Novel Sustainable-by-Design HDAC Inhibitors for the Treatment of Alzheimer's Disease
Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection
Document type Journal Article
PubMed
30996816
PubMed Central
PMC6466821
DOI
10.1021/acsmedchemlett.9b00071
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Alzheimer's disease (AD) represents a global problem, with an estimation of the majority of dementia patients in low- and middle-income countries by 2050. Thus, the development of sustainable drugs has attracted much attention in recent years. In light of this, taking inspiration from the HDAC inhibitor vorinostat (1), we develop the first HDAC inhibitors derived from cashew nut shell liquid (CNSL), an inexpensive agro-food waste material. CNSL derivatives 8 and 9 display a HDAC inhibitory profile similar to 1, together with a more promising safety for 9 compared to 1. Moreover, both compounds and particularly 9 were able to effectively modulate glial cell-induced inflammation and to revert the pro-inflammatory phenotype. All these results demonstrate that the use of inexpensive food waste materials could be successfully applied for the development of accessible and sustainable drug candidates for the treatment of AD.
Biomedical Research Center University Hospital Hradec Kralove 500 00 Hradec Kralove Czech Republic
Department of Pharmaceutical Science University of Milan Via Mangiagalli 25 20133 Milan Italy
LADETER Catholic University of Brasilia QS 07 Lote 01 EPCT Águas Claras 71966 700 Brasília DF Brazil
See more in PubMed
World Alzheimer report 2015 - the global impact of dementia: an analysis of prevalence, incidence, cost and trends. https://www.alz.co.uk/research/world-report-2015 (accessed March 2019).
Cummings J.; Lee G.; Ritter A.; Zhong K. Alzheimer’s disease drug development pipeline: 2018. Alzheimer’s & Dementia. Translational Research & Clinical Interventions 2018, 4, 195–214. 10.1016/j.trci.2018.03.009. PubMed DOI PMC
Marciani D. J. Facing Alzheimer’s disease in the developing countries. Rev. Neuropsiquiatr 2017, 80, 105–109. 10.20453/rnp.v80i2.3091. DOI
Cummings J. L.; Morstorf T.; Zhong K. Alzheimer’s disease drug-development pipeline: few candidates, frequent failures. Alzheimer's Res. Ther. 2014, 6, 37.10.1186/alzrt269. PubMed DOI PMC
Prince M. Progress on dementia - leaving no one behind. Lancet 2017, 390, e51–e53. 10.1016/S0140-6736(17)31757-9. PubMed DOI
Bekris L. M.; Yu C.-E.; Bird T. D.; Tsuang D. W. Genetics of Alzheimer disease. J. Geriatr. Psychiatry Neurol. 2010, 23, 213–227. 10.1177/0891988710383571. PubMed DOI PMC
Hori Y.; Hashimoto T.; Nomoto H.; Hyman B. T.; Iwatsubo T. Role of Apolipoprotein E in beta-Amyloidogenesis: isoform-specific effects on protofibril to fibril conversion of Abeta in vitro and brain Abeta deposition in vivo. J. Biol. Chem. 2015, 290, 15163–15174. 10.1074/jbc.M114.622209. PubMed DOI PMC
Chouliaras L.; Rutten B. P.; Kenis G.; Peerbooms O.; Visser P. J.; Verhey F.; van Os J.; Steinbusch H. W.; van den Hove D. L. Epigenetic regulation in the pathophysiology of Alzheimer’s disease. Prog. Neurobiol. 2010, 90, 498–510. 10.1016/j.pneurobio.2010.01.002. PubMed DOI
Pal S.; Tyler J. K. Epigenetics and aging. Science Advances 2016, 2, e160058410.1126/sciadv.1600584. PubMed DOI PMC
Yang S.-s.; Zhang R.; Wang G.; Zhang Y.-f. The development prospection of HDAC inhibitors as a potential therapeutic direction in Alzheimer’s disease. Transl. Neurodegener. 2017, 6, 19.10.1186/s40035-017-0089-1. PubMed DOI PMC
Closing In On A Cure: 2017 Alzheimer’s Clinical Trials Report. https://www.alzdiscovery.org/assets/content/static/ADDF-2017-Alzheimers-Clinical-Trials-Report.pdf (accessed March 2019).
Kilgore M.; Miller C. A.; Fass D. M.; Hennig K. M.; Haggarty S. J.; Sweatt J. D.; Rumbaugh G. Inhibitors of class 1 histone deacetylases reverse contextual memory deficits in a mouse model of Alzheimer’s disease. Neuropsychopharmacology 2010, 35, 870–880. 10.1038/npp.2009.197. PubMed DOI PMC
Lemes L. F. N.; de Andrade Ramos G.; de Oliveira A. S.; da Silva F. M. R.; de Castro Couto G.; da Silva Boni M.; Guimaraes M. J. R.; Souza I. N. O.; Bartolini M.; Andrisano V.; do Nascimento Nogueira P. C.; Silveira E. R.; Brand G. D.; Soukup O.; Korabecny J.; Romeiro N. C.; Castro N. G.; Bolognesi M. L.; Romeiro L. A. S. Cardanol-derived AChE inhibitors: Towards the development of dual binding derivatives for Alzheimer’s disease. Eur. J. Med. Chem. 2016, 108, 687–700. 10.1016/j.ejmech.2015.12.024. PubMed DOI
Mubofu E. B.; Mgaya J. E. Chemical Valorization of Cashew Nut Shell Waste. Top Curr. Chem. (Cham) 2018, 376, 8.10.1007/s41061-017-0177-9. PubMed DOI
Balasubramanyam K.; Swaminathan V.; Ranganathan A.; Kundu T. K. Small molecule modulators of histone acetyltransferase p300. J. Biol. Chem. 2003, 278, 19134–19140. 10.1074/jbc.M301580200. PubMed DOI
Sbardella G.; Castellano S.; Vicidomini C.; Rotili D.; Nebbioso A.; Miceli M.; Altucci L.; Mai A. Identification of long chain alkylidenemalonates as novel small molecule modulators of histone acetyltransferases. Bioorg. Med. Chem. Lett. 2008, 18, 2788–2792. 10.1016/j.bmcl.2008.04.017. PubMed DOI
Ghizzoni M.; Boltjes A.; Graaf C.; Haisma H. J.; Dekker F. J. Improved inhibition of the histone acetyltransferase PCAF by an anacardic acid derivative. Bioorg. Med. Chem. 2010, 18, 5826–5834. 10.1016/j.bmc.2010.06.089. PubMed DOI
Ghizzoni M.; Wu J.; Gao T.; Haisma H. J.; Dekker F. J.; George Zheng Y. 6-alkylsalicylates are selective Tip60 inhibitors and target the acetyl-CoA binding site. Eur. J. Med. Chem. 2012, 47, 337–344. 10.1016/j.ejmech.2011.11.001. PubMed DOI PMC
Lomonaco D.; Mele G.; Mazzetto S. E.. Cashew Nutshell Liquid (CNSL): From an Agro-industrial Waste to a Sustainable Alternative to Petrochemical Resources. In Cashew Nut Shell Liquid; Springer International Publishing AG: Cham, 2017; pp 19–38.
Butler K. V.; Kalin J.; Brochier C.; Vistoli G.; Langley B.; Kozikowski A. P. Rational Design and Simple Chemistry Yield a Superior, Neuroprotective HDAC6 Inhibitor Tubastatin A. J. Am. Chem. Soc. 2010, 132, 10842–10846. 10.1021/ja102758v. PubMed DOI PMC
Bourguet E.; Ozdarska K.; Moroy G.; Jeanblanc J.; Naassila M. Class I HDAC Inhibitors: Potential New Epigenetic Therapeutics for Alcohol Use Disorder (AUD). J. Med. Chem. 2018, 61, 1745–1766. 10.1021/acs.jmedchem.7b00115. PubMed DOI
Simões-Pires C.; Zwick V.; Nurisso A.; Schenker E.; Carrupt P.-A.; Cuendet M. HDAC6 as a target for neurodegenerative diseases: what makes it different from the other HDACs?. Mol. Neurodegener. 2013, 8, 7.10.1186/1750-1326-8-7. PubMed DOI PMC
Heltweg B.; Trapp J.; Jung M. In vitro assays for the determination of histone deacetylase activity. Methods (Amsterdam, Neth.) 2005, 36, 332–337. 10.1016/j.ymeth.2005.03.003. PubMed DOI
Seo Y. J.; Kang Y.; Muench L.; Reid A.; Caesar S.; Jean L.; Wagner F.; Holson E.; Haggarty S. J.; Weiss P.; King P.; Carter P.; Volkow N. D.; Fowler J. S.; Hooker J. M.; Kim S. W. Image-guided synthesis reveals potent blood-brain barrier permeable histone deacetylase inhibitors. ACS Chem. Neurosci. 2014, 5, 588–596. 10.1021/cn500021p. PubMed DOI PMC
Caraci F.; Leggio G. M.; Drago F.; Salomone S. Epigenetic drugs for Alzheimer’s disease: hopes and challenges. Br. J. Clin. Pharmacol. 2013, 75, 1154–1155. 10.1111/j.1365-2125.2012.04443.x. PubMed DOI PMC
Uliassi E.; Pena-Altamira L. E.; Morales A. V.; Massenzio F.; Petralla S.; Rossi M.; Roberti M.; Martinez Gonzalez L.; Martinez A.; Monti B.; Bolognesi M. L. A Focused Library of Psychotropic Analogues with Neuroprotective and Neuroregenerative Potential. ACS Chem. Neurosci. 2019, 10, 279–294. 10.1021/acschemneuro.8b00242. PubMed DOI
Wang G.; Shi Y.; Jiang X.; Leak R. K.; Hu X.; Wu Y.; Pu H.; Li W. W.; Tang B.; Wang Y.; Gao Y.; Zheng P.; Bennett M. V.; Chen J. HDAC inhibition prevents white matter injury by modulating microglia/macrophage polarization through the GSK3beta/PTEN/Akt axis. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 2853–2858. 10.1073/pnas.1501441112. PubMed DOI PMC
Hwang J. Y.; Aromolaran K. A.; Zukin R. S. The emerging field of epigenetics in neurodegeneration and neuroprotection. Nat. Rev. Neurosci. 2017, 18, 347–361. 10.1038/nrn.2017.46. PubMed DOI PMC
Colton C. A.; Mott R. T.; Sharpe H.; Xu Q.; Van Nostrand W. E.; Vitek M. P. Expression profiles for macrophage alternative activation genes in AD and in mouse models of AD. J. Neuroinflammation 2006, 3, 27.10.1186/1742-2094-3-27. PubMed DOI PMC
Pena-Altamira E.; Petralla S.; Massenzio F.; Virgili M.; Bolognesi M. L.; Monti B. Nutritional and Pharmacological Strategies to Regulate Microglial Polarization in Cognitive Aging and Alzheimer’s Disease. Front. Aging Neurosci. 2017, 9, 175.10.3389/fnagi.2017.00175. PubMed DOI PMC
Thomas E. A.; D’Mello S. R. Complex neuroprotective and neurotoxic effects of histone deacetylases. J. Neurochem. 2018, 145, 96–110. 10.1111/jnc.14309. PubMed DOI PMC
Cerone M.; Uliassi E.; Prati F.; Ebiloma G. U.; Lemgruber L.; Bergamini C.; Watson D. G.; de A. M. F. T.; Roth Cardoso G. S. H.; Soares Romeiro L. A.; de Koning H. P.; Bolognesi M. L. Discovery of Sustainable Drugs for Neglected Tropical Diseases: Cashew Nut Shell Liquid (CNSL)-Based Hybrids Target Mitochondrial Function and ATP Production in Trypanosoma brucei. ChemMedChem 2019, 14, 621.10.1002/cmdc.201800790. PubMed DOI PMC
Sustainable Drug Discovery of Multi-Target-Directed Ligands for Alzheimer's Disease