic leukemia cells or mouse bone marrow-derived mast cells to PTP inhibitors, H(2)O(2) or pervanadate, induced phosphorylation of the Fc epsilonRI subunits, similarly as Fc epsilonRI triggering. Interestingly, and in sharp contrast to antigen-induced activation, neither H(2)O(2) nor pervanadate induced any changes in the association of Fc epsilonRI with detergent-resistant membranes and in the topography of Fc epsilonRI detectable by electron microscopy on isolated plasma membrane sheets. In cells stimulated with pervanadate, H(2)O(2) or antigen, enhanced oxidation of active site cysteine of several PTPs was detected. Unexpectedly, most of oxidized phosphatases bound to the plasma membrane were associated with the actin cytoskeleton. Several PTPs (SHP-1, SHP-2, hematopoietic PTP, and PTP-MEG2) showed changes in their enzymatic activity and/or oxidation state during activation. Based on these and other data, we propose that down-regulation of enzymatic activity of PTPs and/or changes in their accessibility to the substrates play a key role in initial tyrosine phosphorylation of the Fc epsilonRI and other multichain immune receptors.
Zobrazit více v PubMed
Gilfillan A. M., Tkaczyk C. (2006) Nat. Rev. Immunol. 6, 218–230 PubMed
Gilfillan A. M., Rivera J. (2009) Immunol. Rev. 228, 149–169 PubMed PMC
Heneberg P., Dráber P. (2002) Int. Arch. Allergy Immunol. 128, 253–263 PubMed
Pao L. I., Badour K., Siminovitch K. A., Neel B. G. (2007) Annu. Rev. Immunol. 25, 473–523 PubMed
Vang T., Miletic A. V., Arimura Y., Tautz L., Rickert R. C., Mustelin T. (2008) Annu. Rev. Immunol. 26, 29–55 PubMed
Denu J. M., Tanner K. G. (1998) Biochemistry 37, 5633–5642 PubMed
Meng T. C., Fukada T., Tonks N. K. (2002) Mol. Cell 9, 387–399 PubMed
Zick Y., Sagi-Eisenberg R. (1990) Biochemistry 29, 10240–10245 PubMed
Heffetz D., Bushkin I., Dror R., Zick Y. (1990) J. Biol. Chem. 265, 2896–2902 PubMed
Teshima R., Ikebuchi H., Nakanishi M., Sawada J. (1994) Biochem. J. 302, 867–874 PubMed PMC
Amoui M., Dráberová L., Tolar P., Dráber P. (1997) Eur. J. Immunol. 27, 321–328 PubMed
Huyer G., Liu S., Kelly J., Moffat J., Payette P., Kennedy B., Tsaprailis G., Gresser M. J., Ramachandran C. (1997) J. Biol. Chem. 272, 843–851 PubMed
Eiseman E., Bolen J. B. (1992) Nature 355, 78–80 PubMed
Pribluda V. S., Pribluda C., Metzger H. (1994) Proc. Natl. Acad. Sci. U.S.A. 91, 11246–11250 PubMed PMC
Sil D., Lee J. B., Luo D., Holowka D., Baird B. (2007) ACS Chem. Biol. 2, 674–684 PubMed PMC
Vonakis B. M., Gibbons S. P., Jr., Rotté M. J., Brothers E. A., Kim S. C., Chichester K., MacDonald S. M. (2005) J. Immunol. 175, 4543–4554 PubMed
Wilson B. S., Pfeiffer J. R., Oliver J. M. (2000) J. Cell Biol. 149, 1131–1142 PubMed PMC
Field K. A., Holowka D., Baird B. (1995) Proc. Natl. Acad. Sci. U.S.A. 92, 9201–9205 PubMed PMC
Field K. A., Holowka D., Baird B. (1997) J. Biol. Chem. 272, 4276–4280 PubMed
Simons K., Toomre D. (2000) Nat. Rev. Mol. Cell Biol. 1, 31–39 PubMed
Munro S. (2003) Cell 115, 377–388 PubMed
Brown D. A. (2006) Physiology 21, 430–439 PubMed
Dráberová L., Lebduška P., Hálová I., Tolar P., Štokrová J., Tolarová H., Korb J., Dráber P. (2004) Eur. J. Immunol. 34, 2209–2219 PubMed
Kovářová M., Tolar P., Arudchandran R., Dráberová L., Rivera J., Dráber P. (2001) Mol. Cell. Biol. 21, 8318–8328 PubMed PMC
Swindle E. J., Hunt J. A., Coleman J. W. (2002) J. Immunol. 169, 5866–5873 PubMed
Swieter M., Berenstein E. H., Swaim W. D., Siraganian R. P. (1995) J. Biol. Chem. 270, 21902–21906 PubMed
Xie Z. H., Zhang J., Siraganian R. P. (2000) J. Immunol. 164, 1521–1528 PubMed
Kimura T., Zhang J., Sagawa K., Sakaguchi K., Appella E., Siraganian R. P. (1997) J. Immunol. 159, 4426–4434 PubMed
Nakata K., Yoshimaru T., Suzuki Y., Inoue T., Ra C., Yakura H., Mizuno K. (2008) J. Immunol. 181, 5414–5424 PubMed
Barsumian E. L., Isersky C., Petrino M. G., Siraganian R. P. (1981) Eur. J. Immunol. 11, 317–323 PubMed
Chen T. R. (1977) Exp. Cell Res. 104, 255–262 PubMed
Rudolph A. K., Burrows P. D., Wabl M. R. (1981) Eur. J. Immunol. 11, 527–529 PubMed
Liu F. T., Bohn J. W., Ferry E. L., Yamamoto H., Molinaro C. A., Sherman L. A., Klinman N. R., Katz D. H. (1980) J. Immunol. 124, 2728–2737 PubMed
Dráberová L., Amoui M., Dráber P. (1996) Immunology 87, 141–148 PubMed PMC
Rivera J., Kinet J. P., Kim J., Pucillo C., Metzger H. (1988) Mol. Immunol. 25, 647–661 PubMed
Andersen J. N., Mortensen O. H., Peters G. H., Drake P. G., Iversen L. F., Olsen O. H., Jansen P. G., Andersen H. S., Tonks N. K., Møller N. P. (2001) Mol. Cell. Biol. 21, 7117–7136 PubMed PMC
Persson C., Kappert K., Engström U., Östman A., Sjöblom T. (2005) Methods 35, 37–43 PubMed
Lebduška P., Korb J., Tůmová M., Heneberg P., Dráber P. (2007) J. Immunol. Methods 328, 139–151 PubMed
Philimonenko A. A., Janáček J., Hozák P. (2000) J. Struct. Biol. 132, 201–210 PubMed
Dráberová L., Dudková L., Boubelík M., Tolarová H., Šmíd F., Dráber P. (2003) J. Immunol. 171, 3585–3593 PubMed
Weibrecht I., Böhmer S. A., Dagnell M., Kappert K., Östman A., Böhmer F. D. (2007) Free Radic. Biol. Med. 43, 100–110 PubMed
Tolarová H., Dráberová L., Heneberg P., Dráber P. (2004) Eur. J. Immunol. 34, 1627–1636 PubMed
Suzuki Y., Yoshimaru T., Matsui T., Inoue T., Niide O., Nunomura S., Ra C. (2003) J. Immunol. 171, 6119–6127 PubMed
O'Shea J. J., McVicar D. W., Bailey T. L., Burns C., Smyth M. J. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 10306–10310 PubMed PMC
Wienands J., Larbolette O., Reth M. (1996) Proc. Natl. Acad. Sci. U.S.A. 93, 7865–7870 PubMed PMC
Dráber P., Dráberová L., Heneberg P., Šmíd F., Farghali H., Dráber P. (2007) Cell. Signal. 19, 2400–2412 PubMed
Antunes F., Cadenas E. (2000) FEBS Lett. 475, 121–126 PubMed
Wilson B. S., Pfeiffer J. R., Surviladze Z., Gaudet E. A., Oliver J. M. (2001) J. Cell Biol. 154, 645–658 PubMed PMC
Surviladze Z., Harrison K. A., Murphy R. C., Wilson B. S. (2007) J. Lipid Res. 48, 1325–1335 PubMed
Mikalsen S. O., Kaalhus O. (1998) J. Biol. Chem. 273, 10036–10045 PubMed
Heneberg P., Dráber P. (2005) Curr. Med. Chem. 12, 1859–1871 PubMed
Tonks N. K. (2005) Cell 121, 667–670 PubMed
Persson C., Sjöblom T., Groen A., Kappert K., Engström U., Hellman U., Heldin C. H., den Hertog J., Östman A. (2004) Proc. Natl. Acad. Sci. U.S.A. 101, 1886–1891 PubMed PMC
Keilhack H., Müller M., Böhmer S. A., Frank C., Weidner K. M., Birchmeier W., Ligensa T., Berndt A., Kosmehl H., Günther B., Müller T., Birchmeier C., Böhmer F. D. (2001) J. Cell Biol. 152, 325–334 PubMed PMC
Simoneau M., Boulanger J., Coulombe G., Renaud M. A., Duchesne C., Rivard N. (2008) J. Biol. Chem. 283, 25544–25556 PubMed
Peirce M., Metzger H. (2000) J. Biol. Chem. 275, 34976–34982 PubMed
Gulati P., Markova B., Göttlicher M., Böhmer F. D., Herrlich P. A. (2004) EMBO Rep. 5, 812–817 PubMed PMC
Wulf E., Deboben A., Bautz F. A., Faulstich H., Wieland T. (1979) Proc. Natl. Acad. Sci. U.S.A. 76, 4498–4502 PubMed PMC
Lachapelle M., Aldrich H. C. (1988) J. Histochem. Cytochem. 36, 1197–1202 PubMed
Steinmetz M. O., Stoffler D., Müller S. A., Jahn W., Wolpensinger B., Goldie K. N., Engel A., Faulstich H., Aebi U. (1998) J. Mol. Biol. 276, 1–6 PubMed
den Hertog J., Groen A., van der Wijk T. (2005) Arch. Biochem. Biophys. 434, 11–15 PubMed
Wilson B. S., Pfeiffer J. R., Oliver J. M. (2002) Mol. Immunol. 38, 1259–1268 PubMed
Field K. A., Holowka D., Baird B. (1999) J. Biol. Chem. 274, 1753–1758 PubMed
Volná P., Lebduška P., Dráberová L., Šímová S., Heneberg P., Boubelík M., Bugajev V., Malissen B., Wilson B. S., Hořejší V., Malissen M., Dráber P. (2004) J. Exp. Med. 200, 1001–1013 PubMed PMC
Zhang W., Sloan-Lancaster J., Kitchen J., Trible R. P., Samelson L. E. (1998) Cell 92, 83–92 PubMed
Swindle E. J., Coleman J. W., DeLeo F. R., Metcalfe D. D. (2007) J. Immunol. 179, 7059–7071 PubMed
Tolar P., Sohn H. W., Pierce S. K. (2005) Nat. Immunol. 6, 1168–1176 PubMed
Reth M. (2002) Nat. Immunol. 3, 1129–1134 PubMed
Barr A. J., Ugochukwu E., Lee W. H., King O. N., Filippakopoulos P., Alfano I., Savitsky P., Burgess-Brown N. A., Müller S., Knapp S. (2009) Cell 136, 352–363 PubMed PMC
Stauffer T. P., Meyer T. (1997) J. Cell Biol. 139, 1447–1454 PubMed PMC
Chen C. H., Cheng T. H., Lin H., Shih N. L., Chen Y. L., Chen Y. S., Cheng C. F., Lian W. S., Meng T. C., Chiu W. T., Chen J. J. (2006) Mol. Pharmacol. 69, 1347–1355 PubMed
Swindle E. J., Metcalfe D. D., Coleman J. W. (2004) J. Biol. Chem. 279, 48751–48759 PubMed
Lou Y. W., Chen Y. Y., Hsu S. F., Chen R. K., Lee C. L., Khoo K. H., Tonks N. K., Meng T. C. (2008) FEBS J. 275, 69–88 PubMed
Barford D., Neel B. G. (1998) Structure 6, 249–254 PubMed
Tetraspanins and Transmembrane Adaptor Proteins As Plasma Membrane Organizers-Mast Cell Case
Cytoskeleton in mast cell signaling
Transmembrane adaptor proteins in the high-affinity IgE receptor signaling