The RoScan Thermal 3D Body Scanning System: Medical Applicability and Benefits for Unobtrusive Sensing and Objective Diagnosis
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
H2020-EU.2.1.1.7. - ECSEL, topic ECSEL-04-2015, grant agreement ID: 692470
Advancing Smart Optical Imaging and Sensing for Health (ASTONISH)
PubMed
33233670
PubMed Central
PMC7699707
DOI
10.3390/s20226656
PII: s20226656
Knihovny.cz E-zdroje
- Klíčová slova
- 3D thermography, high-accuracy 3D scanning, multimodal imaging, multispectral imaging, robotic 3D scanning,
- MeSH
- atopická dermatitida diagnóza MeSH
- lidé MeSH
- měření bolesti MeSH
- robotika * MeSH
- soudní vědy MeSH
- termografie * MeSH
- zobrazování trojrozměrné * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
The RoScan is a novel, high-accuracy multispectral surface scanning system producing colored 3D models that include a thermal layer. (1) Background: at present, medicine still exhibits a lack of objective diagnostic methods. As many diseases involve thermal changes, thermography may appear to be a convenient technique for the given purpose; however, there are three limiting problems: exact localization, resolution vs. range, and impossibility of quantification. (2) Methods: the basic principles and benefits of the system are described. The procedures rely on a robotic manipulator with multiple sensors to create a multispectral 3D model. Importantly, the structure is robust, scene-independent, and features quantifiable measurement uncertainty; thus, all of the above problems of medical thermography are resolved. (3) Results: the benefits were demonstrated by several pilot case studies: medicament efficacy assessment in dermatology, objective recovery progress assessment in traumatology, applied force quantification in forensic sciences, exact localization of the cause of pain in physiotherapy, objective assessment of atopic dermatitis, and soft tissue volumetric measurements. (4) Conclusion: the RoScan addresses medical quantification, which embodies a frequent problem in several medical sectors, and can deliver new, objective information to improve the quality of healthcare and to eliminate false diagnoses.
Zobrazit více v PubMed
Papadakis M.A., McPhee S.J., Rabow M.W. CURRENT Medical Diagnosis and Treatment 2019. McGraw Hill Professional; New York, NY, USA: 2019.
New A. Evidence-based medicine. A new approach to teaching the practice of medicine. Evidence-Based Medicine Working Group. JAMA J. Am. Med. Assoc. 1992;268:2420–2425. doi: 10.1001/jama.268.17.2420. PubMed DOI
Sackett D.L. Evidence-based medicine. Semin. Perinatol. 1997;21:3–5. doi: 10.1016/S0146-0005(97)80013-4. PubMed DOI
Chang T.-C., Hsiao Y.-L., Liao S.-L. Application of digital infrared thermal imaging in determining inflammatory state and follow-up effect of methylprednisolone pulse therapy in patients with Graves’ ophthalmopathy. Graefes Arch. Clin. Exp. Ophthalmol. 2008;246:45–49. doi: 10.1007/s00417-007-0643-0. PubMed DOI
Gabrlik P., la Cour-Harbo A., Kalvodova P., Zalud L., Janata P. Calibration and accuracy assessment in a direct georeferencing system for UAS photogrammetry. Int. J. Remote Sens. 2018;39:4931–4959. doi: 10.1080/01431161.2018.1434331. DOI
Coffey V.C. Multispectral Imaging Moves into the Mainstream. Opt. Photonics News. 2012;23:18–24. doi: 10.1364/OPN.23.4.000018. DOI
Hilton-Jones D. Diagnosis and Treatment of Inflammatory Muscle Diseases. J. Neurol. Neurosurg. Psychiatry. 2003;74:ii25–ii31. doi: 10.1136/jnnp.74.suppl_2.ii25. PubMed DOI PMC
Ring E.F.J., Ammer K. Infrared thermal imaging in medicine. Physiol. Meas. 2012;33:R33. doi: 10.1088/0967-3334/33/3/R33. PubMed DOI
Lu G., Fei B. Medical hyperspectral imaging: A review. J. Biomed. Opt. 2014;19:010901. doi: 10.1117/1.JBO.19.1.010901. PubMed DOI PMC
Aretusi G., Fontanella L., Ippoliti L., Merla A. Supervised Classification of Thermal High-Resolution IR Images for the Diagnosis of Raynaud’s Phenomenon. In: Ingrassia S., Rocci R., Vichi M., editors. New Perspectives in Statistical Modeling and Data Analysis. Springer; Berlin/Heidelberg, Germany: 2011. pp. 419–427.
Engert V., Merla A., Grant J.A., Cardone D., Tusche A., Singer T. Exploring the Use of Thermal Infrared Imaging in Human Stress Research. PLoS ONE. 2014;9:e90782. doi: 10.1371/journal.pone.0090782. PubMed DOI PMC
Chromy A. Ph.D. Thesis. Department of Control and Instrumentation, Faculty of Electrical Engineering and Communication, Brno University of Technology; Brno, Czech Republic: 2017. High Resolution Multispectral 3D Scanning and Its Medical Applications.
Vardasca R., Simoes R. Topics in Medical Image Processing and Computational Vision. Springer; Dordrecht, The Netherlands: 2013. Current Issues in Medical Thermography; pp. 223–237. Lecture Notes in Computational Vision and Biomechanics.
Gul K.M., Ahmadi N., Wang Z., Jamieson C., Nasir K., Metcalfe R., Hecht H.S., Hartley C.J., Naghavi M. Digital thermal monitoring of vascular function: A novel tool to improve cardiovascular risk assessment. Vasc. Med. Lond. Engl. 2009;14:143–148. doi: 10.1177/1358863X08098850. PubMed DOI PMC
Bruehl S., Lubenow T.R., Nath H., Ivankovich O. Validation of thermography in the diagnosis of reflex sympathetic dystrophy. Clin. J. Pain. 1996;12:316–325. doi: 10.1097/00002508-199612000-00011. PubMed DOI
Di Carlo A. Thermography and the possibilities for its applications in clinical and experimental dermatology. Clin. Dermatol. 1995;13:329–336. doi: 10.1016/0738-081X(95)00073-O. PubMed DOI
Ju X., Nebel J.-C., Siebert J.P. 3D thermography imaging standardization technique for inflammation diagnosis. In: Gong H., Cai Y., Chatard J.-P., editors. Infrared Components and Their Applications. Volume 5640. International Society for Optics and Photonics; Beijing, China: 2005. p. 266.
Curless B. From Range Scans to 3D Models. SIGGRAPH Comput. Graph. 1999;33:38–41. doi: 10.1145/345370.345399. DOI
Brown L.G. A Survey of Image Registration Techniques. ACM Comput. Surv. 1992;24:325–376. doi: 10.1145/146370.146374. DOI
Strobl K.H., Mair E., Hirzinger G. Image-based pose estimation for 3-D modeling in rapid, hand-held motion; Proceedings of the 2011 IEEE International Conference on Robotics and Automation (ICRA); Shanghai, China. 9–13 May 2011; pp. 2593–2600.
Alshawa M. ICL: Iterative closest line—A novel point cloud registration algorithm based on linear features. Ekscentar. 2007;10
Poppinga J., Vaskevicius N., Birk A., Pathak K. Fast plane detection and polygonalization in noisy 3D range images; Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2008; Nice, France. 22–26 September 2008; pp. 3378–3383.
Bellocchio F., Borghese N.A., Ferrari S., Piuri V. 3D Surface Reconstruction. Springer; New York, NY, USA: 2013.
Chromy A., Zalud L. Novel 3D Modelling System Capturing Objects with Sub-Millimetre Resolution. Adv. Electr. Electron. Eng. 2014;12:476–487. doi: 10.15598/aeee.v12i5.1123. DOI
Chromy A., Zalud L. Robotic 3D scanner as an alternative to standard modalities of medical imaging. SpringerPlus. 2014;3:13. doi: 10.1186/2193-1801-3-13. PubMed DOI PMC
Chromy A., Kocmanova P., Zalud L. Creating Three-Dimensional Computer Models Using Robotic Manipulator and Laser Scanners; Proceedings of the 12th IFAC Conference on Programmable Devices and Embedded Systems (2013); Velke Karlovice, Czech Republic. 25–27 September 2013; Velke Karlovice, Czech Republic: Elsevier B.V.; 2013. pp. 268–273.
Chromy A., Klima O. A 3D Scan Model and Thermal Image Data Fusion Algorithms for 3D Thermography in Medicine. J. Healthc. Eng. 2017;2017:5134021. doi: 10.1155/2017/5134021. PubMed DOI PMC
Kocmanova P., Zalud L., Chromy A. 3D proximity laser scanner calibration; Proceedings of the 2013 18th International Conference on Methods and Models in Automation and Robotics (MMAR); Miedzyzdroje, Poland. 26–29 August 2013; pp. 742–747.
Chromy A. Mutual Calibration of Sensors for Multispectral 3D Scanning of Surface; Proceedings of the 9th International Congress on Ultra Modern Telecommunications and Control Systems; Munich, Germany. 6–8 November 2017; Munich, Germany: IEEE; 2017. pp. 199–204.
Suffern K. Ray Tracing from the Ground Up. CRC Press; Boca Raton, FL, USA: 2016.
Smith K.B., Zheng Y.F. Accuracy Analysis of Point Laser Triangulation Probes Using Simulation. J. Manuf. Sci. Eng. 1998;120:736–745. doi: 10.1115/1.2830214. DOI
Magnetic Resonance Imaging. [(accessed on 22 April 2018)]; Available online: http://www.mri-portal.com/clanky/magneticka_rezonance.php.
Novelline R.A., Squire L.F. Squire’s Fundamentals of Radiology. 6th ed. Harvard University Press; Cambridge, MA, USA: 2004.
Chromy A. Multispectral 3D Surface Scanning System RoScan and its Application in Inflammation Monitoring and Quantification; Proceedings of the 11th International Joint Conference on Biomedical Engineering Systems and Technologies: BIOIMAGING; Madeira, Portugal. 19–21 January 2018; pp. 106–113.
Chromy A., Zalud L. Three-dimensional Thermal Imaging in Medicine; Proceedings of the 3DBODY.TECH 2017—8th International Conference and Exhibition on 3D Body Scanning and Processing Technologies; Montreal, QC, Canada. 11–12 October 2017; Montreal, QC, Canada: Hometrica Consulting—Dr. Nicola D’Apuzzo; 2017. pp. 232–238.
Véle F. Funkční diagnostika—Předpoklad úspěchu fyzioterapeuta. Rehabil. Fyzikální Lékařství. 2012;19:155–158.
Vele F. Vysetreni Hybnych Funkci z Pohledu Neurofyziologie: Prirucka pro Terapeuty Pracujici v Neurorehabilitaci. Triton; Praha, Czech Republic: 2012.
Chromy A. Application of High-Resolution 3D Scanning in Medical Volumetry. Int. J. Electron. Telecommun. 2016;62:23–31. doi: 10.1515/eletel-2016-0003. DOI
Chromy A., Zalud L., Dobsak P., Suskevic I., Mrkvicova V. Limb volume measurements: Comparison of accuracy and decisive parameters of the most used present methods. SpringerPlus. 2015;4:707. doi: 10.1186/s40064-015-1468-7. PubMed DOI PMC
Chromy A. High-Accuracy Volumetric Measurements of Soft Tissues using Robotic 3D Scanner. IFAC-Pap. 2015;48:318–323. doi: 10.1016/j.ifacol.2015.07.054. DOI
Sprikkelman A.B., Tupker R.A., Burgerhof H., Schouten J.P., Brand P.L., Heymans H.S., van Aalderen W.M. Severity scoring of atopic dermatitis: A comparison of three scoring systems. Allergy. 1997;52:944–949. doi: 10.1111/j.1398-9995.1997.tb01255.x. PubMed DOI
Johansen J.D., Frosch P.J., Lepoittevin J.-P. Contact Dermatitis. Springer Science & Business Media; Berlin/Heidelberg, Germany: 2010.
Polo M.-E., Felicísimo Á.M. Analysis of Uncertainty and Repeatability of a Low-Cost 3D Laser Scanner. Sensors. 2012;12:9046–9054. doi: 10.3390/s120709046. PubMed DOI PMC
Beraldin J.-A. Basic theory on surface measurement uncertainty of 3D imaging systems. Three-Dimens. Imaging Metrol. 2009;7239 doi: 10.1117/12.804700. DOI
Lipsky B.A., Berendt A.R., Deery H.G., Embil J.M., Joseph W.S., Karchmer A.W., LeFrock J.L., Lew D.P., Mader J.T., Norden C., et al. Diagnosis and Treatment of Diabetic Foot Infections. Clin. Infect. Dis. 2004;39:885–910. doi: 10.1086/424846. PubMed DOI
Krysko D.V., Vanden Berghe T., D’Herde K., Vandenabeele P. Apoptosis and necrosis: Detection, discrimination and phagocytosis. Methods. 2008;44:205–221. doi: 10.1016/j.ymeth.2007.12.001. PubMed DOI
Merla A., Romani G.L. Biomedical Applications of Functional Infrared Imaging; Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference; Shanghai, China. 17–18 January 2006; pp. 690–693. PubMed
Merryman S.A., Nelms R.M. Diagnostic technique for power systems utilizing infrared thermal imaging. IEEE Trans. Ind. Electron. 1995;42:615–628. doi: 10.1109/41.475502. DOI
Taileb A., Dekkiche H. Infrared Imaging as a Means of Analyzing and Improving Energy Efficiency of Building Envelopes: The case of a LEED Gold Building. Procedia Eng. 2015;118:639–646. doi: 10.1016/j.proeng.2015.08.497. DOI
Munz D., Yang Y.Y. Stress Singularities at the Interface in Bonded Dissimilar Materials under Mechanical and Thermal Loading. J. Appl. Mech. 1992;59:857–861. doi: 10.1115/1.2894053. DOI
Nejdl L., Kudr J., Cihalova K., Chudobova D., Zurek M., Zalud L., Kopecny L., Burian F., Ruttkay-Nedecky B., Krizkova S., et al. Remote-controlled robotic platform ORPHEUS as a new tool for detection of bacteria in the environment. Electrophoresis. 2014;35:2333–2345. doi: 10.1002/elps.201300576. PubMed DOI
Nejdl L., Kudr J., Ruttkay-Nedecky B., Heger Z., Zima L., Zalud L., Krizkova S., Adam V., Vaculovicova M., Kizek R. Remote-Controlled Robotic Platform for Electrochemical Determination of Water Contaminated by Heavy Metal Ions. Int. J. Electrochem. Sci. 2015;10:3635–3643.
Zalud L., Kopecny L., Burian F., Florian T. CASSANDRA—Heterogeneous reconnaissance robotic system for dangerous environments; Proceedings of the 2011 IEEE/SICE International Symposium on System Integration, SII 2011; Kyoto, Japan. 20–22 December 2011; pp. 1275–1280.