A 3D Scan Model and Thermal Image Data Fusion Algorithms for 3D Thermography in Medicine
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29250306
PubMed Central
PMC5698832
DOI
10.1155/2017/5134021
Knihovny.cz E-zdroje
- MeSH
- algoritmy MeSH
- lidé MeSH
- termografie přístrojové vybavení MeSH
- zánět diagnostické zobrazování MeSH
- zobrazování trojrozměrné přístrojové vybavení MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
OBJECTIVES: At present, medical thermal imaging is still considered a mere qualitative tool enabling us to distinguish between but lacking the ability to quantify the physiological and nonphysiological states of the body. Such a capability would, however, facilitate solving the problem of medical quantification, whose presence currently manifests itself within the entire healthcare system. METHODS: A generally applicable method to enhance captured 3D spatial data carrying temperature-related information is presented; in this context, all equations required for other data fusions are derived. The method can be utilized for high-density point clouds or detailed meshes at a high resolution but is conveniently usable in large objects with sparse points. RESULTS: The benefits of the approach are experimentally demonstrated on 3D thermal scans of injured subjects. We obtained diagnostic information inaccessible via traditional methods. CONCLUSION: Using a 3D model and thermal image data fusion allows the quantification of inflammation, facilitating more precise injury and illness diagnostics or monitoring. The technique offers a wide application potential in medicine and multiple technological domains, including electrical and mechanical engineering.
Zobrazit více v PubMed
Coffey V. C. Multispectral imaging moves into the mainstream. Optics & Photonics News. 2012;23(4):18–24. doi: 10.1364/OPN.23.4.000018. DOI
Hardwicke J. T., Osmani O., Skillman J. M. Detection of perforators using smartphone thermal imaging. Plastic and Reconstructive Surgery. 2016;137(1):39–41. doi: 10.1097/PRS.0000000000001849. PubMed DOI
Vardasca R., Simoes R. Current issues in medical thermography. Topics in Medical Image Processing and Computational Vision; 2013; Dordrecht. Springer; pp. 223–237. DOI
Ju X., Nebel J.-C., Siebert J. P. 3D thermography imaging standardization technique for inflammation diagnosis. In: Gong H., Cai Y., Chatard J.-P., editors. Proceedings Volume 5640, Infrared Components and Their Applications; 2005; p. p. 266. DOI
Chang T.-C., Hsiao Y.-L., Liao S.-L. Application of digital infrared thermal imaging in determining inflammatory state and follow-up effect of methylprednisolone pulse therapy in patients with Graves’ ophthalmopathy. Graefe's Archive for Clinical and Experimental Ophthalmology. 2008;246(1):45–49. doi: 10.1007/s00417-007-0643-0. PubMed DOI
Park J. H. Digital restoration of Seokguram Grotto: the digital archiving and the exhibition of South Korea’s representative UNESCO world heritage. 2012 International Symposium on Ubiquitous Virtual Reality (ISUVR); 2012; Adaejeon, South Korea. pp. 26–29. DOI
Klein S., Avery M., Adams G., Guy A., Stephen P., Steve S. From scan to print: 3D printing as a means for replication. 2014 International Conference on Digital Printing Technologies; 2014.
Chromy A., Zalud L. Robotic 3D scanner as an alternative to standard modalities of medical imaging. SpringerPlus. 2014;3(1):p. 13. doi: 10.1186/2193-1801-3-13. PubMed DOI PMC
Zalud L., Kocmanova P. Fusion of thermal imaging and CCD camera-based data for stereovision visual telepresence. 2013 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR); 2013; Linkoping, Sweden. DOI
Bernardini F., Rushmeier H. The 3D model acquisition pipeline. Computer Graphics Forum. 2002;21(2):149–172. doi: 10.1111/1467-8659.00574. DOI
de Berg M., van Krevel M., Overmars M. Computational Geometry: Algorithms and Applications. 3rd. Berlin: Springer; 2008.
Marton Z. C., Rusu R. B., Beetz M. On fast surface reconstruction methods for large and noisy point clouds. 2009 IEEE International Conference on Robotics and Automation; 2009; Kobe, Japan. pp. 3218–3223. DOI
Chen M.-B. A parallel 3D Delaunay triangulation method. 2011 IEEE Ninth International Symposium on Parallel and Distributed; 2011; Busan, South Korea. pp. 52–56. DOI
Williams T. Thermal Imaging Cameras: Characteristics and Performance. CRC Press; 2009.
Chromy A. Application of high-resolution 3D scanning in medical volumetry. International Journal of Electronics and Telecommunications. 2016;62(1):23–31. doi: 10.1515/eletel-2016-0003. DOI
Rusinkiewicz S., Levoy M. Efficient variants of the ICP algorithm. Proceedings Third International Conference on 3-D Digital Imaging and Modeling, 2001; 2001; Quebec City, Quebec, Canada. pp. 145–152. DOI
Chromy A. Mutual Calibration of Sensors for Multispectral 3D Scanning of Surface. 2017.
Kocmanova P., Zalud L. Spatial calibration of TOF camera, thermal imager and CCD camera. Mendel 2013: 19th International Conference on Soft Computing; 2013; 2013. pp. 343–348.
Burian F., Kocmanova P., Zalud L. Robot mapping with range camera, CCD cameras and thermal imagers. 2014 19th International Conference On Methods and Models in Automation and Robotics (MMAR); 2014; Miedzyzdroje, Poland: pp. 200–205. DOI
Szeliski R. Computer Vision: Algorithms and Applications. Springer Science & Business Media; 2010.
Möller T., Trumbore B. Fast, minimum storage ray/triangle intersection. Proceeding SIGGRAPH '05 ACM SIGGRAPH 2005 Courses; July‑August, 2005; Los Angeles, California. DOI
Trefil J. S. The Nature of Science: An A-Z Guide to the Laws and Principles Governing Our Universe. Houghton Mifflin Harcourt; 2003.
Fanger P. O. Thermal Comfort. Analysis and Applications in Environmental Engineering. 1970.
Kunii T. L. Frontiers in Computer Graphics: Proceedings of Computer Graphics Tokyo ‘84. Springer Science & Business Media; 2012.
Kocmanova P., Zalud L., Chromy A. 3D proximity laser scanner calibration. 2013 18th International Conference on Methods and Models in Automation & Robotics (MMAR); 2013; Miedzyzdroje, Poland. pp. 742–747. DOI
Chromy A., Kocmanova P., Zalud L. Creating three-dimensional computer models using robotic manipulator and laser scanners. 12th IFAC Conference on Programmable Devices and Embedded Systems; 2013; Velke Karlovice: Elsevier B.V; pp. 268–273.
Chromy A., Zalud L. Novel 3D modelling system capturing objects with sub-millimetre resolution. Advances in Electrical and Electronic Engineering. 2014;12(5):476–487. doi: 10.15598/aeee.v12i5.1123. DOI
Bourke P. PLY - polygon file format. 2009. November 2016, http://paulbourke.net/dataformats/ply/
Isenburg M., Lindstrom P. Streaming meshes. VIS 05. IEEE Visualization, 2005; 2005; Minneapolis, MN, USA. pp. 231–238. DOI
Girardeau-Montaut D. CloudCompare - open source project. 2016. November 2016, http://www.danielgm.net/cc/
Melvin G. Thermography gallery. Thermal Imaging of the Southwest. 2016
Zalud L. ARGOS - system for heterogeneous mobile robot teleoperation. 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems; 2006; Beijing; China. pp. 211–216.
Zalud L., Kopecny L., Burian F. Orpheus reconnissance robots. 2008 IEEE International Workshop on Safety, Security and Rescue Robotics, SSRR 2008; 2008; Sendai, Japan. pp. 31–34.