Molecular Detection of Toxoplasma gondii, Neospora caninum and Encephalitozoon spp. in Vespertilionid Bats from Central Europe
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
2022ITA22
University of Veterinary Sciences Brno
PubMed
37373032
PubMed Central
PMC10298469
DOI
10.3390/ijms24129887
PII: ijms24129887
Knihovny.cz E-resources
- Keywords
- insectivore, microsporidiosis, molecular methods, neosporosis, toxoplasmosis,
- MeSH
- Chiroptera * MeSH
- Encephalitozoon * genetics MeSH
- Coccidiosis * veterinary MeSH
- Real-Time Polymerase Chain Reaction MeSH
- Humans MeSH
- Neospora * genetics MeSH
- Parasites * genetics MeSH
- Toxoplasma * genetics MeSH
- Toxoplasmosis, Animal * parasitology MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Europe MeSH
Bats may carry various viruses and bacteria which can be harmful to humans, but little is known about their role as a parasitic source with zoonotic potential. The aim of this study was to test wild bats for the presence of selected parasites: Toxoplasma gondii, Neospora caninum and microsporidia Encephalitozoon spp. In total, brain and small intestine tissues of 100 bats (52 Myotis myotis, 43 Nyctalus noctula and 5 Vespertilio murinus) were used for the DNA isolation and PCR detection of the abovementioned agents. Toxoplasma gondii DNA was detected by real-time PCR in 1% of bats (in one male of M. myotis), while all bats were negative for N. caninum DNA. Encephalitozoon spp. DNA was detected by nested PCR in 25% of bats, including three species (twenty-two M. myotis, two N. noctula and one V. murinus). Positive samples were sequenced and showed homology with the genotypes Encephalitozoon cuniculi II and Encephalitozoon hellem 2C. This is the first study on wild vespertilionid bats from Central Europe and worldwide, with a relatively high positivity of Encephalitozoon spp. detected in bats.
See more in PubMed
Frank R., Kuhn T., Werblow A., Liston A., Kochmann J., Klimpel S. Parasite diversity of European Myotis species with special emphasis on Myotis myotis (Microchiroptera, Vespertilionidae) from a typical nursery roost. Parasites Vectors. 2015;8:101. doi: 10.1186/s13071-015-0707-7. PubMed DOI PMC
Hutson A.M., Mickleburgh S.P., Racey P.A. Microchiropteran Bats: Global Status Survey and Conservation Action Plan. IUCN; Gland, Switzerland: Cambridge, UK: 2001.
Racey P.A., Hutson A.M., Lina P.H.C. Bat rabies, public health and European Bat conservation. Zoonoses Public Health. 2012;60:58–68. doi: 10.1111/j.1863-2378.2012.01533.x. PubMed DOI
Scheneeberger K., Voigt C.C. Zoonotic viruses and conservation of bats. In: Voigt C.C., Kingston T., editors. Bats in the Anthropocene: Conservation of Bats in a Changing World. Springer; Cham, Switzerland: 2016. pp. 263–292.
Fagre A.C., Rebekah C., Kading R.C. Can bats serve as reservoirs for Arboviruses? Viruses. 2019;11:215. doi: 10.3390/v11030215. PubMed DOI PMC
Chen L., Liu B., Yang J., Jin Q. DBatVir: The database of bat-associated viruses. Database. 2014;2014:bau021. doi: 10.1093/database/bau021. PubMed DOI PMC
Szentiványi T., Markotter W., Dietrich M., Clément L., Ançay L., Brun L., Genzoni E., Kearney T., Seamark E., Estók P., et al. Host conservation through their parasites: Molecular surveillance of vector-borne microorganisms in bats using ectoparasitic bat flies. Parasite. 2020;27:72. doi: 10.1051/parasite/2020069. PubMed DOI PMC
Uhrin M., Kanuch P., Kristofik J., Paule L. Phenotypic plasticity in the greater mouse-eared bat in extremely different roost conditions. Acta Theriol. 2020;55:153–164. doi: 10.4098/j.at.0001-7051.073.2009. DOI
Mihalca A.D., Dumitrache M.O., Magdaş C., Gherman C.M., Domşa C., Mircean V., Ghira I.V., Pocora V., Ionescu D.T., Sikó Barabási S., et al. Synopsis of the hard ticks (Acari: Ixodidae) of Romania with update on host associations and geographical distribution. Exp. Appl. Acarol. 2012;58:183–206. doi: 10.1007/s10493-012-9566-5. PubMed DOI
Haelewater D., Hiller T., Dick C.W. Bats, bat flies, and fungi: A case of hyperparasitism. Trends Parasitol. 2018;34:794–799. doi: 10.1016/j.pt.2018.06.006. PubMed DOI
Cabral A.D., Gama A.R., Sodré M.M., Savani E.S.M.M., Galvão-Dias M.A., Jordão L.R., Maeda M.M., Yai L.E.O., Gennari S.M., Pena H.F.D.J. First isolation and genotyping of Toxoplasma gondii from bats (Mammalia: Chiroptera) Vet. Parasitol. 2013;193:100–104. doi: 10.1016/j.vetpar.2012.11.015. PubMed DOI
Sun H., Wang Y., Zhang Y., Ge W., Zhang F., He B., Li Z., Fan Q., Wang W., Tu C., et al. Prevalence and genetic characterization of Toxoplasma gondii in bats in Myanmar. Appl. Environ. Microbiol. 2013;79:3526–3528. doi: 10.1128/AEM.00410-13. PubMed DOI PMC
Dodd N.S., Lord J.S., Jehle R., Parker S., Parker F., Brooks D.R., Hide G. Toxoplasma gondii: Prevalence in species and genotypes of British bats (Pipistrellus pipistrellus and P. pygmaeus) Exper. Parasitol. 2014;139:6–11. doi: 10.1016/j.exppara.2014.02.007. PubMed DOI
De Jesus R.F., Rodrigues G.M., Silva E.M., Carneiro A.J., Franke C.R., de Magalhães Cunha R., Gondim L.F. Toxoplasmatinae parasites in bats from Bahia state, Brazil. J. Wildl. Dis. 2017;53:144–147. doi: 10.7589/2016-03-065. PubMed DOI
Wang X., Li J., Gong P., Li X., Zhang L., He B., Xu L., Yang Z., Liu Q., Zhang X. Detection of Neospora caninum DNA by polymerase chain reaction in bats from Southern China. Parasitol. Int. 2018;67:389–391. doi: 10.1016/j.parint.2018.03.002. PubMed DOI PMC
Graclik A., Wasielewski O. Diet composition of Myotis myotis (Chiroptera, Vespertilionidae) in western Poland: Results of fecal analyses. Turk. J. Zool. 2012;36:209–213. doi: 10.3906/zoo-1007-35. DOI
Cabral A.D., Su C., Soares R.M., Gennari S.M., Sperança M.A., da Rosa A.R., Pena H.F.J. Occurrence and diversity of Sarcocystidae protozoa in muscle and brain tissues of bats from Sao Paulo state, Brazil. Int. J. Parasitol. Parasites Wildl. 2021;14:91–96. doi: 10.1016/j.ijppaw.2021.01.003. PubMed DOI PMC
Yang Y., Xin S., Murata F.H.A., Cerqueira-Cézar C.K., Kwok O.C.H., Su C., Dubey J.P. Recent epidemiologic, clinical, subclinical and genetic diversity of Toxoplasma gondii infections in bats. Res. Vet. Sci. 2021;140:193–197. doi: 10.1016/j.rvsc.2021.09.006. PubMed DOI
Edvinsson B., Lappalainen M., Evengård B., ESCMID Study Group for Toxoplasmosis Real-time PCR targeting a 529-bp repeat element for diagnosis of toxoplasmosis. Clin. Microbiol. Infect. 2006;12:131–136. doi: 10.1111/j.1469-0691.2005.01332.x. PubMed DOI
Lallo M.A., Pereira A., Araújo R., Favorito S.E., Bertolla P., Bondan E.F. Occurrence of Giardia, Cryptosporidium and microsporidia in wild animals from a deforestation area in the state of São Paulo, Brazil. Ciênc Rural. 2009;39:1465–1470. doi: 10.1590/S0103-84782009005000085. DOI
Lee S.H., Oem J.K., Lee S.M., Son K., Jo S.D., Kwak D. Molecular detection of Enterocytozoon bieneusi from bats in South Korea. Med. Mycol. 2018;56:1033–1037. doi: 10.1093/mmy/myx136. PubMed DOI
Hinney B., Sak B., Joachim A., Kváč M. More than a rabbit‘s tale—Encephalitozoon spp. in wild mammals and birds. Int. J. Parasitol: Parasites Wildl. 2016;5:76–87. doi: 10.1016/j.ijppaw.2016.01.001. PubMed DOI PMC
Childs-Sanford S.E., Garner M.M., Raymondy J.T., Didier E., Kollias G.V. Disseminated microsporidiosis due to Encephalitozoon hellem in an Egyptian Fruit Bat (Rousettus aegyptiacus) J. Comp. Pathol. 2006;134:370–373. doi: 10.1016/j.jcpa.2006.01.004. PubMed DOI
Abu-Akkada S.S., El Kerdany E.D., Mady R.F., Diab R.G., Khedr G.A., Ashmawy K.I., Lotfy W.M. Encephalitozoon cuniculi infection among immunocompromised and immunocompetent humans in Egypt. Iran. J. Parasitol. 2015;10:561–570. PubMed PMC
Ma K.K., Kinde B., Doan T., Jacobs D.S., Tone S.O. Dual molecular diagnosis of microsporidia (Encephalitozoon hellem) keratoconjunctivitis in an immunocompetent adult. Cornea. 2021;40:242–244. doi: 10.1097/ICO.0000000000002466. PubMed DOI
Letko M., Seifert S.N., Olival K.J., Plowright R.K., Munster V.J. Bat-borne virus diversity, spillover and emergence. Nat. Rev. Microbiol. 2020;18:461–471. doi: 10.1038/s41579-020-0394-z. PubMed DOI PMC
Latinne A., Nga N.T.T., Long N.V., Ngoc P.T.B., Thuy H.B., PREDICT Consortium. Long N.V., Long P.T., Phuong N.T., Quang L.T.V., et al. One Health surveillance Highlights circulation of viruses with zoonotic potential in bats, pigs, and humans in Viet Nam. Viruses. 2023;15:790. doi: 10.3390/v15030790. PubMed DOI PMC
Mengistu T.S., van Wyk I., Oosthuizen M., Cohen L., Wentzel J. A One Health approach to investigate bats as a potential source of zoonotic mycoses in selected areas of Mpumalanga province, the Republic of South Africa. Ethiop. Vet. J. 2022;22:143–157. doi: 10.4314/evj.v26i2.9. DOI
Austen J.M., Barbosa A.D. Diversity and epidemiology of bat Trypanosomes: A One Health perspective. Pathogens. 2021;10:1148. doi: 10.3390/pathogens10091148. PubMed DOI PMC
Mildenstein T., Tanshi I., Racey P.A. Exploitation of bats for bushmeat and medicine. In: Voigt C., Kingston T., editors. Bats in the Anthropocene: Conservation of Bats in a Changing World. Springer; Cham, Switzerland: 2015. pp. 325–375.
Suwannarong K., Schuler S. Bats consumption in Thailand. Infect. Ecol. Epidemiol. 2016;6:29941. doi: 10.3402/iee.v6.29941. PubMed DOI PMC
Nahar N., Asaduzzaman M., Mandal U.K., Rimi N.A., Gurley E.S., Rahman M., Garcia F., Zimicki S., Sultana R., Luby S.P. Hunting bats for human consumption in Bangladesh. Ecohealth. 2020;17:139–151. doi: 10.1007/s10393-020-01468-x. PubMed DOI
Calisher C.H., Childs J.E., Field H.E., Holmes K.V., Schountz T. Bats: Important reservoir hosts of emerging viruses. Clin. Microbiol. Rev. 2006;19:531–545. doi: 10.1128/CMR.00017-06. PubMed DOI PMC
Wang L.F., Anderson D.E. Viruses in bats and potential spillover to animals and humans. Curr. Opin. Virol. 2019;34:79–89. doi: 10.1016/j.coviro.2018.12.007. PubMed DOI PMC
Zhou P., Shi Z.L. SARS-CoV-2 spillover events. Science. 2021;371:120–122. doi: 10.1126/science.abf6097. PubMed DOI
Ghaffari S., Kalantari N., Gorgani-Firouzjaee T., Bayani M., Jalali F., Daroonkola M.A. Is COVID-19 asscociated with latent toxoplasmosis? Environ. Sci. Pollut. Res. Int. 2021;28:67886–67890. doi: 10.1007/s11356-021-17126-w. PubMed DOI PMC
Roe K. The symptoms and clinical manifestations observed in COVID-19 patients/long COVID-19 symptoms that parallel Toxoplasma gondii infections. J. Neuroimmune Pharmacol. 2021;16:513–516. doi: 10.1007/s11481-021-09997-0. PubMed DOI PMC
Homan W.L., Vercammen M., De Braekeleer J., Verschueren H. Identification of a 200- to 300-fold repetitive 529 bp DNA fragment in Toxoplasma gondii, and its use for diagnostic and quantitative PCR. Int. J. Parasitol. 2000;30:69–75. doi: 10.1016/S0020-7519(99)00170-8. PubMed DOI
Ajzenberg D., Collinet F., Mercier A., Vignoles P., Dardé M.L. Genotyping of Toxoplasma gondii isolates with 15 microsatellite markers in a single multiplex PCR assay. J. Clin. Microbiol. 2010;48:4641–4645. doi: 10.1128/JCM.01152-10. PubMed DOI PMC
Muller N., Zimmermann V., Hentrich B., Gottstein B. Diagnosis of Neospora caninum and Toxoplasma gondii infection by PCR and DNA hybridisation immunoassy. J. Clin. Microbiol. 1996;34:2850–2852. doi: 10.1128/jcm.34.11.2850-2852.1996. PubMed DOI PMC
Katzwinkel-Wladarsch S., Lieb M., Heise W., Löscher T., Rinder H. Direct amplification and species determination of microsporidian DNA from stool specimens. Trop. Med. Int. Health. 1996;3:373–378. doi: 10.1046/j.1365-3156.1996.d01-51.x. PubMed DOI
Statsoft, Inc . Electronic Statistics Textbook. StatSoft; Tulsa, OK, USA: 2013.