Pentacyclic triterpenoid ursolic acid interferes with mast cell activation via a lipid-centric mechanism affecting FcεRI signalosome functions
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36115460
PubMed Central
PMC9587013
DOI
10.1016/j.jbc.2022.102497
PII: S0021-9258(22)00940-1
Knihovny.cz E-zdroje
- Klíčová slova
- immunoglobulin E, lipid raft, mast cell, plasma membrane, signal transduction, tumor necrosis factor, tyrosine kinase,
- MeSH
- antigeny metabolismus MeSH
- degranulace buněk MeSH
- kyselina ursolová MeSH
- lipidy farmakologie MeSH
- mastocyty metabolismus MeSH
- myši MeSH
- receptory IgE * metabolismus MeSH
- triterpeny * farmakologie metabolismus MeSH
- vápník metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antigeny MeSH
- lipidy MeSH
- receptory IgE * MeSH
- triterpeny * MeSH
- vápník MeSH
Pentacyclic triterpenoids, including ursolic acid (UA), are bioactive compounds with multiple biological activities involving anti-inflammatory effects. However, the mode of their action on mast cells, key players in the early stages of allergic inflammation, and underlying molecular mechanisms remain enigmatic. To better understand the effect of UA on mast cell signaling, here we examined the consequences of short-term treatment of mouse bone marrow-derived mast cells with UA. Using IgE-sensitized and antigen- or thapsigargin-activated cells, we found that 15 min exposure to UA inhibited high affinity IgE receptor (FcεRI)-mediated degranulation, calcium response, and extracellular calcium uptake. We also found that UA inhibited migration of mouse bone marrow-derived mast cells toward antigen but not toward prostaglandin E2 and stem cell factor. Compared to control antigen-activated cells, UA enhanced the production of tumor necrosis factor-α at the mRNA and protein levels. However, secretion of this cytokine was inhibited. Further analysis showed that UA enhanced tyrosine phosphorylation of the SYK kinase and several other proteins involved in the early stages of FcεRI signaling, even in the absence of antigen activation, but inhibited or reduced their further phosphorylation at later stages. In addition, we show that UA induced changes in the properties of detergent-resistant plasma membrane microdomains and reduced antibody-mediated clustering of the FcεRI and glycosylphosphatidylinositol-anchored protein Thy-1. Finally, UA inhibited mobility of the FcεRI and cholesterol. These combined data suggest that UA exerts its effects, at least in part, via lipid-centric plasma membrane perturbations, hence affecting the functions of the FcεRI signalosome.
Zobrazit více v PubMed
Rivera J., Gilfillan A.M. Molecular regulation of mast cell activation. J. Allergy Clin. Immunol. 2006;117:1214–1225. PubMed
Gilfillan A.M., Beaven M.A. Regulation of mast cell responses in health and disease. Crit. Rev. Immunol. 2011;31:475–529. PubMed PMC
Harvima I.T., Levi-Schaffer F., Draber P., Friedman S., Polakovicova I., Gibbs B.F., et al. Molecular targets on mast cells and basophils for novel therapies. J. Allergy Clin. Immunol. 2014;134:530–544. PubMed
Draber P., Halova I., Polakovicova I., Kawakami T. Signal transduction and chemotaxis in mast cells. Eur. J. Pharmacol. 2016;778:11–23. PubMed PMC
Halova I., Ronnberg E., Draberova L., Vliagoftis H., Nilsson G.P., Draber P. Changing the threshold - signals and mechanisms of mast cell priming. Immunol. Rev. 2018;282:73–86. PubMed
Singh J., Shah R., Singh D. Targeting mast cells: uncovering prolific therapeutic role in myriad diseases. Int. Immunopharmacol. 2016;40:362–384. PubMed
Liu J. Pharmacology of oleanolic acid and ursolic acid. J. Ethnopharmacol. 1995;49:57–68. PubMed
Redei D., Kusz N., Jedlinszki N., Blazso G., Zupko I., Hohmann J. Bioactivity-guided investigation of the anti-inflammatory activity of Hippophae rhamnoides fruits. Planta. Med. 2018;84:26–33. PubMed
Mlala S., Oyedeji A.O., Gondwe M., Oyedeji O.O. Ursolic acid and its derivatives as bioactive agents. Molecules. 2019;24:2751. PubMed PMC
Zou J., Lin J., Li C., Zhao R., Fan L., Yu J., et al. Ursolic acid in cancer treatment and metastatic chemoprevention: from synthesized derivatives to nanoformulations in preclinical studies. Curr. Cancer Drug Targets. 2019;19:245–256. PubMed
Shishodia S., Majumdar S., Banerjee S., Aggarwal B.B. Ursolic acid inhibits nuclear factor-κB activation induced by carcinogenic agents through suppression of IκBα kinase and p65 phosphorylation: correlation with down-regulation of cyclooxygenase 2, matrix metalloproteinase 9, and cyclin D1. Cancer Res. 2003;63:4375–4383. PubMed
Jayaprakasam B., Olson L.K., Schutzki R.E., Tai M.H., Nair M.G. Amelioration of obesity and glucose intolerance in high-fat-fed C57BL/6 mice by anthocyanins and ursolic acid in Cornelian cherry (Cornus mas) J. Agric. Food Chem. 2006;54:243–248. PubMed
Alqahtani A., Hamid K., Kam A., Wong K.H., Abdelhak Z., Razmovski-Naumovski V., et al. The pentacyclic triterpenoids in herbal medicines and their pharmacological activities in diabetes and diabetic complications. Curr. Med. Chem. 2013;20:908–931. PubMed
Xu H.L., Wang X.T., Cheng Y., Zhao J.G., Zhou Y.J., Yang J.J., et al. Ursolic acid improves diabetic nephropathy via suppression of oxidative stress and inflammation in streptozotocin-induced rats. Biomed. Pharmacother. 2018;105:915–921. PubMed
Gutierrez-Rebolledo G.A., Siordia-Reyes A.G., Meckes-Fischer M., Jimenez-Arellanes A. Hepatoprotective properties of oleanolic and ursolic acids in antitubercular drug-induced liver damage. Asian Pac. J. Trop. Med. 2016;9:644–651. PubMed
Saravanan R., Viswanathan P., Pugalendi K.V. Protective effect of ursolic acid on ethanol-mediated experimental liver damage in rats. Life Sci. 2006;78:713–718. PubMed
Li L., Zhang X., Cui L., Wang L., Liu H., Ji H., et al. Ursolic acid promotes the neuroprotection by activating Nrf2 pathway after cerebral ischemia in mice. Brain Res. 2013;1497:32–39. PubMed
Machado D.G., Neis V.B., Balen G.O., Colla A., Cunha M.P., Dalmarco J.B., et al. Antidepressant-like effect of ursolic acid isolated from Rosmarinus officinalis L. in mice: evidence for the involvement of the dopaminergic system. Pharmacol. Biochem. Behav. 2012;103:204–211. PubMed
Morris C.J. Carrageenan-induced paw edema in the rat and mouse. Met. Mol. Biol. 2003;225:115–121. PubMed
Dhakal H., Kim M.J., Lee S., Choi Y.A., Kim N., Kwon T.K., et al. Ursolic acid inhibits FcεRI-mediated mast cell activation and allergic inflammation. Int. Immunopharmacol. 2021;99 PubMed
Checker R., Sandur S.K., Sharma D., Patwardhan R.S., Jayakumar S., Kohli V., et al. Potent anti-inflammatory activity of ursolic acid, a triterpenoid antioxidant, is mediated through suppression of NF-κB, AP-1 and NF-AT. PLoS One. 2012;7 PubMed PMC
Moon P.D., Han N.R., Lee J.S., Kim H.M., Jeong H.J. Ursolic acid downregulates thymic stromal lymphopoietin through the blockade of intracellular calcium/caspase1/NFκB signaling cascade in HMC1 cells. Int. J. Mol. Med. 2019;43:2252–2258. PubMed
Zhang W., Hong D., Zhou Y., Zhang Y., Shen Q., Li J.Y., et al. Ursolic acid and its derivative inhibit protein tyrosine phosphatase 1B, enhancing insulin receptor phosphorylation and stimulating glucose uptake. Biochim. Biophys. Acta. 2006;1760:1505–1512. PubMed
Adewole K.E., Ishola A.A. Phytosterols and triterpenes from Morinda lucida benth (Rubiaceae) as potential inhibitors of anti-apoptotic BCL-XL, BCL-2, and MCL-1: an in-silico study. J. Recept. Signal. Transduct. Res. 2019;39:87–97. PubMed
Ding H., Hu X., Xu X., Zhang G., Gong D. Inhibitory mechanism of two allosteric inhibitors, oleanolic acid and ursolic acid on α-glucosidase. Int. J. Biol. Macromol. 2018;107:1844–1855. PubMed
Meyer K.H. Contribution to the theory of narcosis. Trans. Faraday Soc. 1937;33:1062–1068.
Han S.K., Ko Y.I., Park S.J., Jin I.J., Kim Y.M. Oleanolic acid and ursolic acid stabilize liposomal membranes. Lipids. 1997;32:769–773. PubMed
Prades J., Vogler O., Alemany R., Gomez-Florit M., Funari S.S., Ruiz-Gutierrez V., et al. Plant pentacyclic triterpenic acids as modulators of lipid membrane physical properties. Biochim. Biophys. Acta. 2011;1808:752–760. PubMed
Broniatowski M., Flasinski M., Hac-Wydro K. Antagonistic effects of α-tocopherol and ursolic acid on model bacterial membranes. Biochim. Biophys. Acta. 2015;1848:2154–2162. PubMed
Abboud R., Charcosset C., Greige-Gerges H. Tetra- and enta-cyclic triterpenes interaction with lipid bilayer membrane: a structural comparative study. J. Membr. Biol. 2016;249:327–338. PubMed
Fajardo-Sanchez E., Galiano V., Villalain J. Location of the bioactive pentacyclic triterpene ursolic acid in the membrane. A molecular dynamics study. J. Biomol. Struct. Dyn. 2017;35:2688–2700. PubMed
Rieger A.M., Hall B.E., Luong l.T., Schang L.M., Barreda D.R. Conventional apoptosis assays using propidium iodide generate a significant number of false positives that prevent accurate assessment of cell death. J. Immunol. Met. 2010;358:81–92. PubMed
Smrz D., Draberova L., Draber P. Non-apoptotic phosphatidylserine externalization induced by engagement of glycosylphosphatidylinositol-anchored proteins. J. Biol. Chem. 2007;282:10487–10497. PubMed
Yamamura H., Masuda T., Ohkawa E., Tanaka Y., Kondo S., Nabe T., et al. Two-phase increment of Ca2+ uptake, intracellular Ca2+ concentration, and histamine release following antigen stimulation in mouse bone marrow-derived mast cells (BMMC) Jpn. J. Pharmacol. 1994;66:377–386. PubMed
Draberova L., Paulenda T., Halova I., Potuckova L., Bugajev V., Bambouskova M., et al. Ethanol inhibits high-affinity immunoglobulin E receptor (FcεRI) signaling in mast cells by suppressing the function of FcεRI-cholesterol signalosome. PLoS One. 2015;10 PubMed PMC
Halova I., Draberova L., Draber P. Mast cell chemotaxis - chemoattractants and signaling pathways. Front. Immunol. 2012;3:119. PubMed PMC
Horiuchi K., Kimura T., Miyamoto T., Takaishi H., Okada Y., Toyama Y., et al. Cutting edge: TNF-α-converting enzyme (TACE/ADAM17) inactivation in mouse myeloid cells prevents lethality from endotoxin shock. J. Immunol. 2007;179:2686–2689. PubMed
Kraft S., Kinet J.P. New developments in FcεRI regulation, function and inhibition. Nat. Rev. Immunol. 2007;7:365–378. PubMed
Bugajev V., Bambousková M., Dráberová L., Dráber P. What precedes the initial tyrosine phosphorylation of the high affinity IgE receptor in antigen-activated mast cell? FEBS Lett. 2010;584:4949–4955. PubMed
Zhang J., Billingsley M.L., Kincaid R.L., Siraganian R.P. Phosphorylation of Syk activation loop tyrosines is essential for Syk function. An in vivo study using a specific anti-Syk activation loop phosphotyrosine antibody. J. Biol. Chem. 2000;275:35442–35447. PubMed
Draber P., Halova I., Levi-Schaffer F., Draberova L. Transmembrane adaptor proteins in the high-affinity IgE receptor signaling. Front. Immunol. 2012;2:1–11. PubMed PMC
Wang Z., Gluck S., Zhang L., Moran M.F. Requirement for phospholipase C-γ1 enzymatic activity in growth factor-induced mitogenesis. Mol. Cell Biol. 1998;18:590–597. PubMed PMC
Swaminathan G., Tsygankov A.Y. The Cbl family proteins: ring leaders in regulation of cell signaling. J. Cell Physiol. 2006;209:21–43. PubMed
Gasparrini F., Molfetta R., Santoni A., Paolini R. Cbl family proteins: balancing FcεRI-mediated mast cell and basophil activation. Int. Arch. Allergy Immunol. 2011;156:16–26. PubMed
Kim M.S., Kuehn H.S., Metcalfe D.D., Gilfillan A.M. Activation and function of the mTORC1 pathway in mast cells. J. Immunol. 2008;180:4586–4595. PubMed PMC
Smrž D., Kim M.S., Zhang S., Mock B.A., Smržová S., DuBois W., et al. mTORC1 and mTORC2 differentially regulate homeostasis of neoplastic and non-neoplastic human mast cells. Blood. 2011;118:6803–6813. PubMed PMC
Smrz D., Cruse G., Beaven M.A., Kirshenbaum A., Metcalfe D.D., Gilfillan A.M. Rictor negatively regulates high-affinity receptors for IgE-induced mast cell degranulation. J. Immunol. 2014;193:5924–5932. PubMed PMC
Katagiri T., Ogimoto M., Hasegawa K., Arimura Y., Mitomo K., Okada M., et al. CD45 negatively regulates Lyn activity by dephosphorylating both positive and negative regulatory tyrosine residues in immature B cells. J. Immunol. 1999;163:1321–1326. PubMed
Harder K.W., Parsons L.M., Armes J., Evans N., Kountouri N., Clark R., et al. Gain- and loss-of-function Lyn mutant mice define a critical inhibitory role for Lyn in the myeloid lineage. Immunity. 2001;15:603–615. PubMed
Hibbs M.L., Harder K.W., Armes J., Kountouri N., Quilici C., Casagranda F., et al. Sustained activation of Lyn tyrosine kinase in vivo leads to autoimmunity. J. Exp. Med. 2002;196:1593–1604. PubMed PMC
Sheets E.D., Holowka D., Baird B. Critical role for cholesterol in Lyn-mediated tyrosine phosphorylation of FcεRI and their association with detergent-resistant membranes. J. Cell Biol. 1999;145:877–887. PubMed PMC
Surviladze Z., Dráberová L., Kovářová M., Boubelík M., Dráber P. Differential sensitivity to acute cholesterol lowering of activation mediated via the high-affinity IgE receptor and Thy-1 glycoprotein. Eur. J. Immunol. 2001;31:1–10. PubMed
Dráberová L., Dudková L., Boubelík M., Tolarová H., Šmíd F., Dráber P. Exogenous administration of gangliosides inhibits FcεRI-mediated mast cell degranulation by decreasing the activity of phospholipase Cγ. J. Immunol. 2003;171:3585–3593. PubMed
Kovářová M., Tolar P., Arudchandran R., Dráberová L., Rivera J., Dráber P. Structure-function analysis of Lyn kinase association with lipid rafts and initiation of early signaling events after Fcε receptor I aggregation. Mol. Cell Biol. 2001;21:8318–8328. PubMed PMC
Volná P., Lebduška P., Dráberová L., Šímová S., Heneberg P., Boubelík M., et al. Negative regulation of mast cell signaling and function by the adaptor LAB/NTAL. J. Exp. Med. 2004;200:1001–1013. PubMed PMC
Draberova L., Bugajev V., Potuckova L., Halova I., Bambouskova M., Polakovicova I., et al. Transmembrane adaptor protein PAG/CBP is involved in both positive and negative regulation of mast cell signaling. Mol. Cell Biol. 2014;34:4285–4300. PubMed PMC
Kim G.H., Kan S.Y., Kang H., Lee S., Ko H.M., Kim J.H., et al. Ursolic acid suppresses cholesterol biosynthesis and exerts anti-cancer effects in hepatocellular carcinoma Cells. Int. J. Mol. Sci. 2019;20:4767. PubMed PMC
Waddington K.E., Pineda-Torra I., Jury E.C. Analyzing T-cell plasma membrane lipids by flow cytometry. Met. Mol. Biol. 2019;1951:209–216. PubMed
Kilsdonk E.P., Yancey P.G., Stoudt G.W., Bangerter F.W., Johnson W.J., Phillips M.C., et al. Cellular cholesterol efflux mediated by cyclodextrins. J. Biol. Chem. 1995;270:17250–17256. PubMed
Yancey P.G., Rodrigueza W.V., Kilsdonk E.P.C., Stoudt G.W., Johnson W.J., Phillips M.C., et al. Cellular cholesterol efflux mediated by cyclodextrins. Demonstration of kinetic pools and mechanism of efflux. J. Biol. Chem. 1996;271:16026–16034. PubMed
Bevers E.M., Comfurius P., Dekkers D.W., Zwaal R.F. Lipid translocation across the plasma membrane of mammalian cells. Biochim. Biophys. Acta. 1999;1439:317–330. PubMed
Pomorski T., Holthuis J.C., Herrmann A., van Meer G. Tracking down lipid flippases and their biological functions. J. Cell Sci. 2004;117:805–813. PubMed
Clarke R.J., Hossain K.R., Cao K. Physiological roles of transverse lipid asymmetry of animal membranes. Biochim. Biophys. Acta Biomembr. 2020;1862 PubMed
Zhou Q., Zhao J., Stout J.G., Luhm R.A., Wiedmer T., Sims P.J. Molecular cloning of human plasma membrane phospholipid scramblase. A protein mediating transbilayer movement of plasma membrane phospholipids. J. Biol. Chem. 1997;272:18240–18244. PubMed
Wesseling M.C., Wagner-Britz L., Nguyen D.B., Asanidze S., Mutua J., Mohamed N., et al. Novel insights in the regulation of hosphatidylserine exposure in human red blood cells. Cell Physiol. Biochem. 2016;39:1941–1954. PubMed
Deitch A.D., Law H., deVere W.R. A stable propidium iodide staining procedure for flow cytometry. J. Histochem. Cytochem. 1982;30:967–972. PubMed
Schmidt U., Abramova A., Boucheron N., Eckelhart E., Schebesta A., Bilic I., et al. The protein tyrosine kinase Tec regulates mast cell function. Eur. J. Immunol. 2009;39:3228–3238. PubMed
Eiseman E., Bolen J.B. Engagement of the high-affinity IgE receptor activates src protein-related tyrosine kinases. Nature. 1992;355:78–80. PubMed
Jouvin M.-H.E., Adamczewski M., Numerof R., Letourneur O., Vallé A., Kinet J.-P. Differential control of the tyrosine kinases Lyn and Syk by the two signaling chains of the high affinity immunoglobulin E receptor. J. Biol. Chem. 1994;269:5918–5925. PubMed
Zhang J., Berenstein E.H., Evans R.L., Siraganian R.P. Transfection of Syk protein tyrosine kinase reconstitutes high affinity IgE receptor-mediated degranulation in a Syk-negative variant of rat basophilic leukemia RBL-2H3 cells. J. Exp. Med. 1996;184:71–79. PubMed PMC
Gilfillan A.M., Rivera J. The tyrosine kinase network regulating mast cell activation. Immunol. Rev. 2009;228:149–169. PubMed PMC
Cannon B., Hermansson M., Gyorke S., Somerharju P., Virtanen J.A., Cheng K.H. Regulation of calcium channel activity by lipid domain formation in planar lipid bilayers. Biophys. J. 2003;85:933–942. PubMed PMC
Paulussen J.J., Fischer M.J., Zuidam N.J., Miltenburg J.C., de Mol N.J., Janssen L.H. Influence of the antiallergic drug oxatomide and derivatives on membrane structures: relation with inhibition of calcium influx in rat basophilic leukemia cells. Biochem. Pharmacol. 1999;57:503–510. PubMed
Chen L., Meng Q., Yu X., Li C., Zhang C., Cui C., et al. Possible mechanisms underlying the biphasic regulatory effects of arachidonic acid on Ca2+ signaling in HEK293 cells. Cell Signal. 2012;24:1565–1572. PubMed
Derler I., Jardin I., Stathopulos P.B., Muik M., Fahrner M., Zayats V., et al. Cholesterol modulates Orai1 channel function. Sci. Signal. 2016;9:ra10. PubMed PMC
Chapman D. Phase transitions and fluidity characteristics of lipids and cell membranes. Q. Rev. Biophys. 1975;8:185–235. PubMed
Rone M.B., Fan J., Papadopoulos V. Cholesterol transport in steroid biosynthesis: role of protein-protein interactions and implications in disease states. Biochim. Biophys. Acta. 2009;1791:646–658. PubMed PMC
Ohvo-Rekila H., Ramstedt B., Leppimaki P., Slotte J.P. Cholesterol interactions with phospholipids in membranes. Prog. Lipid. Res. 2002;41:66–97. PubMed
Ikonen E. Cellular cholesterol trafficking and compartmentalization. Nat. Rev. Mol. Cell Biol. 2008;9:125–138. PubMed
Koshy C., Ziegler C. Structural insights into functional lipid-protein interactions in secondary transporters. Biochim. Biophys. Acta. 2015;1850:476–487. PubMed
Flasinski M., Hac-Wydro K., Broniatowski M. Incorporation of pentacyclic triterpenes into mitochondrial membrane--studies on the interactions in model 2D lipid systems. J. Phys. Chem. B. 2014;118:12927–12937. PubMed
Broniatowski M., Flasinski M., Zieba K., Miskowiec P. Interactions of pentacyclic triterpene acids with cardiolipins and related phosphatidylglycerols in model systems. Biochim. Biophys. Acta. 2014;1838:2530–2538. PubMed
Polakovicova I., Draberova L., Simicek M., Draber P. Multiple regulatory roles of the mouse transmembrane adaptor protein NTAL in gene transcription and mast cell physiology. PLoS. One. 2014;9 PubMed PMC
Halova I., Bambouskova M., Draberova L., Bugajev V., Draber P. The transmembrane adaptor protein NTAL limits mast cell chemotaxis toward prostaglandin E2. Sci. Signal. 2018;11:eaao4354. PubMed
Baumruker T., Csonga R., Pursch E., Pfeffer A., Urtz N., Sutton S., et al. Activation of mast cells by incorporation of cholesterol into rafts. Int. Immunol. 2003;15:1207–1218. PubMed
You H.J., Choi C.Y., Kim J.Y., Park S.J., Hahm K.S., Jeong H.G. Ursolic acid enhances nitric oxide and tumor necrosis factor-α production via nuclear factor-κB activation in the resting macrophages. FEBS Lett. 2001;509:156–160. PubMed
Simons K., Toomre D. Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol. 2000;1:31–39. PubMed
Surviladze Z., Harrison K.A., Murphy R.C., Wilson B.S. FcεRI and Thy-1 domains have unique protein and lipid compositions. J. Lipid Res. 2007;48:1325–1335. PubMed
Bag N., Wagenknecht-wiesner A., Lee A., Shi S., Holowka D.A., Baird B.A. Lipid-based, protein-based, and steric interactions synergize to facilitate transmembrane signaling stimulated by antigen-clustering of IgE receptors. bioRxiv. 2020 doi: 10.1101/2020.12.26.424347. [preprint] PubMed DOI PMC
Rudolph A.K., Burrows P.D., Wabl M.R. Thirteen hybridomas secreting hapten-specific immunoglobulin E from mice with Iga or Igb heavy chain haplotype. Eur. J. Immunol. 1981;11:527–529. PubMed
Rivera J., Kinet J.-P., Kim J., Pucillo C., Metzger H. Studies with a monoclonal antibody to the β subunit of the receptor with high affinity for immunoglobulin E. Mol. Immunol. 1988;25:647–661. PubMed
Tolar P., Dráberová L., Dráber P. Protein tyrosine kinase Syk is involved in Thy-1 signaling in rat basophilic leukemia cells. Eur. J. Immunol. 1997;27:3389–3397. PubMed
Brdicka T., Imrich M., Angelisova P., Brdickova N., Horvath O., Spicka J., et al. Non-T cell activation linker (NTAL): a transmembrane adaptor protein involved in immunoreceptor signaling. J. Exp. Med. 2002;196:1617–1626. PubMed PMC
Tolar P., Tůmová M., Dráber P. New monoclonal antibodies recognizing the adaptor protein LAT. Folia Biol. (Praha) 2001;47:215–217. PubMed
Mason D.W., Williams A.F. The kinetics of antibody binding to membrane antigens in solution and at the cell surface. Biochem. J. 1980;187:1–20. PubMed PMC
Schmitt-Verhulst A.M., Pettinelli C.B., Henkart P.A., Lunney J.K., Shearer G.M. H-2-restricted cytotoxic effectors generated in vitro by the addition of trinitrophenyl-conjugated soluble proteins. J. Exp. Med. 1978;147:352–368. PubMed PMC
Hibbs M.L., Tarlinton D.M., Armes J., Grail D., Hodgson G., Maglitto R., et al. Multiple defects in the immune system of Lyn-deficient mice, culminating in autoimmune disease. Cell. 1995;83:301–311. PubMed
Siraganian R.P., McGivney A., Barsumian E.L., Crews F.T., Hirata F., Axelrod J. Variants of the rat basophilic leukemia cell line for the study of histamine release. Fed. Proc. 1982;41:30–34. PubMed
Dráberová L., Dráber P. Functional expression of the endogenous Thy-1 gene and the transfected murine Thy-1.2 gene in rat basophilic leukemia cells. Eur. J. Immunol. 1991;21:1583–1590. PubMed
Dráber P., Stanley P. Cytotoxicity of plant lectins for mouse embryonal carcinoma cells. Somat. Cell Mol. Genet. 1984;10:435–443. PubMed
Surviladze Z., Dráberová L., Kubínová L., Dráber P. Functional heterogeneity of Thy-1 membrane microdomains in rat basophilic leukemia cells. Eur. J. Immunol. 1998;28:1847–1858. PubMed
Jin J., Vaud S., Zhelkovsky A.M., Posfai J., McReynolds L.A. Sensitive and specific miRNA detection method using SplintR Ligase. Nucl. Acids Res. 2016;44:e116. PubMed PMC
Horáková H., Polakovicová I., Shaik G.M., Eitler J., Bugajev V., Dráberová L., et al. 1,2-propanediol-trehalose mixture as a potent quantitative real-time PCR enhancer. BMC. Biotechnol. 2011;11:41. PubMed PMC
Mao F., Leung W.Y., Xin X. Characterization of EvaGreen and the implication of its physicochemical properties for qPCR applications. BMC. Biotechnol. 2007;7:76. PubMed PMC
Bugajev V., Paulenda T., Utekal P., Mrkacek M., Halova I., Kuchar L., et al. Crosstalk between ORMDL3, serine palmitoyltransferase, and 5-lipoxygenase in the sphingolipid and eicosanoid metabolic pathways. J. Lipid. Res. 2021;62:100121. PubMed PMC
Schneider C.A., Rasband W.S., Eliceiri K.W. NIH image to ImageJ: 25 years of image analysis. Nat. Met. 2012;9:671–675. PubMed PMC
Sprague B.L., Pego R.L., Stavreva D.A., McNally J.G. Analysis of binding reactions by fluorescence recovery after photobleaching. Biophys. J. 2004;86:3473–3495. PubMed PMC
Huranova M., Ivani I., Benda A., Poser I., Brody Y., Hof M., et al. The differential interaction of snRNPs with pre-mRNA reveals splicing kinetics in living cells. J. Cell Biol. 2010;191:75–86. PubMed PMC