Mutant PRPF8 Causes Widespread Splicing Changes in Spliceosome Components in Retinitis Pigmentosa Patient iPSC-Derived RPE Cells

. 2021 ; 15 () : 636969. [epub] 20210429

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33994920

Retinitis pigmentosa (RP) is a rare, progressive disease that affects photoreceptors and retinal pigment epithelial (RPE) cells with blindness as a final outcome. Despite high medical and social impact, there is currently no therapeutic options to slow down the progression of or cure the disease. The development of effective therapies was largely hindered by high genetic heterogeneity, inaccessible disease tissue, and unfaithful model organisms. The fact that components of ubiquitously expressed splicing factors lead to the retina-specific disease is an additional intriguing question. Herein, we sought to correlate the retinal cell-type-specific disease phenotype with the splicing profile shown by a patient with autosomal recessive RP, caused by a mutation in pre-mRNA splicing factor 8 (PRPF8). In order to get insight into the role of PRPF8 in homeostasis and disease, we capitalize on the ability to generate patient-specific RPE cells and reveal differentially expressed genes unique to RPE cells. We found that spliceosomal complex and ribosomal functions are crucial in determining cell-type specificity through differential expression and alternative splicing (AS) and that PRPF8 mutation causes global changes in splice site selection and exon inclusion that particularly affect genes involved in these cellular functions. This finding corroborates the hypothesis that retinal tissue identity is conferred by a specific splicing program and identifies retinal AS events as a framework toward the design of novel therapeutic opportunities.

Zobrazit více v PubMed

Adusumalli S., Ngian Z. K., Lin W. Q., Benoukraf T., Ong C. T. (2019). Increased intron retention is a post-transcriptional signature associated with progressive aging and Alzheimer’s disease. Aging Cell 18:e12928. 10.1111/acel.12928 PubMed DOI PMC

Anders S., Pyl P. T., Huber W. (2015). HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics 31 166–169. 10.1093/bioinformatics/btu638 PubMed DOI PMC

Anko M. L., Muller-McNicoll M., Brandl H., Curk T., Gorup C., Henry I., et al. (2012). The RNA-binding landscapes of two SR proteins reveal unique functions and binding to diverse RNA classes. Genome Biol. 13:R17. PubMed PMC

Ashburner M., Ball C. A., Blake J. A., Botstein D., Butler H., Cherry J. M., et al. (2000). Gene ontology: tool for the unification of biology. Nat. Genet. 25 25–29. PubMed PMC

Bakondi B., Lv W., Lu B., Jones M. K., Tsai Y., Kim K. J., et al. (2016). In vivo CRISPR/Cas9 gene editing corrects retinal dystrophy in the S334ter-3 rat model of autosomal dominant retinitis pigmentosa. Mol. Ther. 24 556–563. 10.1038/mt.2015.220 PubMed DOI PMC

Braunschweig U., Barbosa-Morais N. L., Pan Q., Nachman E. N., Alipanahi B., Gonatopoulos-Pournatzis T., et al. (2014). Widespread intron retention in mammals functionally tunes transcriptomes. Genome Res. 24 1774–1786. 10.1101/gr.177790.114 PubMed DOI PMC

Buskin A., Zhu L., Chichagova V., Basu B., Mozaffari-Jovin S., Dolan D., et al. (2018). Disrupted alternative splicing for genes implicated in splicing and ciliogenesis causes PRPF31 retinitis pigmentosa. Nat. Communi. 9:4234. PubMed PMC

Carbon S., Douglass E., Dunn N., Good B., Harris N. L., Lewis S. E., et al. (2019). The gene ontology resource: 20 years and still GOing strong. Nucleic Acids Res. 47 D330–D338. 10.1093/nar/gky1055 PubMed DOI PMC

Chen X., Liu Y., Sheng X., Tam P. O., Zhao K., Rong W., et al. (2014). PRPF4 mutations cause autosomal dominant retinitis pigmentosa. Hum. Mol. Genet. 23 2926–2939. 10.1093/hmg/ddu005 PubMed DOI

Durinck S., Moreau Y., Kasprzyk A., Davis S., De Moor B., Brazma A., et al. (2005). BioMart and Bioconductor: a powerful link between biological databases and microarray data analysis. Bioinformatics 21 3439–3440. 10.1093/bioinformatics/bti525 PubMed DOI

Escher P., Passarin O., Munier F. L., Tran V. H., Vaclavik V. (2018). Variability in clinical phenotypes of PRPF8-linked autosomal dominant retinitis pigmentosa correlates with differential PRPF8/SNRNP200 interactions. Ophthalmic Genet. 39 80–86. 10.1080/13816810.2017.1393825 PubMed DOI

Ewels P., Magnusson M., Lundin S., Kaller M. (2016). MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32 3047–3048. 10.1093/bioinformatics/btw354 PubMed DOI PMC

Farkas M. H., Grant G. R., White J. A., Sousa M. E., Consugar M. B., Pierce E. A. (2013). Transcriptome analyses of the human retina identify unprecedented transcript diversity and 3.5 Mb of novel transcribed sequence via significant alternative splicing and novel genes. BMC Genomics 14:486. 10.1186/1471-2164-14-486 PubMed DOI PMC

Farkas M. H., Lew D. S., Sousa M. E., Bujakowska K., Chatagnon J., Bhattacharya S. S., et al. (2014). Mutations in pre-mRNA processing factors 3, 8, and 31 cause dysfunction of the retinal pigment epithelium. Am. J. Pathol. 184 2641–2652. 10.1016/j.ajpath.2014.06.026 PubMed DOI PMC

Foltz L. P., Howden S. E., Thomson J. A., Clegg D. O. (2018). Functional assessment of patient-derived retinal pigment epithelial cells edited by CRISPR/Cas9. Int. J. Mol. Sci. 19:4127. 10.3390/ijms19124127 PubMed DOI PMC

Galej W. P., Oubridge C., Newman A. J., Nagai K. (2013). Crystal structure of Prp8 reveals active site cavity of the spliceosome. Nature 493 638–643. 10.1038/nature11843 PubMed DOI PMC

Grainger R. J., Beggs J. D. (2005). Prp8 protein: at the heart of the spliceosome. RNA 11 533–557. 10.1261/rna.2220705 PubMed DOI PMC

Graziotto J. J., Farkas M. H., Bujakowska K., Deramaudt B. M., Zhang Q., Nandrot E. F., et al. (2011). Three gene-targeted mouse models of RNA splicing factor RP show late-onset RPE and retinal degeneration. Invest. Ophthalmol. Vis. Sci. 52 190–198. 10.1167/iovs.10-5194 PubMed DOI PMC

Han S. P., Kassahn K. S., Skarshewski A., Ragan M. A., Rothnagel J. A., Smith R. (2010). Functional implications of the emergence of alternative splicing in hnRNP A/B transcripts. RNA 16 1760–1768. 10.1261/rna.2142810 PubMed DOI PMC

Hartong D. T., Berson E. L., Dryja T. P. (2006). Retinitis pigmentosa. Lancet 368 1795–1809. PubMed

Herzel L., Ottoz D. S. M., Alpert T., Neugebauer K. M. (2017). Splicing and transcription touch base: co-transcriptional spliceosome assembly and function. Nat. Rev. Mol. Cell Biol. 18 637–650. 10.1038/nrm.2017.63 PubMed DOI PMC

Hirami Y., Osakada F., Takahashi K., Okita K., Yamanaka S., Ikeda H., et al. (2009). Generation of retinal cells from mouse and human induced pluripotent stem cells. Neurosci. Lett. 458 126–131. 10.1016/j.neulet.2009.04.035 PubMed DOI

Hongisto H., Ilmarinen T., Vattulainen M., Mikhailova A., Skottman H. (2017). Xeno- and feeder-free differentiation of human pluripotent stem cells to two distinct ocular epithelial cell types using simple modifications of one method. Stem Cell Res. Ther. 8:291. PubMed PMC

Horvath S. (2013). DNA methylation age of human tissues and cell types. Genome Biol. 14:R115. PubMed PMC

Kukhtar D., Rubio-Pena K., Serrat X., Ceron J. (2020). Mimicking of splicing-related retinitis pigmentosa mutations in C. elegans allow drug screens and identification of disease modifiers. Hum. Mol. Genet. 29 756–765. 10.1093/hmg/ddz315 PubMed DOI

Lareau L. F., Brenner S. E. (2015). Regulation of splicing factors by alternative splicing and NMD is conserved between kingdoms yet evolutionarily flexible. Mol. Biol. Evol. 32 1072–1079. 10.1093/molbev/msv002 PubMed DOI PMC

Lareau L. F., Inada M., Green R. E., Wengrod J. C., Brenner S. E. (2007). Unproductive splicing of SR genes associated with highly conserved and ultraconserved DNA elements. Nature 446 926–929. 10.1038/nature05676 PubMed DOI

Lukovic D., Artero Castro A., Delgado A. B., Bernal Mde L., Luna Pelaez N., Diez Lloret A., et al. (2015). Human iPSC derived disease model of MERTK-associated retinitis pigmentosa. Sci. Rep. 5:12910. PubMed PMC

Lukovic D., Artero Castro A., Kaya K. D., Munezero D., Gieser L., Davo-Martinez C., et al. (2020). Retinal organoids derived from hiPSCs of an AIPL1-LCA patient maintain cytoarchitecture despite reduced levels of mutant AIPL1. Sci. Rep. 10:5426. PubMed PMC

Lukovic D., Bolinches-Amoros A., Artero-Castro A., Pascual B., Carballo M., Hernan I., et al. (2017). Generation of a human iPSC line from a patient with retinitis pigmentosa caused by mutation in PRPF8 gene. Stem Cell Res. 21 23–25. 10.1016/j.scr.2017.03.007 PubMed DOI

MacNair L., Xiao S., Miletic D., Ghani M., Julien J. P., Keith J., et al. (2016). MTHFSD and DDX58 are novel RNA-binding proteins abnormally regulated in amyotrophic lateral sclerosis. Brain 139 86–100. 10.1093/brain/awv308 PubMed DOI

Martinez-Contreras R., Cloutier P., Shkreta L., Fisette J. F., Revil T., Chabot B. (2007). hnRNP proteins and splicing control. Adv. Exp. Med. Biol. 623 123–147. 10.1007/978-0-387-77374-2_8 PubMed DOI

Martinez-Gimeno M., Gamundi M. J., Hernan I., Maseras M., Milla E., Ayuso C., et al. (2003). Mutations in the pre-mRNA splicing-factor genes PRPF3, PRPF8, and PRPF31 in Spanish families with autosomal dominant retinitis pigmentosa. Invest. Ophthalmol. Vis. Sci. 44 2171–2177. 10.1167/iovs.02-0871 PubMed DOI

Maubaret C. G., Vaclavik V., Mukhopadhyay R., Waseem N. H., Churchill A., Holder G. E., et al. (2011). Autosomal dominant retinitis pigmentosa with intrafamilial variability and incomplete penetrance in two families carrying mutations in PRPF8. Invest. Ophthalmol. Vis. Sci. 52 9304–9309. 10.1167/iovs.11-8372 PubMed DOI

McKie A. B., McHale J. C., Keen T. J., Tarttelin E. E., Goliath R., van Lith-Verhoeven J. J., et al. (2001). Mutations in the pre-mRNA splicing factor gene PRPC8 in autosomal dominant retinitis pigmentosa (RP13). Hum. Mol. Genet. 10 1555–1562. 10.1093/hmg/10.15.1555 PubMed DOI

Miller J. D., Ganat Y. M., Kishinevsky S., Bowman R. L., Liu B., Tu E. Y., et al. (2013). Human iPSC-based modeling of late-onset disease via progerin-induced aging. Cell Stem Cell 13 691–705. 10.1016/j.stem.2013.11.006 PubMed DOI PMC

Murray S. F., Jazayeri A., Matthes M. T., Yasumura D., Yang H., Peralta R., et al. (2015). Allele-specific inhibition of rhodopsin with an antisense oligonucleotide slows photoreceptor cell degeneration. Invest. Ophthalmol. Vis. Sci. 56 6362–6375. 10.1167/iovs.15-16400 PubMed DOI PMC

Ni J. Z., Grate L., Donohue J. P., Preston C., Nobida N., O’Brien G., et al. (2007). Ultraconserved elements are associated with homeostatic control of splicing regulators by alternative splicing and nonsense-mediated decay. Genes Dev. 21 708–718. 10.1101/gad.1525507 PubMed DOI PMC

Nueda M. J., Ferrer A., Conesa A. (2012). ARSyN: a method for the identification and removal of systematic noise in multifactorial time course microarray experiments. Biostatistics 13 553–566. 10.1093/biostatistics/kxr042 PubMed DOI

O’Leary N. A., Wright M. W., Brister J. R., Ciufo S., Haddad D., McVeigh R., et al. (2016). Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 44 D733–D745. PubMed PMC

Pena V., Liu S., Bujnicki J. M., Luhrmann R., Wahl M. C. (2007). Structure of a multipartite protein-protein interaction domain in splicing factor prp8 and its link to retinitis pigmentosa. Mol. Cell 25 615–624. 10.1016/j.molcel.2007.01.023 PubMed DOI

Plaza Reyes A., Petrus-Reurer S., Padrell Sanchez S., Kumar P., Douagi I., Bartuma H., et al. (2020). Identification of cell surface markers and establishment of monolayer differentiation to retinal pigment epithelial cells. Nat. Commun. 11:1609. PubMed PMC

Reichman S., Terray A., Slembrouck A., Nanteau C., Orieux G., Habeler W., et al. (2014). From confluent human iPS cells to self-forming neural retina and retinal pigmented epithelium. Proc. Natl. Acad. Sci. U.S.A. 111 8518–8523. 10.1073/pnas.1324212111 PubMed DOI PMC

Robinson M. D., Oshlack A. (2010). A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 11:R25. PubMed PMC

Saltzman A. L., Pan Q., Blencowe B. J. (2011). Regulation of alternative splicing by the core spliceosomal machinery. Genes Dev. 25 373–384. 10.1101/gad.2004811 PubMed DOI PMC

Shimada H., Lu Q., Insinna-Kettenhofen C., Nagashima K., English M. A., Semler E. M., et al. (2017). In vitro modeling using ciliopathy-patient-derived cells reveals distinct cilia dysfunctions caused by CEP290 mutations. Cell Rep. 20 384–396. 10.1016/j.celrep.2017.06.045 PubMed DOI PMC

Sorkio A., Hongisto H., Kaarniranta K., Uusitalo H., Juuti-Uusitalo K., Skottman H. (2014). Structure and barrier properties of human embryonic stem cell-derived retinal pigment epithelial cells are affected by extracellular matrix protein coating. Tissue Eng. Part A 20 622–634. PubMed PMC

Strunnikova N. V., Maminishkis A., Barb J. J., Wang F., Zhi C., Sergeev Y., et al. (2010). Transcriptome analysis and molecular signature of human retinal pigment epithelium. Hum. Mol. Genet. 19 2468–2486. 10.1093/hmg/ddq129 PubMed DOI PMC

Sullivan L. S., Bowne S. J., Birch D. G., Hughbanks-Wheaton D., Heckenlively J. R., Lewis R. A., et al. (2006). Prevalence of disease-causing mutations in families with autosomal dominant retinitis pigmentosa: a screen of known genes in 200 families. Invest. Ophthalmol. Vis. Sci. 47 3052–3064. 10.1167/iovs.05-1443 PubMed DOI PMC

Tanackovic G., Ransijn A., Thibault P., Abou Elela S., Klinck R., Berson E. L., et al. (2011). PRPF mutations are associated with generalized defects in spliceosome formation and pre-mRNA splicing in patients with retinitis pigmentosa. Hum. Mol. Genet. 20 2116–2130. 10.1093/hmg/ddr094 PubMed DOI PMC

Tarazona S., Furio-Tari P., Turra D., Pietro A. D., Nueda M. J., Ferrer A., et al. (2015). Data quality aware analysis of differential expression in RNA-seq with NOISeq R/Bioc package. Nucleic Acids Res. 43:e140. PubMed PMC

Trincado J. L., Entizne J. C., Hysenaj G., Singh B., Skalic M., Elliott D. J., et al. (2018). SUPPA2: fast, accurate, and uncertainty-aware differential splicing analysis across multiple conditions. Genome Biol. 19:40. PubMed PMC

Wahl M. C., Will C. L., Luhrmann R. (2009). The spliceosome: design principles of a dynamic RNP machine. Cell 136 701–718. 10.1016/j.cell.2009.02.009 PubMed DOI

Wickramasinghe V. O., Gonzalez-Porta M., Perera D., Bartolozzi A. R., Sibley C. R., Hallegger M., et al. (2015). Regulation of constitutive and alternative mRNA splicing across the human transcriptome by PRPF8 is determined by 5’ splice site strength. Genome Biol. 16:201. PubMed PMC

Wong J. J., Au A. Y., Ritchie W., Rasko J. E. (2016). Intron retention in mRNA: No longer nonsense: Known and putative roles of intron retention in normal and disease biology. BioEssays 38 41–49. 10.1002/bies.201500117 PubMed DOI

Xu Q., Modrek B., Lee C. (2002). Genome-wide detection of tissue-specific alternative splicing in the human transcriptome. Nucleic Acids Res. 30 3754–3766. 10.1093/nar/gkf492 PubMed DOI PMC

Yates A. D., Achuthan P., Akanni W., Allen J., Alvarez-Jarreta J., Amode M. R., et al. (2020). Ensembl 2020. Nucleic Acids Res. 48 D682–D688. PubMed PMC

Zhang X. O., Yin Q. F., Wang H. B., Zhang Y., Chen T., Zheng P., et al. (2014). Species-specific alternative splicing leads to unique expression of sno-lncRNAs. BMC Genomics 15:287. 10.1186/1471-2164-15-287 PubMed DOI PMC

Zhong X., Gutierrez C., Xue T., Hampton C., Vergara M. N., Cao L. H., et al. (2014). Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs. Nat. Commun. 5:4047. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...