Retinitis pigmentosa-linked mutations impair the snRNA unwinding activity of SNRNP200 and reduce pre-mRNA binding of PRPF8

. 2025 Mar 05 ; 82 (1) : 103. [epub] 20250305

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40045025

Grantová podpora
18-01911J Grantová Agentura České Republiky
RVO68378050 Akademie Věd České Republiky
RVO: 86652036 Akademie Věd České Republiky
RVO68378050-KAV-NPUI Akademie Věd České Republiky
MU 3915/2-1 Deutsche Forschungsgemeinschaft
1170920 Univerzita Karlova v Praze
LM2023055 Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.1.01/0.0/0.0/16_019/0000785 Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.01.01/00/22_008/0004575 Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.1.01/0.0/0.0/18_046/0016045 Ministerstvo Školství, Mládeže a Tělovýchovy
LM2023050 Ministerstvo Školství, Mládeže a Tělovýchovy

Odkazy

PubMed 40045025
PubMed Central PMC11883072
DOI 10.1007/s00018-025-05621-z
PII: 10.1007/s00018-025-05621-z
Knihovny.cz E-zdroje

Retinitis pigmentosa (RP) is a hereditary disorder caused by mutations in more than 70 different genes including those that encode proteins important for pre-mRNA splicing. Most RP-associated mutations in splicing factors reduce either their expression, stability or incorporation into functional splicing complexes. However, we have previously shown that two RP mutations in PRPF8 (F2314L and Y2334N) and two in SNRNP200 (S1087L and R1090L) behaved differently, and it was still unclear how these mutations affect the functions of both proteins. To investigate this in the context of functional spliceosomes, we used iCLIP in HeLa and retinal pigment epithelial (RPE) cells. We found that both mutations in the RNA helicase SNRNP200 change its interaction with U4 and U6 snRNAs. The significantly broader binding profile of mutated SNRNP200 within the U4 region upstream of the U4/U6 stem I strongly suggests that its activity to unwind snRNAs is impaired. This was confirmed by FRAP measurements and helicase activity assays comparing mutant and WT protein. The RP variants of PRPF8 did not affect snRNAs, but showed a reduced binding to pre-mRNAs, which resulted in the slower splicing of introns and altered expression of hundreds of genes in RPE cells. This suggests that changes in the expression and splicing of specific genes are the main driver of retinal degeneration in PRPF8-linked RP.

Zobrazit více v PubMed

Makarova OV, Makarov EM, Liu S, Vornlocher HP, Luhrmann R (2002) Protein 61K, encoded by a gene (PRPF31) linked to autosomal dominant retinitis pigmentosa, is required for U4/U6*U5 tri-snRNP formation and pre-mRNA splicing. EMBO J 21(5):1148–1157. 10.1093/emboj/21.5.1148 PubMed PMC

Liu S, Rauhut R, Vornlocher HP, Luhrmann R (2006) The network of protein–protein interactions within the human U4/U6.U5 tri-snRNP. RNA 12(7):1418–1430. 10.1261/rna.55406 PubMed PMC

Will CL, Luhrmann R (2011) Spliceosome structure and function. Cold Spring Harb Perspect Biol 3(7):a003707. 10.1101/cshperspect.a003707 PubMed PMC

Matera AG, Wang Z (2014) A day in the life of the spliceosome. Nat Rev Mol Cell Biol 15(2):108–121. 10.1038/nrm3742 PubMed PMC

Kastner B, Will CL, Stark H, Luhrmann R (2019) Structural insights into nuclear pre-mRNA splicing in higher eukaryotes. Cold Spring Harb Perspect Biol 11(11):a032417. 10.1101/cshperspect.a032417 PubMed PMC

Wilkinson ME, Charenton C, Nagai K (2020) RNA Splicing by the Spliceosome. Annu Rev Biochem 89:359–388. 10.1146/annurev-biochem-091719-064225 PubMed

Hahn D, Beggs JD (2010) Brr2p RNA helicase with a split personality: insights into structure and function. Biochem Soc Trans 38(4):1105–1109. 10.1042/BST0381105 PubMed

Grainger RJ, Beggs JD (2005) Prp8 protein: at the heart of the spliceosome. RNA 11(5):533–557. 10.1261/rna.2220705 PubMed PMC

Wickramasinghe VO, Gonzalez-Porta M, Perera D, Bartolozzi AR, Sibley CR, Hallegger M et al (2015) Regulation of constitutive and alternative mRNA splicing across the human transcriptome by PRPF8 is determined by 5′ splice site strength. Genome Biol 16:201. 10.1186/s13059-015-0749-3 PubMed PMC

Li X, Zhang W, Xu T, Ramsey J, Zhang L, Hill R et al (2013) Comprehensive in vivo RNA-binding site analyses reveal a role of Prp8 in spliceosomal assembly. Nucleic Acids Res 41(6):3805–3818. 10.1093/nar/gkt062 PubMed PMC

Vidal VP, Verdone L, Mayes AE, Beggs JD (1999) Characterization of U6 snRNA–protein interactions. RNA 5(11):1470–1481. 10.1017/s1355838299991355 PubMed PMC

Plaschka C, Newman AJ, Nagai K (2019) Structural basis of nuclear pre-mRNA splicing: lessons from yeast. Cold Spring Harb Perspect Biol 11(5):a032391. 10.1101/cshperspect.a032391 PubMed PMC

Galej WP, Wilkinson ME, Fica SM, Oubridge C, Newman AJ, Nagai K (2016) Cryo-EM structure of the spliceosome immediately after branching. Nature 537(7619):197–201. 10.1038/nature19316 PubMed PMC

Fica SM, Nagai K (2017) Cryo-electron microscopy snapshots of the spliceosome: structural insights into a dynamic ribonucleoprotein machine. Nat Struct Mol Biol 24(10):791–799. 10.1038/nsmb.3463 PubMed PMC

Mozaffari-Jovin S, Santos KF, Hsiao HH, Will CL, Urlaub H, Wahl MC et al (2012) The Prp8 RNase H-like domain inhibits Brr2-mediated U4/U6 snRNA unwinding by blocking Brr2 loading onto the U4 snRNA. Genes Dev 26(21):2422–2434. 10.1101/gad.200949.112 PubMed PMC

Nguyen TH, Li J, Galej WP, Oshikane H, Newman AJ, Nagai K (2013) Structural basis of Brr2-Prp8 interactions and implications for U5 snRNP biogenesis and the spliceosome active site. Structure 21(6):910–919. 10.1016/j.str.2013.04.017 PubMed PMC

Mozaffari-Jovin S, Wandersleben T, Santos KF, Will CL, Luhrmann R, Wahl MC (2013) Inhibition of RNA helicase Brr2 by the C-terminal tail of the spliceosomal protein Prp8. Science 341(6141):80–84. 10.1126/science.1237515 PubMed

Mozaffari-Jovin S, Wandersleben T, Santos KF, Will CL, Luhrmann R, Wahl MC (2014) Novel regulatory principles of the spliceosomal Brr2 RNA helicase and links to retinal disease in humans. RNA Biol 11(4):298–312. 10.4161/rna.28353 PubMed PMC

Maeder C, Kutach AK, Guthrie C (2009) ATP-dependent unwinding of U4/U6 snRNAs by the Brr2 helicase requires the C terminus of Prp8. Nat Struct Mol Biol 16(1):42–48. 10.1038/nsmb.1535 PubMed PMC

Ruzickova S, Stanek D (2017) Mutations in spliceosomal proteins and retina degeneration. RNA Biol 14(5):544–552. 10.1080/15476286.2016.1191735 PubMed PMC

Mordes D, Luo X, Kar A, Kuo D, Xu L, Fushimi K et al (2006) Pre-mRNA splicing and retinitis pigmentosa. Mol Vis 12:1259–1271 PubMed PMC

Wood KA, Eadsforth MA, Newman WG, O’Keefe RT (2021) The role of the U5 snRNP in genetic disorders and cancer. Front Genet 12:636620. 10.3389/fgene.2021.636620 PubMed PMC

Farkas MH, Lew DS, Sousa ME, Bujakowska K, Chatagnon J, Bhattacharya SS et al (2014) Mutations in pre-mRNA processing factors 3, 8, and 31 cause dysfunction of the retinal pigment epithelium. Am J Pathol 184(10):2641–2652. 10.1016/j.ajpath.2014.06.026 PubMed PMC

Micheal S, Hogewind BF, Khan MI, Siddiqui SN, Zafar SN, Akhtar F et al (2018) Variants in the PRPF8 gene are associated with glaucoma. Mol Neurobiol 55(5):4504–4510. 10.1007/s12035-017-0673-5 PubMed PMC

Kurtovic-Kozaric A, Przychodzen B, Singh J, Konarska MM, Clemente MJ, Otrock ZK et al (2015) PRPF8 defects cause missplicing in myeloid malignancies. Leukemia 29(1):126–136. 10.1038/leu.2014.144 PubMed PMC

Malinova A, Cvackova Z, Mateju D, Horejsi Z, Abeza C, Vandermoere F et al (2017) Assembly of the U5 snRNP component PRPF8 is controlled by the HSP90/R2TP chaperones. J Cell Biol 216(6):1579–1596. 10.1083/jcb.201701165 PubMed PMC

Huranova M, Hnilicova J, Fleischer B, Cvackova Z, Stanek D (2009) A mutation linked to retinitis pigmentosa in HPRP31 causes protein instability and impairs its interactions with spliceosomal snRNPs. Hum Mol Genet 18(11):2014–2023. 10.1093/hmg/ddp125 PubMed

Boon KL, Grainger RJ, Ehsani P, Barrass JD, Auchynnikava T, Inglehearn CF et al (2007) prp8 mutations that cause human retinitis pigmentosa lead to a U5 snRNP maturation defect in yeast. Nat Struct Mol Biol 14(11):1077–1083. 10.1038/nsmb1303 PubMed PMC

Pena V, Liu S, Bujnicki JM, Luhrmann R, Wahl MC (2007) Structure of a multipartite protein–protein interaction domain in splicing factor prp8 and its link to retinitis pigmentosa. Mol Cell 25(4):615–624. 10.1016/j.molcel.2007.01.023 PubMed

Gonzalez-Santos JM, Cao H, Duan RC, Hu J (2008) Mutation in the splicing factor Hprp3p linked to retinitis pigmentosa impairs interactions within the U4/U6 snRNP complex. Hum Mol Genet 17(2):225–239. 10.1093/hmg/ddm300 PubMed PMC

Tanackovic G, Ransijn A, Thibault P, Abou Elela S, Klinck R, Berson EL et al (2011) PRPF mutations are associated with generalized defects in spliceosome formation and pre-mRNA splicing in patients with retinitis pigmentosa. Hum Mol Genet 20(11):2116–2130. 10.1093/hmg/ddr094 PubMed PMC

Linder B, Hirmer A, Gal A, Ruther K, Bolz HJ, Winkler C et al (2014) Identification of a PRPF4 loss-of-function variant that abrogates U4/U6.U5 tri-snRNP integration and is associated with retinitis pigmentosa. PLoS ONE 9(11):e111754. 10.1371/journal.pone.0111754 PubMed PMC

Mordes D, Yuan L, Xu L, Kawada M, Molday RS, Wu JY (2007) Identification of photoreceptor genes affected by PRPF31 mutations associated with autosomal dominant retinitis pigmentosa. Neurobiol Dis 26(2):291–300. 10.1016/j.nbd.2006.08.026 PubMed PMC

Wilkie SE, Vaclavik V, Wu H, Bujakowska K, Chakarova CF, Bhattacharya SS et al (2008) Disease mechanism for retinitis pigmentosa (RP11) caused by missense mutations in the splicing factor gene PRPF31. Mol Vis 14:683–690 PubMed PMC

Buskin A, Zhu L, Chichagova V, Basu B, Mozaffari-Jovin S, Dolan D et al (2018) Disrupted alternative splicing for genes implicated in splicing and ciliogenesis causes PRPF31 retinitis pigmentosa. Nat Commun 9(1):4234. 10.1038/s41467-018-06448-y PubMed PMC

Obuca M, Cvackova Z, Kubovciak J, Kolar M, Stanek D (2022) Retinitis pigmentosa-linked mutation in DHX38 modulates its splicing activity. PLoS ONE 17(4):e0265742. 10.1371/journal.pone.0265742 PubMed PMC

Krausova M, Kreplova M, Banik P, Cvackova Z, Kubovciak J, Modrak M et al (2023) Retinitis pigmentosa-associated mutations in mouse Prpf8 cause misexpression of circRNAs and degeneration of cerebellar granule cells. Life Sci Alliance 6(6):e202201855. 10.26508/lsa.202201855 PubMed PMC

Wu Z, Zhong M, Li M, Huang H, Liao J, Lu A et al (2018) Mutation Analysis of pre-mRNA splicing genes PRPF31, PRPF8, and SNRNP200 in Chinese families with autosomal dominant retinitis pigmentosa. Curr Mol Med 18(5):287–294. 10.2174/1566524018666181024160452 PubMed

Mayerle M, Guthrie C (2016) Prp8 retinitis pigmentosa mutants cause defects in the transition between the catalytic steps of splicing. RNA 22(5):793–809. 10.1261/rna.055459.115 PubMed PMC

McKie AB, McHale JC, Keen TJ, Tarttelin EE, Goliath R, van Lith-Verhoeven JJ et al (2001) Mutations in the pre-mRNA splicing factor gene PRPC8 in autosomal dominant retinitis pigmentosa (RP13). Hum Mol Genet 10(15):1555–1562. 10.1093/hmg/10.15.1555 PubMed

Towns KV, Kipioti A, Long V, McKibbin M, Maubaret C, Vaclavik V et al (2010) Prognosis for splicing factor PRPF8 retinitis pigmentosa, novel mutations and correlation between human and yeast phenotypes. Hum Mutat 31(5):E1361–E1376. 10.1002/humu.21236 PubMed

Cvackova Z, Mateju D, Stanek D (2014) Retinitis pigmentosa mutations of SNRNP200 enhance cryptic splice-site recognition. Hum Mutat 35(3):308–317. 10.1002/humu.22481 PubMed

Santos KF, Jovin SM, Weber G, Pena V, Luhrmann R, Wahl MC (2012) Structural basis for functional cooperation between tandem helicase cassettes in Brr2-mediated remodeling of the spliceosome. Proc Natl Acad Sci USA 109(43):17418–17423. 10.1073/pnas.1208098109 PubMed PMC

Ustinova K, Novakova Z, Saito M, Meleshin M, Mikesova J, Kutil Z et al (2020) The disordered N-terminus of HDAC6 is a microtubule-binding domain critical for efficient tubulin deacetylation. J Biol Chem 295(9):2614–2628. 10.1074/jbc.RA119.011243 PubMed PMC

Skultetyova L, Ustinova K, Kutil Z, Novakova Z, Pavlicek J, Mikesova J et al (2017) Human histone deacetylase 6 shows strong preference for tubulin dimers over assembled microtubules. Sci Rep 7(1):11547. 10.1038/s41598-017-11739-3 PubMed PMC

Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S et al (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1):15–21. 10.1093/bioinformatics/bts635 PubMed PMC

Anders S, Pyl PT, Huber W (2015) HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31(2):166–169. 10.1093/bioinformatics/btu638 PubMed PMC

Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550. 10.1186/s13059-014-0550-8 PubMed PMC

Federico A, Monti S (2020) hypeR: an R package for geneset enrichment workflows. Bioinformatics 36(4):1307–1308. 10.1093/bioinformatics/btz700 PubMed PMC

Middleton R, Gao D, Thomas A, Singh B, Au A, Wong JJ et al (2017) IRFinder: assessing the impact of intron retention on mammalian gene expression. Genome Biol 18(1):51. 10.1186/s13059-017-1184-4 PubMed PMC

Huppertz I, Attig J, D’Ambrogio A, Easton LE, Sibley CR, Sugimoto Y et al (2014) iCLIP: protein–RNA interactions at nucleotide resolution. Methods 65(3):274–287. 10.1016/j.ymeth.2013.10.011 PubMed PMC

Huranova M, Ivani I, Benda A, Poser I, Brody Y, Hof M et al (2010) The differential interaction of snRNPs with pre-mRNA reveals splicing kinetics in living cells. J Cell Biol 191(1):75–86. 10.1083/jcb.201004030 PubMed PMC

Smith T, Heger A, Sudbery I (2017) UMI-tools: modeling sequencing errors in unique molecular identifiers to improve quantification accuracy. Genome Res 27(3):491–499. 10.1101/gr.209601.116 PubMed PMC

Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17(1):10–12. 10.14806/ej.17.1.200

Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10(3):R25. 10.1186/gb-2009-10-3-r25 PubMed PMC

Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26(6):841–842. 10.1093/bioinformatics/btq033 PubMed PMC

da Huang W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57. 10.1038/nprot.2008.211 PubMed

Mercer TR, Clark MB, Andersen SB, Brunck ME, Haerty W, Crawford J et al (2015) Genome-wide discovery of human splicing branchpoints. Genome Res 25(2):290–303. 10.1101/gr.182899.114 PubMed PMC

Akalin A, Franke V, Vlahovicek K, Mason CE, Schubeler D (2015) Genomation: a toolkit to summarize, annotate and visualize genomic intervals. Bioinformatics 31(7):1127–1129. 10.1093/bioinformatics/btu775 PubMed

Tarasov A, Vilella AJ, Cuppen E, Nijman IJ, Prins P (2015) Sambamba: fast processing of NGS alignment formats. Bioinformatics 31(12):2032–2034. 10.1093/bioinformatics/btv098 PubMed PMC

Krakau S, Richard H, Marsico A (2017) PureCLIP: capturing target-specific protein–RNA interaction footprints from single-nucleotide CLIP-seq data. Genome Biol 18(1):240. 10.1186/s13059-017-1364-2 PubMed PMC

Muller-McNicoll M, Botti V, de Jesus Domingues AM, Brandl H, Schwich OD, Steiner MC et al (2016) SR proteins are NXF1 adaptors that link alternative RNA processing to mRNA export. Genes Dev 30(5):553–566. 10.1101/gad.276477.115 PubMed PMC

Krchnakova Z, Thakur PK, Krausova M, Bieberstein N, Haberman N, Muller-McNicoll M et al (2019) Splicing of long non-coding RNAs primarily depends on polypyrimidine tract and 5′ splice-site sequences due to weak interactions with SR proteins. Nucleic Acids Res 47(2):911–928. 10.1093/nar/gky1147 PubMed PMC

Busch A, Bruggemann M, Ebersberger S, Zarnack K (2020) iCLIP data analysis: a complete pipeline from sequencing reads to RBP binding sites. Methods 178:49–62. 10.1016/j.ymeth.2019.11.008 PubMed

Strittmatter LM, Capitanchik C, Newman AJ, Hallegger M, Norman CM, Fica SM et al (2021) psiCLIP reveals dynamic RNA binding by DEAH-box helicases before and after exon ligation. Nat Commun 12(1):1488. 10.1038/s41467-021-21745-9 PubMed PMC

Bertram K, Agafonov DE, Dybkov O, Haselbach D, Leelaram MN, Will CL et al (2017) Cryo-EM structure of a pre-catalytic human spliceosome primed for activation. Cell 170(4):701–13.e11. 10.1016/j.cell.2017.07.011 PubMed

Theuser M, Hobartner C, Wahl MC, Santos KF (2016) Substrate-assisted mechanism of RNP disruption by the spliceosomal Brr2 RNA helicase. Proc Natl Acad Sci USA 113(28):7798–7803. 10.1073/pnas.1524616113 PubMed PMC

Haberman N, Huppertz I, Attig J, Konig J, Wang Z, Hauer C et al (2017) Insights into the design and interpretation of iCLIP experiments. Genome Biol 18(1):7. 10.1186/s13059-016-1130-x PubMed PMC

Briese M, Haberman N, Sibley CR, Faraway R, Elser AS, Chakrabarti AM et al (2019) A systems view of spliceosomal assembly and branchpoints with iCLIP. Nat Struct Mol Biol 26(10):930–940. 10.1038/s41594-019-0300-4 PubMed PMC

McNally JG (2008) Quantitative FRAP in analysis of molecular binding dynamics in vivo. Methods Cell Biol 85:329–351. 10.1016/S0091-679X(08)85014-5 PubMed

Sprague BL, Pego RL, Stavreva DA, McNally JG (2004) Analysis of binding reactions by fluorescence recovery after photobleaching. Biophys J 86(6):3473–3495. 10.1529/biophysj.103.026765 PubMed PMC

Zhao C, Bellur DL, Lu S, Zhao F, Grassi MA, Bowne SJ et al (2009) Autosomal-dominant retinitis pigmentosa caused by a mutation in SNRNP200, a gene required for unwinding of U4/U6 snRNAs. Am J Hum Genet 85(5):617–627. 10.1016/j.ajhg.2009.09.020 PubMed PMC

Chen X, Gao X, Zhao KX, Pan XY, Zhang XM, Wang XY et al (2013) Targeted sequencing identifies a hotspot mutation SNRNP200 p.S1087L correlates with novel phenotypes in retinitis pigmentosa. Zhonghua Yan Ke Za Zhi 49(12):1104–1110 PubMed

Ledoux S, Guthrie C (2016) Retinitis pigmentosa mutations in bad response to refrigeration 2 (Brr2) impair ATPase and helicase activity. J Biol Chem 291(23):11954–11965. 10.1074/jbc.M115.710848 PubMed PMC

Hahn D, Kudla G, Tollervey D, Beggs JD (2012) Brr2p-mediated conformational rearrangements in the spliceosome during activation and substrate repositioning. Genes Dev 26(21):2408–2421. 10.1101/gad.199307.112 PubMed PMC

Small EC, Leggett SR, Winans AA, Staley JP (2006) The EF-G-like GTPase Snu114p regulates spliceosome dynamics mediated by Brr2p, a DExD/H box ATPase. Mol Cell 23(3):389–399. 10.1016/j.molcel.2006.05.043 PubMed PMC

Fourmann JB, Schmitzova J, Christian H, Urlaub H, Ficner R, Boon KL et al (2013) Dissection of the factor requirements for spliceosome disassembly and the elucidation of its dissociation products using a purified splicing system. Genes Dev 27(4):413–428. 10.1101/gad.207779.112 PubMed PMC

Arzalluz-Luque A, Cabrera JL, Skottman H, Benguria A, Bolinches-Amoros A, Cuenca N et al (2021) Mutant PRPF8 causes widespread splicing changes in spliceosome components in retinitis pigmentosa patient iPSC-derived RPE cells. Front Neurosci 15:636969. 10.3389/fnins.2021.636969 PubMed PMC

Townsend C, Leelaram MN, Agafonov DE, Dybkov O, Will CL, Bertram K et al (2020) Mechanism of protein-guided folding of the active site U2/U6 RNA during spliceosome activation. Science 370(6523):eabc3753. 10.1126/science.abc3753 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...