Ethanol Inhibits High-Affinity Immunoglobulin E Receptor (FcεRI) Signaling in Mast Cells by Suppressing the Function of FcεRI-Cholesterol Signalosome
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26658290
PubMed Central
PMC4686000
DOI
10.1371/journal.pone.0144596
PII: PONE-D-15-32597
Knihovny.cz E-zdroje
- MeSH
- cholesterol metabolismus MeSH
- cytokiny genetika metabolismus MeSH
- ethanol farmakologie MeSH
- exprese genu účinky léků MeSH
- fosforylace MeSH
- mastocyty účinky léků metabolismus MeSH
- myši MeSH
- receptory IgE metabolismus MeSH
- signální transdukce účinky léků MeSH
- vápník metabolismus MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cholesterol MeSH
- cytokiny MeSH
- ethanol MeSH
- receptory IgE MeSH
- vápník MeSH
Ethanol has multiple effects on biochemical events in a variety of cell types, including the high-affinity immunoglobulin E receptor (FcεRI) signaling in antigen-activated mast cells. However, the underlying molecular mechanism remains unknown. To get better understanding of the effect of ethanol on FcεRI-mediated signaling we examined the effect of short-term treatment with non-toxic concentrations of ethanol on FcεRI signaling events in mouse bone marrow-derived mast cells. We found that 15 min exposure to ethanol inhibited antigen-induced degranulation, calcium mobilization, expression of proinflammatory cytokine genes (tumor necrosis factor-α, interleukin-6, and interleukin-13), and formation of reactive oxygen species in a dose-dependent manner. Removal of cellular cholesterol with methyl-β-cyclodextrin had a similar effect and potentiated some of the inhibitory effects of ethanol. In contrast, exposure of the cells to cholesterol-saturated methyl-β-cyclodextrin abolished in part the inhibitory effect of ethanol on calcium response and production of reactive oxygen species, supporting lipid-centric theories of ethanol action on the earliest stages of mast cell signaling. Further studies showed that exposure to ethanol and/or removal of cholesterol inhibited early FcεRI activation events, including tyrosine phosphorylation of the FcεRI β and γ subunits, SYK kinases, LAT adaptor protein, phospholipase Cγ, STAT5, and AKT and internalization of aggregated FcεRI. Interestingly, ethanol alone, and particularly in combination with methyl-β-cyclodextrin, enhanced phosphorylation of negative regulatory tyrosine 507 of LYN kinase. Finally, we found that ethanol reduced passive cutaneous anaphylactic reaction in mice, suggesting that ethanol also inhibits FcεRI signaling under in vivo conditions. The combined data indicate that ethanol interferes with early antigen-induced signaling events in mast cells by suppressing the function of FcεRI-cholesterol signalosomes at the plasma membrane.
Zobrazit více v PubMed
Peoples RW, Li C, Weight FF. Lipid vs protein theories of alcohol action in the nervous system. Annu Rev Pharmacol Toxicol. 1996; 36: 185–201. 10.1146/annurev.pa.36.040196.001153 PubMed DOI
Meyer HH. Zur theorie der alkoholnarkose. I. Mitt. welche eigenschaft der anästhetika bedingt ihre narkotische wirkung? Arch Exp Pathol Pharmakol. 1899; 42: 109–108.
Meyer KH. Contribution to the theory of narcosis. Trans Faraday Soc. 1937; 33: 1062–1068.
Chin JH, Goldstein DB. Effects of low concentrations of ethanol on the fluidity of spin-labeled erythrocyte and brain membranes. Mol Pharmacol. 1977; 13: 435–441. PubMed
Chen SY, Yang B, Jacobson K, Sulik KK. The membrane disordering effect of ethanol on neural crest cells in vitro and the protective role of GM1 ganglioside. Alcohol. 1996; 13: 589–595. S0741832996000730. PubMed
Rowe ES. Thermodynamic reversibility of phase transitions. Specific effects of alcohols on phosphatidylcholines. Biochim Biophys Acta. 1985; 813: 321–330. PubMed
Gray E, Karslake J, Machta BB, Veatch SL. Liquid general anesthetics lower critical temperatures in plasma membrane vesicles. Biophys J. 2013; 105: 2751–2759. S0006-3495(13)01233-2. 10.1016/j.bpj.2013.11.005 PubMed DOI PMC
Ly HV, Longo ML. The influence of short-chain alcohols on interfacial tension, mechanical properties, area/molecule, and permeability of fluid lipid bilayers. Biophys J. 2004; 87: 1013–1033. 10.1529/biophysj.103.034280 PubMed DOI PMC
Seeman P. The membrane actions of anesthetics and tranquilizers. Pharmacol Rev. 1972; 24: 583–655. PubMed
Franks NP, Lieb WR. Molecular mechanisms of general anaesthesia. Nature. 1982; 300: 487–493. PubMed
Franks NP, Lieb WR. Partitioning of long-chain alcohols into lipid bilayers: implications for mechanisms of general anesthesia. Proc Natl Acad Sci U S A. 1986; 83: 5116–5120. PubMed PMC
Ronald KM, Mirshahi T, Woodward JJ. Ethanol inhibition of N-methyl-D-aspartate receptors is reduced by site-directed mutagenesis of a transmembrane domain phenylalanine residue. J Biol Chem. 2001; 276: 44729–44735. 10.1074/jbc.M102800200 PubMed DOI
Ren H, Zhao Y, Dwyer DS, Peoples RW. Interactions among positions in the third and fourth membrane-associated domains at the intersubunit interface of the N-methyl-D-aspartate receptor forming sites of alcohol action. J Biol Chem. 2012; 287: 27302–27312. 10.1074/jbc.M111.338921 PubMed DOI PMC
Borghese CM, Storustovu S, Ebert B, Herd MB, Belelli D, Lambert JJ, et al. The δ subunit of γ-aminobutyric acid type A receptors does not confer sensitivity to low concentrations of ethanol. J Pharmacol Exp Ther. 2006; 316: 1360–1368. 10.1124/jpet.105.092452 PubMed DOI
Brayton RG, Stokes PE, Schwartz MS, Louria DB. Effect of alcohol and various diseases on leukocyte mobilization, phagocytosis and intracellular bacterial killing. N Engl J Med. 1970; 282: 123–128. 10.1056/NEJM197001152820303 PubMed DOI
Gluckman SJ, MacGregor RR. Effect of acute alcohol intoxication on granulocyte mobilization and kinetics. Blood. 1978; 52: 551–559. PubMed
Szabo G, Dolganiuc A, Dai Q, Pruett SB. TLR4, ethanol, and lipid rafts: a new mechanism of ethanol action with implications for other receptor-mediated effects. J Immunol. 2007; 178: 1243–1249. 178/3/1243. PubMed
Rimland D, Hand WL. The effect of ethanol on adherence and phagocytosis by rabbit alveolar macrophages. J Lab Clin Med. 1980; 95: 918–926. PubMed
Karavitis J, Murdoch EL, Deburghgraeve C, Ramirez L, Kovacs EJ. Ethanol suppresses phagosomal adhesion maturation, Rac activation, and subsequent actin polymerization during FcγR-mediated phagocytosis. Cell Immunol. 2012; 274: 61–71. 10.1016/j.cellimm.2012.02.002 PubMed DOI PMC
Ghare S, Patil M, Hote P, Suttles J, McClain C, Barve S, et al. Ethanol inhibits lipid raft-mediated TCR signaling and IL-2 expression: potential mechanism of alcohol-induced immune suppression. Alcohol Clin Exp Res. 2011; 35: 1435–1444. 10.1111/j.1530-0277.2011.01479.x PubMed DOI PMC
Pruett SB, Schwab C, Zheng Q, Fan R. Suppression of innate immunity by acute ethanol administration: a global perspective and a new mechanism beginning with inhibition of signaling through TLR3. J Immunol. 2004; 173: 2715–2724. 173/4/2715 [pii]. PubMed
Mandrekar P, Dolganiuc A, Bellerose G, Kodys K, Romics L, Nizamani R, et al. Acute alcohol inhibits the induction of nuclear regulatory factor κ B activation through CD14/toll-like receptor 4, interleukin-1, and tumor necrosis factor receptors: a common mechanism independent of inhibitory κ B α degradation? Alcohol Clin Exp Res. 2002; 26: 1609–1614. 10.1097/01.ALC.0000036926.46632.57 PubMed DOI
Patel M, Keshavarzian A, Kottapalli V, Badie B, Winship D, Fields JZ. Human neutrophil functions are inhibited in vitro by clinically relevant ethanol concentrations. Alcohol Clin Exp Res. 1996; 20: 275–283. PubMed
Toivari M, Maki T, Suutarla S, Eklund KK. Ethanol inhibits IgE-induced degranulation and cytokine production in cultured mouse and human mast cells. Life Sci. 2000; 67: 2795–2806. S0024320500008638. PubMed
Kennedy RH, Pelletier JH, Tupper EJ, Hutchinson LM, Gosse JA. Estrogen mimetic 4-tert-octylphenol enhances IgE-mediated degranulation of RBL-2H3 mast cells. J Toxicol Environ Health A. 2012; 75: 1451–1455. 10.1080/15287394.2012.722184 PubMed DOI
Rivera J, Kinet J-P, Kim J, Pucillo C, Metzger H. Studies with a monoclonal antibody to the β subunit of the receptor with high affinity for immunoglobulin E. Mol Immunol. 1988; 25: 647–661. PubMed
Rudolph AK, Burrows PD, Wabl MR. Thirteen hybridomas secreting hapten-specific immunoglobulin E from mice with Iga or Igb heavy chain haplotype. Eur J Immunol. 1981; 11: 527–529. PubMed
Tolar P, Tumová M, Dráber P. New monoclonal antibodies recognizing the adaptor protein LAT. Folia Biol (Praha). 2001; 47: 215–217. PubMed
Dráberová L, Amoui M, Dráber P. Thy-1-mediated activation of rat mast cells: the role of Thy-1 membrane microdomains. Immunology. 1996; 87: 141–148. PubMed PMC
Volná P, Lebduška P, Dráberová L, Šímová S, Heneberg P, Boubelík M, et al. Negative regulation of mast cell signaling and function by the adaptor LAB/NTAL. J Exp Med. 2004; 200: 1001–1013. PubMed PMC
Kovárová M, Tolar P, Arudchandran R, Dráberová L, Rivera J, Dráber P. Structure-function analysis of Lyn kinase association with lipid rafts and initiation of early signaling events after Fcε receptor I aggregation. Mol Cell Biol. 2001; 21: 8318–8328. PubMed PMC
Draberova L, Bugajev V, Potuckova L, Halova I, Bambouskova M, Polakovicova I, et al. Transmembrane adaptor protein PAG/CBP is involved in both positive and negative regulation of mast cell signaling. Mol Cell Biol. 2014; 34: 4285–4300. 10.1128/MCB.00983-14 PubMed DOI PMC
DiVirgilio F, Steinberg TH, Swanson JA, Silverstein SC. Fura-2 secretion and sequestration in macrophages. A blocker of organic anion transport reveals that these processes occur via a membrane transport system for organic anions. J Immunol. 1988; 140: 915–920. PubMed
Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH, Friman O, et al. CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 2006; 7: R100 10.1186/gb-2006-7-10-r100 PubMed DOI PMC
Christian AE, Haynes MP, Phillips MC, Rothblat GH. Use od cyclodextrins for manipulating cellular cholesterol content. J Lipid Res. 1997; 38: 2264–2272. PubMed
Li TK, Theorell H. Human liver alcohol dehydrogenase: inhibition by pyrazole and pyrazole analogs. Acta Chem Scand. 1969; 23: 892–902. PubMed
Setiawan I, Blanchard GJ. Ethanol-induced perturbations to planar lipid bilayer structures. J Phys Chem B. 2014; 118: 537–546. 10.1021/jp410305m PubMed DOI
Loftsson T, Magnusdottir A, Masson M, Sigurjonsdottir JF. Self-association and cyclodextrin solubilization of drugs. J Pharm Sci. 2002; 91: 2307–2316. 10.1002/jps.10226 PubMed DOI
Nishijo J, Moriyama S, Shiota S. Interactions of cholesterol with cyclodextrins in aqueous solution. Chem Pharm Bull (Tokyo). 2003; 51: 1253–1257. PubMed
Zidovetzki R, Levitan I. Use of cyclodextrins to manipulate plasma membrane cholesterol content: evidence, misconceptions and control strategies. Biochim Biophys Acta. 2007; 1768: 1311–1324. 10.1016/j.bbamem.2007.03.026 PubMed DOI PMC
Grutzkau A, Smorodchenko A, Lippert U, Kirchhof L, Artuc M, Henz BM. LAMP-1 and LAMP-2, but not LAMP-3, are reliable markers for activation-induced secretion of human mast cells. Cytometry A. 2004; 61: 62–68. 10.1002/cyto.a.20068 PubMed DOI
Yeligar SM, Harris FL, Hart CM, Brown LA. Ethanol induces oxidative stress in alveolar macrophages via upregulation of NADPH oxidases. J Immunol. 2012; 188: 3648–3657. 10.4049/jimmunol.1101278 PubMed DOI PMC
Kim MJ, Nepal S, Lee ES, Jeong TC, Kim SH, Park PH. Ethanol increases matrix metalloproteinase-12 expression via NADPH oxidase-dependent ROS production in macrophages. Toxicol Appl Pharmacol. 2013; 273: 77–89. 10.1016/j.taap.2013.08.005 PubMed DOI
Kim MJ, Nagy LE, Park PH. Globular adiponectin inhibits ethanol-induced reactive oxygen species production through modulation of NADPH oxidase in macrophages: involvement of liver kinase B1/AMP-activated protein kinase pathway. Mol Pharmacol. 2014; 86: 284–296. 10.1124/mol.114.093039 PubMed DOI PMC
Swindle EJ, Coleman JW, DeLeo FR, Metcalfe DD. FcεRI- and Fcγ receptor-mediated production of reactive oxygen species by mast cells is lipoxygenase- and cyclooxygenase-dependent and NADPH oxidase-independent. J Immunol. 2007; 179: 7059–7071. PubMed
Kuehn HS, Swindle EJ, Kim MS, Beaven MA, Metcalfe DD, Gilfillan AM. The phosphoinositide 3-kinase-dependent activation of Btk is required for optimal eicosanoid production and generation of reactive oxygen species in antigen-stimulated mast cells. J Immunol. 2008; 181: 7706–7712. 181/11/7706. PubMed PMC
Kraft S, Kinet JP. New developments in FcεRI regulation, function and inhibition. Nat Rev Immunol. 2007; 7: 365–378. PubMed
Surviladze Z, Dráberová L, Kovárová M, Boubelík M, Dráber P. Differential sensitivity to acute cholesterol lowering of activation mediated via the high-affinity IgE receptor and Thy-1 glycoprotein. Eur J Immunol. 2001; 31: 1–10. PubMed
Dalton SR, Wiegert RL, Casey CA. Receptor-mediated endocytosis by the asialoglycoprotein receptor: effect of ethanol administration on endosomal distribution of receptor and ligand. Liver Int. 2003; 23: 484–491. PubMed
Methner DN, Mayfield RD. Ethanol alters endosomal recycling of human dopamine transporters. J Biol Chem. 2010; 285: 10310–10317. 10.1074/jbc.M109.029561 PubMed DOI PMC
Pascual-Lucas M, Fernandez-Lizarbe S, Montesinos J, Guerri C. LPS or ethanol triggers clathrin- and rafts/caveolae-dependent endocytosis of TLR4 in cortical astrocytes. J Neurochem. 2014; 129: 448–462. 10.1111/jnc.12639 PubMed DOI
Fattakhova G, Masilamani M, Borrego F, Gilfillan AM, Metcalfe DD, Coligan JE. The high-affinity immunoglobulin-E receptor FcεRI is endocytosed by an AP-2/clathrin-independent, dynamin-dependent mechanism. Traffic. 2006; 7: 673–685. PubMed
Cleyrat C, Darehshouri A, Anderson KL, Page C, Lidke DS, Volkmann N, et al. The architectural relationship of components controlling mast cell endocytosis. J Cell Sci. 2013; 126: 4913–4925. 10.1242/jcs.128876 PubMed DOI PMC
Nourissat P, Travert M, Chevanne M, Tekpli X, Rebillard A, Le Moigne-Muller G, et al. Ethanol induces oxidative stress in primary rat hepatocytes through the early involvement of lipid raft clustering. Hepatology. 2008; 47: 59–70. 10.1002/hep.21958 PubMed DOI
Heneberg P, Draberova L, Bambouskova M, Pompach P, Draber P. Down-regulation of protein tyrosine phosphatases activates an immune receptor in the absence of its translocation into lipid rafts. J Biol Chem. 2010; 285: 12787–12802. 10.1074/jbc.M109.052555 PubMed DOI PMC
Bugajev V, Bambousková M, Dráberová L, Dráber P. What precedes the initial tyrosine phosphorylation of the high affinity IgE receptor in antigen-activated mast cell? FEBS Lett. 2010; 584: 4949–4955. 10.1016/j.febslet.2010.08.045 PubMed DOI
Tobin SJ, Cacao EE, Hong DW, Terenius L, Vukojevic V, Jovanovic-Talisman T. Nanoscale effects of ethanol and naltrexone on protein organization in the plasma membrane studied by photoactivated localization microscopy (PALM). PLoS One. 2014; 9: e87225 10.1371/journal.pone.0087225 PubMed DOI PMC
Furlow M, Diamond SL. Interplay between membrane cholesterol and ethanol differentially regulates neutrophil tether mechanics and rolling dynamics. Biorheology. 2011; 48: 49–64. 10.3233/BIR-2011-0583 PubMed DOI
Daragan VA, Voloshin AM, Chochina SV, Khazanovich TN, Wood WG, Avdulov NA, et al. Specific binding of ethanol to cholesterol in organic solvents. Biophys J. 2000; 79: 406–415. 10.1016/S0006-3495(00)76302-8 PubMed DOI PMC
Salous AK, Ren H, Lamb KA, Hu XQ, Lipsky RH, Peoples RW. Differential actions of ethanol and trichloroethanol at sites in the M3 and M4 domains of the NMDA receptor GluN2A (NR2A) subunit. Br J Pharmacol. 2009; 158: 1395–1404. 10.1111/j.1476-5381.2009.00397.x PubMed DOI PMC
Das J, Pany S, Rahman GM, Slater SJ. PKC ε has an alcohol-binding site in its second cysteine-rich regulatory domain. Biochem J. 2009; 421: 405–413. 10.1042/BJ20082271 PubMed DOI
Olsen RW, Li GD, Wallner M, Trudell JR, Bertaccini EJ, Lindahl E, et al. Structural models of ligand-gated ion channels: sites of action for anesthetics and ethanol. Alcohol Clin Exp Res. 2014; 38: 595–603. 10.1111/acer.12283 PubMed DOI PMC
Polley A, Vemparala S. Partitioning of ethanol in multi-component membranes: effects on membrane structure. Chem Phys Lipids. 2013; 166: 1–11. 10.1016/j.chemphyslip.2012.11.005 PubMed DOI
Lisboa FA, Peng Z, Combs CA, Beaven MA. Phospholipase d promotes lipid microdomain-associated signaling events in mast cells. J Immunol. 2009; 183: 5104–5112. 10.4049/jimmunol.0802728 PubMed DOI PMC
Jenkins GM, Frohman MA. Phospholipase D: a lipid centric review. Cell Mol Life Sci. 2005; 62: 2305–2316. 10.1007/s00018-005-5195-z PubMed DOI PMC
Zhu M, Zou J, Li T, O'Brien SA, Zhang Y, Ogden S, et al. Differential Roles of Phospholipase D Proteins in FcεRI-Mediated Signaling and Mast Cell Function. J Immunol. 2015. 10.4049/jimmunol.1500665 PubMed DOI PMC
Zhou JS, Xing W, Friend DS, Austen KF, Katz HR. Mast cell deficiency in Kit(W-sh) mice does not impair antibody-mediated arthritis. J Exp Med. 2007; 204: 2797–2802. 10.1084/jem.20071391 PubMed DOI PMC
Happel KI, Nelson S. Alcohol, immunosuppression, and the lung. Proc Am Thorac Soc. 2005; 2: 428–432. 10.1513/pats.200507-065JS PubMed DOI
Gluckman SJ, Dvorak VC, MacGregor RR. Host defenses during prolonged alcohol consumption in a controlled environment. Arch Intern Med. 1977; 137: 1539–1543. PubMed
Szabo G, Chavan S, Mandrekar P, Catalano D. Acute alcohol consumption attenuates interleukin-8 (IL-8) and monocyte chemoattractant peptide-1 (MCP-1) induction in response to ex vivo stimulation. J Clin Immunol. 1999; 19: 67–76. PubMed
Boe DM, Nelson S, Zhang P, Bagby GJ. Acute ethanol intoxication suppresses lung chemokine production following infection with Streptococcus pneumoniae. J Infect Dis. 2001; 184: 1134–1142. 10.1086/323661 PubMed DOI
Dolganiuc A, Bakis G, Kodys K, Mandrekar P, Szabo G. Acute ethanol treatment modulates Toll-like receptor-4 association with lipid rafts. Alcohol Clin Exp Res. 2006; 30: 76–85. 10.1111/j.1530-0277.2006.00003.x PubMed DOI
Dai Q, Pruett SB. Ethanol suppresses LPS-induced Toll-like receptor 4 clustering, reorganization of the actin cytoskeleton, and associated TNF-α production. Alcohol Clin Exp Res. 2006; 30: 1436–1444. 10.1111/j.1530-0277.2006.00172.x PubMed DOI
Mandrekar P, Catalano D, Szabo G. Inhibition of lipopolysaccharide-mediated NFκB activation by ethanol in human monocytes. Int Immunol. 1999; 11: 1781–1790. PubMed
Bagasra O, Howeedy A, Dorio R, Kajdacsy-Balla A. Functional analysis of T-cell subsets in chronic experimental alcoholism. Immunology. 1987; 61: 63–69. PubMed PMC
Glassman AB, Bennett CE, Randall CL. Effects of ethyl alcohol on human peripheral lymphocytes. Arch Pathol Lab Med. 1985; 109: 540–542. PubMed
Brodie C, Domenico J, Gelfand EW. Ethanol inhibits early events in T-lymphocyte activation. Clin Immunol Immunopathol. 1994; 70: 129–136. S0090122984710208 [pii]. PubMed
ORMDL2 Deficiency Potentiates the ORMDL3-Dependent Changes in Mast Cell Signaling
Tetraspanins and Transmembrane Adaptor Proteins As Plasma Membrane Organizers-Mast Cell Case