Mutant PRPF8 Causes Widespread Splicing Changes in Spliceosome Components in Retinitis Pigmentosa Patient iPSC-Derived RPE Cells
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
33994920
PubMed Central
PMC8116631
DOI
10.3389/fnins.2021.636969
Knihovny.cz E-zdroje
- Klíčová slova
- PRPF8, RNA-Seq, RPE, alternative splicing, iPSC, pre-mRNA splicing, retinitis pigmentosa,
- Publikační typ
- časopisecké články MeSH
Retinitis pigmentosa (RP) is a rare, progressive disease that affects photoreceptors and retinal pigment epithelial (RPE) cells with blindness as a final outcome. Despite high medical and social impact, there is currently no therapeutic options to slow down the progression of or cure the disease. The development of effective therapies was largely hindered by high genetic heterogeneity, inaccessible disease tissue, and unfaithful model organisms. The fact that components of ubiquitously expressed splicing factors lead to the retina-specific disease is an additional intriguing question. Herein, we sought to correlate the retinal cell-type-specific disease phenotype with the splicing profile shown by a patient with autosomal recessive RP, caused by a mutation in pre-mRNA splicing factor 8 (PRPF8). In order to get insight into the role of PRPF8 in homeostasis and disease, we capitalize on the ability to generate patient-specific RPE cells and reveal differentially expressed genes unique to RPE cells. We found that spliceosomal complex and ribosomal functions are crucial in determining cell-type specificity through differential expression and alternative splicing (AS) and that PRPF8 mutation causes global changes in splice site selection and exon inclusion that particularly affect genes involved in these cellular functions. This finding corroborates the hypothesis that retinal tissue identity is conferred by a specific splicing program and identifies retinal AS events as a framework toward the design of novel therapeutic opportunities.
Department of Physiology Genetics and Microbiology University of Alicante Alicante Spain
Faculty of Medicine and Health Technology Tampere University Tampere Finland
Genomics Unit Centro Nacional de Investigaciones Cardiovasculares Madrid Spain
National Stem Cell Bank Valencia Node Research Center Principe Felipe Valencia Spain
Rare Diseases Joint Units IIS La Fe CIPF Valencia Spain
Retinal Degeneration Lab Research Centre Principe Felipe Valencia Spain
Unitat de Genética Molecular Hospital de Terrassa Terrassa Spain
Zobrazit více v PubMed
Adusumalli S., Ngian Z. K., Lin W. Q., Benoukraf T., Ong C. T. (2019). Increased intron retention is a post-transcriptional signature associated with progressive aging and Alzheimer’s disease. Aging Cell 18:e12928. 10.1111/acel.12928 PubMed DOI PMC
Anders S., Pyl P. T., Huber W. (2015). HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics 31 166–169. 10.1093/bioinformatics/btu638 PubMed DOI PMC
Anko M. L., Muller-McNicoll M., Brandl H., Curk T., Gorup C., Henry I., et al. (2012). The RNA-binding landscapes of two SR proteins reveal unique functions and binding to diverse RNA classes. Genome Biol. 13:R17. PubMed PMC
Ashburner M., Ball C. A., Blake J. A., Botstein D., Butler H., Cherry J. M., et al. (2000). Gene ontology: tool for the unification of biology. Nat. Genet. 25 25–29. PubMed PMC
Bakondi B., Lv W., Lu B., Jones M. K., Tsai Y., Kim K. J., et al. (2016). In vivo CRISPR/Cas9 gene editing corrects retinal dystrophy in the S334ter-3 rat model of autosomal dominant retinitis pigmentosa. Mol. Ther. 24 556–563. 10.1038/mt.2015.220 PubMed DOI PMC
Braunschweig U., Barbosa-Morais N. L., Pan Q., Nachman E. N., Alipanahi B., Gonatopoulos-Pournatzis T., et al. (2014). Widespread intron retention in mammals functionally tunes transcriptomes. Genome Res. 24 1774–1786. 10.1101/gr.177790.114 PubMed DOI PMC
Buskin A., Zhu L., Chichagova V., Basu B., Mozaffari-Jovin S., Dolan D., et al. (2018). Disrupted alternative splicing for genes implicated in splicing and ciliogenesis causes PRPF31 retinitis pigmentosa. Nat. Communi. 9:4234. PubMed PMC
Carbon S., Douglass E., Dunn N., Good B., Harris N. L., Lewis S. E., et al. (2019). The gene ontology resource: 20 years and still GOing strong. Nucleic Acids Res. 47 D330–D338. 10.1093/nar/gky1055 PubMed DOI PMC
Chen X., Liu Y., Sheng X., Tam P. O., Zhao K., Rong W., et al. (2014). PRPF4 mutations cause autosomal dominant retinitis pigmentosa. Hum. Mol. Genet. 23 2926–2939. 10.1093/hmg/ddu005 PubMed DOI
Durinck S., Moreau Y., Kasprzyk A., Davis S., De Moor B., Brazma A., et al. (2005). BioMart and Bioconductor: a powerful link between biological databases and microarray data analysis. Bioinformatics 21 3439–3440. 10.1093/bioinformatics/bti525 PubMed DOI
Escher P., Passarin O., Munier F. L., Tran V. H., Vaclavik V. (2018). Variability in clinical phenotypes of PRPF8-linked autosomal dominant retinitis pigmentosa correlates with differential PRPF8/SNRNP200 interactions. Ophthalmic Genet. 39 80–86. 10.1080/13816810.2017.1393825 PubMed DOI
Ewels P., Magnusson M., Lundin S., Kaller M. (2016). MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32 3047–3048. 10.1093/bioinformatics/btw354 PubMed DOI PMC
Farkas M. H., Grant G. R., White J. A., Sousa M. E., Consugar M. B., Pierce E. A. (2013). Transcriptome analyses of the human retina identify unprecedented transcript diversity and 3.5 Mb of novel transcribed sequence via significant alternative splicing and novel genes. BMC Genomics 14:486. 10.1186/1471-2164-14-486 PubMed DOI PMC
Farkas M. H., Lew D. S., Sousa M. E., Bujakowska K., Chatagnon J., Bhattacharya S. S., et al. (2014). Mutations in pre-mRNA processing factors 3, 8, and 31 cause dysfunction of the retinal pigment epithelium. Am. J. Pathol. 184 2641–2652. 10.1016/j.ajpath.2014.06.026 PubMed DOI PMC
Foltz L. P., Howden S. E., Thomson J. A., Clegg D. O. (2018). Functional assessment of patient-derived retinal pigment epithelial cells edited by CRISPR/Cas9. Int. J. Mol. Sci. 19:4127. 10.3390/ijms19124127 PubMed DOI PMC
Galej W. P., Oubridge C., Newman A. J., Nagai K. (2013). Crystal structure of Prp8 reveals active site cavity of the spliceosome. Nature 493 638–643. 10.1038/nature11843 PubMed DOI PMC
Grainger R. J., Beggs J. D. (2005). Prp8 protein: at the heart of the spliceosome. RNA 11 533–557. 10.1261/rna.2220705 PubMed DOI PMC
Graziotto J. J., Farkas M. H., Bujakowska K., Deramaudt B. M., Zhang Q., Nandrot E. F., et al. (2011). Three gene-targeted mouse models of RNA splicing factor RP show late-onset RPE and retinal degeneration. Invest. Ophthalmol. Vis. Sci. 52 190–198. 10.1167/iovs.10-5194 PubMed DOI PMC
Han S. P., Kassahn K. S., Skarshewski A., Ragan M. A., Rothnagel J. A., Smith R. (2010). Functional implications of the emergence of alternative splicing in hnRNP A/B transcripts. RNA 16 1760–1768. 10.1261/rna.2142810 PubMed DOI PMC
Hartong D. T., Berson E. L., Dryja T. P. (2006). Retinitis pigmentosa. Lancet 368 1795–1809. PubMed
Herzel L., Ottoz D. S. M., Alpert T., Neugebauer K. M. (2017). Splicing and transcription touch base: co-transcriptional spliceosome assembly and function. Nat. Rev. Mol. Cell Biol. 18 637–650. 10.1038/nrm.2017.63 PubMed DOI PMC
Hirami Y., Osakada F., Takahashi K., Okita K., Yamanaka S., Ikeda H., et al. (2009). Generation of retinal cells from mouse and human induced pluripotent stem cells. Neurosci. Lett. 458 126–131. 10.1016/j.neulet.2009.04.035 PubMed DOI
Hongisto H., Ilmarinen T., Vattulainen M., Mikhailova A., Skottman H. (2017). Xeno- and feeder-free differentiation of human pluripotent stem cells to two distinct ocular epithelial cell types using simple modifications of one method. Stem Cell Res. Ther. 8:291. PubMed PMC
Horvath S. (2013). DNA methylation age of human tissues and cell types. Genome Biol. 14:R115. PubMed PMC
Kukhtar D., Rubio-Pena K., Serrat X., Ceron J. (2020). Mimicking of splicing-related retinitis pigmentosa mutations in C. elegans allow drug screens and identification of disease modifiers. Hum. Mol. Genet. 29 756–765. 10.1093/hmg/ddz315 PubMed DOI
Lareau L. F., Brenner S. E. (2015). Regulation of splicing factors by alternative splicing and NMD is conserved between kingdoms yet evolutionarily flexible. Mol. Biol. Evol. 32 1072–1079. 10.1093/molbev/msv002 PubMed DOI PMC
Lareau L. F., Inada M., Green R. E., Wengrod J. C., Brenner S. E. (2007). Unproductive splicing of SR genes associated with highly conserved and ultraconserved DNA elements. Nature 446 926–929. 10.1038/nature05676 PubMed DOI
Lukovic D., Artero Castro A., Delgado A. B., Bernal Mde L., Luna Pelaez N., Diez Lloret A., et al. (2015). Human iPSC derived disease model of MERTK-associated retinitis pigmentosa. Sci. Rep. 5:12910. PubMed PMC
Lukovic D., Artero Castro A., Kaya K. D., Munezero D., Gieser L., Davo-Martinez C., et al. (2020). Retinal organoids derived from hiPSCs of an AIPL1-LCA patient maintain cytoarchitecture despite reduced levels of mutant AIPL1. Sci. Rep. 10:5426. PubMed PMC
Lukovic D., Bolinches-Amoros A., Artero-Castro A., Pascual B., Carballo M., Hernan I., et al. (2017). Generation of a human iPSC line from a patient with retinitis pigmentosa caused by mutation in PRPF8 gene. Stem Cell Res. 21 23–25. 10.1016/j.scr.2017.03.007 PubMed DOI
MacNair L., Xiao S., Miletic D., Ghani M., Julien J. P., Keith J., et al. (2016). MTHFSD and DDX58 are novel RNA-binding proteins abnormally regulated in amyotrophic lateral sclerosis. Brain 139 86–100. 10.1093/brain/awv308 PubMed DOI
Martinez-Contreras R., Cloutier P., Shkreta L., Fisette J. F., Revil T., Chabot B. (2007). hnRNP proteins and splicing control. Adv. Exp. Med. Biol. 623 123–147. 10.1007/978-0-387-77374-2_8 PubMed DOI
Martinez-Gimeno M., Gamundi M. J., Hernan I., Maseras M., Milla E., Ayuso C., et al. (2003). Mutations in the pre-mRNA splicing-factor genes PRPF3, PRPF8, and PRPF31 in Spanish families with autosomal dominant retinitis pigmentosa. Invest. Ophthalmol. Vis. Sci. 44 2171–2177. 10.1167/iovs.02-0871 PubMed DOI
Maubaret C. G., Vaclavik V., Mukhopadhyay R., Waseem N. H., Churchill A., Holder G. E., et al. (2011). Autosomal dominant retinitis pigmentosa with intrafamilial variability and incomplete penetrance in two families carrying mutations in PRPF8. Invest. Ophthalmol. Vis. Sci. 52 9304–9309. 10.1167/iovs.11-8372 PubMed DOI
McKie A. B., McHale J. C., Keen T. J., Tarttelin E. E., Goliath R., van Lith-Verhoeven J. J., et al. (2001). Mutations in the pre-mRNA splicing factor gene PRPC8 in autosomal dominant retinitis pigmentosa (RP13). Hum. Mol. Genet. 10 1555–1562. 10.1093/hmg/10.15.1555 PubMed DOI
Miller J. D., Ganat Y. M., Kishinevsky S., Bowman R. L., Liu B., Tu E. Y., et al. (2013). Human iPSC-based modeling of late-onset disease via progerin-induced aging. Cell Stem Cell 13 691–705. 10.1016/j.stem.2013.11.006 PubMed DOI PMC
Murray S. F., Jazayeri A., Matthes M. T., Yasumura D., Yang H., Peralta R., et al. (2015). Allele-specific inhibition of rhodopsin with an antisense oligonucleotide slows photoreceptor cell degeneration. Invest. Ophthalmol. Vis. Sci. 56 6362–6375. 10.1167/iovs.15-16400 PubMed DOI PMC
Ni J. Z., Grate L., Donohue J. P., Preston C., Nobida N., O’Brien G., et al. (2007). Ultraconserved elements are associated with homeostatic control of splicing regulators by alternative splicing and nonsense-mediated decay. Genes Dev. 21 708–718. 10.1101/gad.1525507 PubMed DOI PMC
Nueda M. J., Ferrer A., Conesa A. (2012). ARSyN: a method for the identification and removal of systematic noise in multifactorial time course microarray experiments. Biostatistics 13 553–566. 10.1093/biostatistics/kxr042 PubMed DOI
O’Leary N. A., Wright M. W., Brister J. R., Ciufo S., Haddad D., McVeigh R., et al. (2016). Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 44 D733–D745. PubMed PMC
Pena V., Liu S., Bujnicki J. M., Luhrmann R., Wahl M. C. (2007). Structure of a multipartite protein-protein interaction domain in splicing factor prp8 and its link to retinitis pigmentosa. Mol. Cell 25 615–624. 10.1016/j.molcel.2007.01.023 PubMed DOI
Plaza Reyes A., Petrus-Reurer S., Padrell Sanchez S., Kumar P., Douagi I., Bartuma H., et al. (2020). Identification of cell surface markers and establishment of monolayer differentiation to retinal pigment epithelial cells. Nat. Commun. 11:1609. PubMed PMC
Reichman S., Terray A., Slembrouck A., Nanteau C., Orieux G., Habeler W., et al. (2014). From confluent human iPS cells to self-forming neural retina and retinal pigmented epithelium. Proc. Natl. Acad. Sci. U.S.A. 111 8518–8523. 10.1073/pnas.1324212111 PubMed DOI PMC
Robinson M. D., Oshlack A. (2010). A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 11:R25. PubMed PMC
Saltzman A. L., Pan Q., Blencowe B. J. (2011). Regulation of alternative splicing by the core spliceosomal machinery. Genes Dev. 25 373–384. 10.1101/gad.2004811 PubMed DOI PMC
Shimada H., Lu Q., Insinna-Kettenhofen C., Nagashima K., English M. A., Semler E. M., et al. (2017). In vitro modeling using ciliopathy-patient-derived cells reveals distinct cilia dysfunctions caused by CEP290 mutations. Cell Rep. 20 384–396. 10.1016/j.celrep.2017.06.045 PubMed DOI PMC
Sorkio A., Hongisto H., Kaarniranta K., Uusitalo H., Juuti-Uusitalo K., Skottman H. (2014). Structure and barrier properties of human embryonic stem cell-derived retinal pigment epithelial cells are affected by extracellular matrix protein coating. Tissue Eng. Part A 20 622–634. PubMed PMC
Strunnikova N. V., Maminishkis A., Barb J. J., Wang F., Zhi C., Sergeev Y., et al. (2010). Transcriptome analysis and molecular signature of human retinal pigment epithelium. Hum. Mol. Genet. 19 2468–2486. 10.1093/hmg/ddq129 PubMed DOI PMC
Sullivan L. S., Bowne S. J., Birch D. G., Hughbanks-Wheaton D., Heckenlively J. R., Lewis R. A., et al. (2006). Prevalence of disease-causing mutations in families with autosomal dominant retinitis pigmentosa: a screen of known genes in 200 families. Invest. Ophthalmol. Vis. Sci. 47 3052–3064. 10.1167/iovs.05-1443 PubMed DOI PMC
Tanackovic G., Ransijn A., Thibault P., Abou Elela S., Klinck R., Berson E. L., et al. (2011). PRPF mutations are associated with generalized defects in spliceosome formation and pre-mRNA splicing in patients with retinitis pigmentosa. Hum. Mol. Genet. 20 2116–2130. 10.1093/hmg/ddr094 PubMed DOI PMC
Tarazona S., Furio-Tari P., Turra D., Pietro A. D., Nueda M. J., Ferrer A., et al. (2015). Data quality aware analysis of differential expression in RNA-seq with NOISeq R/Bioc package. Nucleic Acids Res. 43:e140. PubMed PMC
Trincado J. L., Entizne J. C., Hysenaj G., Singh B., Skalic M., Elliott D. J., et al. (2018). SUPPA2: fast, accurate, and uncertainty-aware differential splicing analysis across multiple conditions. Genome Biol. 19:40. PubMed PMC
Wahl M. C., Will C. L., Luhrmann R. (2009). The spliceosome: design principles of a dynamic RNP machine. Cell 136 701–718. 10.1016/j.cell.2009.02.009 PubMed DOI
Wickramasinghe V. O., Gonzalez-Porta M., Perera D., Bartolozzi A. R., Sibley C. R., Hallegger M., et al. (2015). Regulation of constitutive and alternative mRNA splicing across the human transcriptome by PRPF8 is determined by 5’ splice site strength. Genome Biol. 16:201. PubMed PMC
Wong J. J., Au A. Y., Ritchie W., Rasko J. E. (2016). Intron retention in mRNA: No longer nonsense: Known and putative roles of intron retention in normal and disease biology. BioEssays 38 41–49. 10.1002/bies.201500117 PubMed DOI
Xu Q., Modrek B., Lee C. (2002). Genome-wide detection of tissue-specific alternative splicing in the human transcriptome. Nucleic Acids Res. 30 3754–3766. 10.1093/nar/gkf492 PubMed DOI PMC
Yates A. D., Achuthan P., Akanni W., Allen J., Alvarez-Jarreta J., Amode M. R., et al. (2020). Ensembl 2020. Nucleic Acids Res. 48 D682–D688. PubMed PMC
Zhang X. O., Yin Q. F., Wang H. B., Zhang Y., Chen T., Zheng P., et al. (2014). Species-specific alternative splicing leads to unique expression of sno-lncRNAs. BMC Genomics 15:287. 10.1186/1471-2164-15-287 PubMed DOI PMC
Zhong X., Gutierrez C., Xue T., Hampton C., Vergara M. N., Cao L. H., et al. (2014). Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs. Nat. Commun. 5:4047. PubMed PMC