The differential interaction of snRNPs with pre-mRNA reveals splicing kinetics in living cells

. 2010 Oct 04 ; 191 (1) : 75-86.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid20921136

Precursor messenger RNA (pre-mRNA) splicing is catalyzed by the spliceosome, a large ribonucleoprotein (RNP) complex composed of five small nuclear RNP particles (snRNPs) and additional proteins. Using live cell imaging of GFP-tagged snRNP components expressed at endogenous levels, we examined how the spliceosome assembles in vivo. A comprehensive analysis of snRNP dynamics in the cell nucleus enabled us to determine snRNP diffusion throughout the nucleoplasm as well as the interaction rates of individual snRNPs with pre-mRNA. Core components of the spliceosome, U2 and U5 snRNPs, associated with pre-mRNA for 15-30 s, indicating that splicing is accomplished within this time period. Additionally, binding of U1 and U4/U6 snRNPs with pre-mRNA occurred within seconds, indicating that the interaction of individual snRNPs with pre-mRNA is distinct. These results are consistent with the predictions of the step-wise model of spliceosome assembly and provide an estimate on the rate of splicing in human cells.

Zobrazit více v PubMed

Ali G.S., Prasad K.V., Hanumappa M., Reddy A.S. 2008. Analyses of in vivo interaction and mobility of two spliceosomal proteins using FRAP and BiFC. PLoS One. 3:e1953 10.1371/journal.pone.0001953 PubMed DOI PMC

Audibert A., Weil D., Dautry F. 2002. In vivo kinetics of mRNA splicing and transport in mammalian cells. Mol. Cell. Biol. 22:6706–6718 10.1128/MCB.22.19.6706-6718.2002 PubMed DOI PMC

Azubel M., Habib N., Sperling R., Sperling J. 2006. Native spliceosomes assemble with pre-mRNA to form supraspliceosomes. J. Mol. Biol. 356:955–966 10.1016/j.jmb.2005.11.078 PubMed DOI

Behzadnia N., Hartmuth K., Will C.L., Lührmann R. 2006. Functional spliceosomal A complexes can be assembled in vitro in the absence of a penta-snRNP. RNA. 12:1738–1746 10.1261/rna.120606 PubMed DOI PMC

Behzadnia N., Golas M.M., Hartmuth K., Sander B., Kastner B., Deckert J., Dube P., Will C.L., Urlaub H., Stark H., Lührmann R. 2007. Composition and three-dimensional EM structure of double affinity-purified, human prespliceosomal A complexes. EMBO J. 26:1737–1748 10.1038/sj.emboj.7601631 PubMed DOI PMC

Benda A., Beneš M., Marecek V., Lhotský A., Hermens W.T., Hof M. 2003. How to determine diffusion coefficients in planar phospholipid systems by confocal fluorescence correlation spectroscopy. Langmuir. 19:4120–4126 10.1021/la0270136 DOI

Beyer A.L., Osheim Y.N. 1988. Splice site selection, rate of splicing, and alternative splicing on nascent transcripts. Genes Dev. 2:754–765 10.1101/gad.2.6.754 PubMed DOI

Bindereif A., Green M.R. 1987. An ordered pathway of snRNP binding during mammalian pre-mRNA splicing complex assembly. EMBO J. 6:2415–2424 PubMed PMC

Brody E., Abelson J. 1985. The “spliceosome”: yeast pre-messenger RNA associates with a 40S complex in a splicing-dependent reaction. Science. 228:963–967 10.1126/science.3890181 PubMed DOI

Cao W., Garcia-Blanco M.A. 1998. A serine/arginine-rich domain in the human U1 70k protein is necessary and sufficient for ASF/SF2 binding. J. Biol. Chem. 273:20629–20635 10.1074/jbc.273.32.20629 PubMed DOI

Chodosh L.A., Fire A., Samuels M., Sharp P.A. 1989. 5,6-Dichloro-1-beta-D-ribofuranosylbenzimidazole inhibits transcription elongation by RNA polymerase II in vitro. J. Biol. Chem. 264:2250–2257 PubMed

Chusainow J., Ajuh P.M., Trinkle-Mulcahy L., Sleeman J.E., Ellenberg J., Lamond A.I. 2005. FRET analyses of the U2AF complex localize the U2AF35/U2AF65 interaction in vivo and reveal a novel self-interaction of U2AF35. RNA. 11:1201–1214 10.1261/rna.7277705 PubMed DOI PMC

Darzacq X., Kittur N., Roy S., Shav-Tal Y., Singer R.H., Meier U.T. 2006. Stepwise RNP assembly at the site of H/ACA RNA transcription in human cells. J. Cell Biol. 173:207–218 10.1083/jcb.200601105 PubMed DOI PMC

Darzacq X., Shav-Tal Y., de Turris V., Brody Y., Shenoy S.M., Phair R.D., Singer R.H. 2007. In vivo dynamics of RNA polymerase II transcription. Nat. Struct. Mol. Biol. 14:796–806 10.1038/nsmb1280 PubMed DOI PMC

Dundr M., Hoffmann-Rohrer U., Hu Q., Grummt I., Rothblum L.I., Phair R.D., Misteli T. 2002. A kinetic framework for a mammalian RNA polymerase in vivo. Science. 298:1623–1626 10.1126/science.1076164 PubMed DOI

Ellis J.D., Llères D., Denegri M., Lamond A.I., Cáceres J.F. 2008. Spatial mapping of splicing factor complexes involved in exon and intron definition. J. Cell Biol. 181:921–934 10.1083/jcb.200710051 PubMed DOI PMC

Görnemann J., Kotovic K.M., Hujer K., Neugebauer K.M. 2005. Cotranscriptional spliceosome assembly occurs in a stepwise fashion and requires the cap binding complex. Mol. Cell. 19:53–63 10.1016/j.molcel.2005.05.007 PubMed DOI

Gorski S.A., Snyder S.K., John S., Grummt I., Misteli T. 2008. Modulation of RNA polymerase assembly dynamics in transcriptional regulation. Mol. Cell. 30:486–497 10.1016/j.molcel.2008.04.021 PubMed DOI PMC

Grünwald D., Spottke B., Buschmann V., Kubitscheck U. 2006. Intranuclear binding kinetics and mobility of single native U1 snRNP particles in living cells. Mol. Biol. Cell. 17:5017–5027 10.1091/mbc.E06-06-0559 PubMed DOI PMC

Humpolícková J., Beranová L., Stĕpánek M., Benda A., Procházka K., Hof M. 2008. Fluorescence lifetime correlation spectroscopy reveals compaction mechanism of 10 and 49 kbp DNA and differences between polycation and cationic surfactant. J. Phys. Chem. B. 112:16823–16829 10.1021/jp806358w PubMed DOI

Huranová M., Hnilicová J., Fleischer B., Cvacková Z., Stanek D. 2009a. A mutation linked to retinitis pigmentosa in HPRP31 causes protein instability and impairs its interactions with spliceosomal snRNPs. Hum. Mol. Genet. 18:2014–2023 10.1093/hmg/ddp125 PubMed DOI

Huranová M., Jablonski J.A., Benda A., Hof M., Stanek D., Caputi M. 2009b. In vivo detection of RNA-binding protein interactions with cognate RNA sequences by fluorescence resonance energy transfer. RNA. 15:2063–2071 10.1261/rna.1678209 PubMed DOI PMC

Jurica M.S., Moore M.J. 2003. Pre-mRNA splicing: awash in a sea of proteins. Mol. Cell. 12:5–14 10.1016/S1097-2765(03)00270-3 PubMed DOI

Jurica M.S., Licklider L.J., Gygi S.R., Grigorieff N., Moore M.J. 2002. Purification and characterization of native spliceosomes suitable for three-dimensional structural analysis. RNA. 8:426–439 10.1017/S1355838202021088 PubMed DOI PMC

Kaida D., Motoyoshi H., Tashiro E., Nojima T., Hagiwara M., Ishigami K., Watanabe H., Kitahara T., Yoshida T., Nakajima H., et al. 2007. Spliceostatin A targets SF3b and inhibits both splicing and nuclear retention of pre-mRNA. Nat. Chem. Biol. 3:576–583 10.1038/nchembio.2007.18 PubMed DOI

Kim S.A., Heinze K.G., Schwille P. 2007. Fluorescence correlation spectroscopy in living cells. Nat. Methods. 4:963–973 10.1038/nmeth1104 PubMed DOI

Konarska M.M., Sharp P.A. 1986. Electrophoretic separation of complexes involved in the splicing of precursors to mRNAs. Cell. 46:845–855 10.1016/0092-8674(86)90066-8 PubMed DOI

Konarska M.M., Sharp P.A. 1988. Association of U2, U4, U5, and U6 small nuclear ribonucleoproteins in a spliceosome-type complex in absence of precursor RNA. Proc. Natl. Acad. Sci. USA. 85:5459–5462 10.1073/pnas.85.15.5459 PubMed DOI PMC

Kotovic K.M., Lockshon D., Boric L., Neugebauer K.M. 2003. Cotranscriptional recruitment of the U1 snRNP to intron-containing genes in yeast. Mol. Cell. Biol. 23:5768–5779 10.1128/MCB.23.16.5768-5779.2003 PubMed DOI PMC

Lacadie S.A., Rosbash M. 2005. Cotranscriptional spliceosome assembly dynamics and the role of U1 snRNA:5’ss base pairing in yeast. Mol. Cell. 19:65–75 10.1016/j.molcel.2005.05.006 PubMed DOI

Lamond A.I., Spector D.L. 2003. Nuclear speckles: a model for nuclear organelles. Nat. Rev. Mol. Cell Biol. 4:605–612 10.1038/nrm1172 PubMed DOI

LeMaire M.F., Thummel C.S. 1990. Splicing precedes polyadenylation during Drosophila E74A transcription. Mol. Cell. Biol. 10:6059–6063 PubMed PMC

Listerman I., Sapra A.K., Neugebauer K.M. 2006. Cotranscriptional coupling of splicing factor recruitment and precursor messenger RNA splicing in mammalian cells. Nat. Struct. Mol. Biol. 13:815–822 10.1038/nsmb1135 PubMed DOI

McNally J.G. 2008. Quantitative FRAP in analysis of molecular binding dynamics in vivo. Methods Cell Biol. 85:329–351 10.1016/S0091-679X(08)85014-5 PubMed DOI

Nelissen R.L., Will C.L., van Venrooij W.J., Lührmann R. 1994. The association of the U1-specific 70K and C proteins with U1 snRNPs is mediated in part by common U snRNP proteins. EMBO J. 13:4113–4125 PubMed PMC

Neugebauer K.M. 2002. On the importance of being co-transcriptional. J. Cell Sci. 115:3865–3871 10.1242/jcs.00073 PubMed DOI

O’Brien K., Matlin A.J., Lowell A.M., Moore M.J. 2008. The biflavonoid isoginkgetin is a general inhibitor of Pre-mRNA splicing. J. Biol. Chem. 283:33147–33154 10.1074/jbc.M805556200 PubMed DOI PMC

Phair R.D., Misteli T. 2001. Kinetic modelling approaches to in vivo imaging. Nat. Rev. Mol. Cell Biol. 2:898–907 10.1038/35103000 PubMed DOI

Poser I., Sarov M., Hutchins J.R., Hériché J.K., Toyoda Y., Pozniakovsky A., Weigl D., Nitzsche A., Hegemann B., Bird A.W., et al. 2008. BAC TransgeneOmics: a high-throughput method for exploration of protein function in mammals. Nat. Methods. 5:409–415 10.1038/nmeth.1199 PubMed DOI PMC

Reed R. 2000. Mechanisms of fidelity in pre-mRNA splicing. Curr. Opin. Cell Biol. 12:340–345 10.1016/S0955-0674(00)00097-1 PubMed DOI

Rino J., Carmo-Fonseca M. 2009. The spliceosome: a self-organized macromolecular machine in the nucleus? Trends Cell Biol. 19:375–384 10.1016/j.tcb.2009.05.004 PubMed DOI

Rino J., Carvalho T., Braga J., Desterro J.M., Lührmann R., Carmo-Fonseca M. 2007. A stochastic view of spliceosome assembly and recycling in the nucleus. PLOS Comput. Biol. 3:2019–2031 10.1371/journal.pcbi.0030201 PubMed DOI PMC

Rino J., Desterro J.M., Pacheco T.R., Gadella T.W., Jr., Carmo-Fonseca M. 2008. Splicing factors SF1 and U2AF associate in extraspliceosomal complexes. Mol. Cell. Biol. 28:3045–3057 10.1128/MCB.02015-07 PubMed DOI PMC

Sapra A.K., Ankö M.L., Grishina I., Lorenz M., Pabis M., Poser I., Rollins J., Weiland E.M., Neugebauer K.M. 2009. SR protein family members display diverse activities in the formation of nascent and mature mRNPs in vivo. Mol. Cell. 34:179–190 10.1016/j.molcel.2009.02.031 PubMed DOI

Schmidt U., Im K.B., Benzing C., Janjetovic S., Rippe K., Lichter P., Wachsmuth M. 2009. Assembly and mobility of exon-exon junction complexes in living cells. RNA. 15:862–876 10.1261/rna.1387009 PubMed DOI PMC

Shav-Tal Y., Darzacq X., Shenoy S.M., Fusco D., Janicki S.M., Spector D.L., Singer R.H. 2004. Dynamics of single mRNPs in nuclei of living cells. Science. 304:1797–1800 10.1126/science.1099754 PubMed DOI PMC

Singh J., Padgett R.A. 2009. Rates of in situ transcription and splicing in large human genes. Nat. Struct. Mol. Biol. 16:1128–1133 10.1038/nsmb.1666 PubMed DOI PMC

Sperling J., Azubel M., Sperling R. 2008. Structure and function of the Pre-mRNA splicing machine. Structure. 16:1605–1615 10.1016/j.str.2008.08.011 PubMed DOI

Sprague B.L., McNally J.G. 2005. FRAP analysis of binding: proper and fitting. Trends Cell Biol. 15:84–91 10.1016/j.tcb.2004.12.001 PubMed DOI

Sprague B.L., Pego R.L., Stavreva D.A., McNally J.G. 2004. Analysis of binding reactions by fluorescence recovery after photobleaching. Biophys. J. 86:3473–3495 10.1529/biophysj.103.026765 PubMed DOI PMC

Sprague B.L., Müller F., Pego R.L., Bungay P.M., Stavreva D.A., McNally J.G. 2006. Analysis of binding at a single spatially localized cluster of binding sites by fluorescence recovery after photobleaching. Biophys. J. 91:1169–1191 10.1529/biophysj.105.073676 PubMed DOI PMC

Staley J.P., Guthrie C. 1998. Mechanical devices of the spliceosome: motors, clocks, springs, and things. Cell. 92:315–326 10.1016/S0092-8674(00)80925-3 PubMed DOI

Stevens S.W., Ryan D.E., Ge H.Y., Moore R.E., Young M.K., Lee T.D., Abelson J. 2002. Composition and functional characterization of the yeast spliceosomal penta-snRNP. Mol. Cell. 9:31–44 10.1016/S1097-2765(02)00436-7 PubMed DOI

Tardiff D.F., Rosbash M. 2006. Arrested yeast splicing complexes indicate stepwise snRNP recruitment during in vivo spliceosome assembly. RNA. 12:968–979 10.1261/rna.50506 PubMed DOI PMC

Tardiff D.F., Lacadie S.A., Rosbash M. 2006. A genome-wide analysis indicates that yeast pre-mRNA splicing is predominantly posttranscriptional. Mol. Cell. 24:917–929 10.1016/j.molcel.2006.12.002 PubMed DOI PMC

Urlaub H., Raker V.A., Kostka S., Lührmann R. 2001. Sm protein-Sm site RNA interactions within the inner ring of the spliceosomal snRNP core structure. EMBO J. 20:187–196 10.1093/emboj/20.1.187 PubMed DOI PMC

Wahl M.C., Will C.L., Lührmann R. 2009. The spliceosome: design principles of a dynamic RNP machine. Cell. 136:701–718 10.1016/j.cell.2009.02.009 PubMed DOI

Wassarman D.A., Steitz J.A. 1992. Interactions of small nuclear RNA’s with precursor messenger RNA during in vitro splicing. Science. 257:1918–1925 10.1126/science.1411506 PubMed DOI

Wetterberg I., Baurén G., Wieslander L. 1996. The intranuclear site of excision of each intron in Balbiani ring 3 pre-mRNA is influenced by the time remaining to transcription termination and different excision efficiencies for the various introns. RNA. 2:641–651 PubMed PMC

Wetterberg I., Zhao J., Masich S., Wieslander L., Skoglund U. 2001. In situ transcription and splicing in the Balbiani ring 3 gene. EMBO J. 20:2564–2574 10.1093/emboj/20.10.2564 PubMed DOI PMC

Will C.L., Lührmann R. 2001. Spliceosomal UsnRNP biogenesis, structure and function. Curr. Opin. Cell Biol. 13:290–301 10.1016/S0955-0674(00)00211-8 PubMed DOI

Wyatt J.R., Sontheimer E.J., Steitz J.A. 1992. Site-specific cross-linking of mammalian U5 snRNP to the 5′ splice site before the first step of pre-mRNA splicing. Genes Dev. 6:2542–2553 10.1101/gad.6.12b.2542 PubMed DOI

Zhang Y., Buchholz F., Muyrers J.P., Stewart A.F. 1998. A new logic for DNA engineering using recombination in Escherichia coli. Nat. Genet. 20:123–128 10.1038/2417 PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Truncating the spliceosomal 'rope protein' Prp45 results in Htz1 dependent phenotypes

. 2024 Jan ; 21 (1) : 1-17. [epub] 20240506

Pentacyclic triterpenoid ursolic acid interferes with mast cell activation via a lipid-centric mechanism affecting FcεRI signalosome functions

. 2022 Nov ; 298 (11) : 102497. [epub] 20220915

TSSC4 is a component of U5 snRNP that promotes tri-snRNP formation

. 2021 Jun 15 ; 12 (1) : 3646. [epub] 20210615

The BBSome assembly is spatially controlled by BBS1 and BBS4 in human cells

. 2020 Oct 16 ; 295 (42) : 14279-14290. [epub] 20200805

PUF60-activated exons uncover altered 3' splice-site selection by germline missense mutations in a single RRM

. 2018 Jul 06 ; 46 (12) : 6166-6187.

Mutations in spliceosomal proteins and retina degeneration

. 2017 May 04 ; 14 (5) : 544-552. [epub] 20160614

Dynamics of mitochondrial RNA-binding protein complex in Trypanosoma brucei and its petite mutant under optimized immobilization conditions

. 2014 Sep ; 13 (9) : 1232-40. [epub] 20140725

CRE promoter sites modulate alternative splicing via p300-mediated histone acetylation

. 2014 ; 11 (7) : 865-74. [epub] 20140714

The C-terminal domain of Brd2 is important for chromatin interaction and regulation of transcription and alternative splicing

. 2013 Nov ; 24 (22) : 3557-68. [epub] 20130918

Nuclear LSm8 affects number of cytoplasmic processing bodies via controlling cellular distribution of Like-Sm proteins

. 2012 Oct ; 23 (19) : 3776-85. [epub] 20120808

Where splicing joins chromatin

. 2011 May-Jun ; 2 (3) : 182-8.

In vivo kinetics of U4/U6·U5 tri-snRNP formation in Cajal bodies

. 2011 Feb 15 ; 22 (4) : 513-23. [epub] 20101222

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...