Sustainable Drug Discovery of Multi-Target-Directed Ligands for Alzheimer's Disease

. 2021 Apr 22 ; 64 (8) : 4972-4990. [epub] 20210408

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33829779

The multifactorial nature of Alzheimer's disease (AD) is a reason for the lack of effective drugs as well as a basis for the development of "multi-target-directed ligands" (MTDLs). As cases increase in developing countries, there is a need of new drugs that are not only effective but also accessible. With this motivation, we report the first sustainable MTDLs, derived from cashew nutshell liquid (CNSL), an inexpensive food waste with anti-inflammatory properties. We applied a framework combination of functionalized CNSL components and well-established acetylcholinesterase (AChE)/butyrylcholinesterase (BChE) tacrine templates. MTDLs were selected based on hepatic, neuronal, and microglial cell toxicity. Enzymatic studies disclosed potent and selective AChE/BChE inhibitors (5, 6, and 12), with subnanomolar activities. The X-ray crystal structure of 5 complexed with BChE allowed rationalizing the observed activity (0.0352 nM). Investigation in BV-2 microglial cells revealed antineuroinflammatory and neuroprotective activities for 5 and 6 (already at 0.01 μM), confirming the design rationale.

Zobrazit více v PubMed

Alzheimer’s Disease International . https://www.alzint.org/about/dementia-facts-figures/dementia-statistics (accessed Jan 8, 2021).

Cummings J.; Aisen P. S.; DuBois B.; Frölich L.; Jack C. R. Jr.; Jones R. W.; Morris J. C.; Raskin J.; Dowsett S. A.; Scheltens P. Drug development in Alzheimer’s disease: the path to 2025. Alzheimer’s Res. Ther. 2016, 8, 39.10.1186/s13195-016-0207-9. PubMed DOI PMC

Cummings J.; Lee G.; Ritter A.; Sabbagh M.; Zhong K. Alzheimer’s disease drug development pipeline: 2020. Alzheimer’s Dementia 2020, 6, e1205010.1002/trc2.12050. PubMed DOI PMC

Cummings J. L. Translational scoring of candidate treatments for Alzheimer’s Disease: a systematic approach. Dementia Geriatr. Cognit. Disord. 2020, 49, 22–37. 10.1159/000507569. PubMed DOI

Hopkins A. L. Network pharmacology: the next paradigm in drug discovery. Nat. Chem. Biol. 2008, 4, 682–690. 10.1038/nchembio.118. PubMed DOI

Barabási A.-L.; Gulbahce N.; Loscalzo J. Network medicine: a network-based approach to human disease. Nat. Rev. Genet. 2011, 12, 56–68. 10.1038/nrg2918. PubMed DOI PMC

Keith C. T.; Borisy A. A.; Stockwell B. R. Multicomponent therapeutics for networked systems. Nat. Rev. Drug Discovery 2005, 4, 71–78. 10.1038/nrd1609. PubMed DOI

Morphy R.; Rankovic Z. Designed multiple ligands. An emerging drug discovery paradigm. J. Med. Chem. 2005, 48, 6523–6543. 10.1021/jm058225d. PubMed DOI

Cavalli A.; Bolognesi M. L.; Minarini A.; Rosini M.; Tumiatti V.; Recanatini M.; Melchiorre C. Multi-target-directed ligands to combat neurodegenerative diseases. J. Med. Chem. 2008, 51, 347–372. 10.1021/jm7009364. PubMed DOI

Danon J. J.; Reekie T. A.; Kassiou M. Challenges and Opportunities in Central Nervous System Drug Discovery. Trends Chem. 2019, 1, 612–624. 10.1016/j.trechm.2019.04.009. DOI

Zhou J.; Jiang X.; He S.; Jiang H.; Feng F.; Liu W.; Qu W.; Sun H. Rational design of multitarget-directed ligands: strategies and emerging paradigms. J. Med. Chem. 2019, 62, 8881–8914. 10.1021/acs.jmedchem.9b00017. PubMed DOI

Alarcón-Espósito J.; Mallea M.; Rodríguez-Lavado J. From hybrids to new scaffolds: the latest medicinal chemistry goals in multi-target directed ligands for Alzheimer’s disease. Curr. Neuropharmacol. 2020, 10.2174/1570159X18666200914155951. PubMed DOI PMC

Lemes L. F. N.; de Andrade Ramos G.; de Oliveira A. S.; da Silva F. M. R.; de Castro Couto G.; da Silva Boni M.; Guimarães M. J. R.; Souza I. N. O.; Bartolini M.; Andrisano V.; do Nascimento Nogueira P. C.; Silveira E. R.; Brand G. D.; Soukup O.; Korábečný J.; Romeiro N. C.; Castro N. G.; Bolognesi M. L.; Romeiro L. A. S. Cardanol-derived AChE inhibitors: towards the development of dual binding derivatives for Alzheimer’s disease. Eur. J. Med. Chem. 2016, 108, 687–700. 10.1016/j.ejmech.2015.12.024. PubMed DOI

Soares Romeiro L. A.; da Costa Nunes J. L.; de Oliveira Miranda C.; Simões Heyn Roth Cardoso G.; de Oliveira A. S.; Gandini A.; Kobrlova T.; Soukup O.; Rossi M.; Senger J.; Jung M.; Gervasoni S.; Vistoli G.; Petralla S.; Massenzio F.; Monti B.; Bolognesi M. L. Novel sustainable-by-design HDAC inhibitors for the treatment of Alzheimer’s Disease. ACS Med. Chem. Lett. 2019, 10, 671–676. 10.1021/acsmedchemlett.9b00071. PubMed DOI PMC

Sharma S.; Das J.; Braje W. M.; Dash A. K.; Handa S. A Glimpse into Green Chemistry Practices in the Pharmaceutical Industry. ChemSusChem 2020, 13, 2806–2806. 10.1002/cssc.202001204. PubMed DOI

Brun N.; Hesemann P.; Esposito D. Expanding the biomass derived chemical space. Chem. Sci. 2017, 8, 4724–4738. 10.1039/C7SC00936D. PubMed DOI PMC

Bolognesi M. L.Chapter Six - Sustainable anti-trypanosomatid drugs: An aspirational goal for medicinal chemistry. In Annual Reports in Medicinal Chemistry, Chibale K., Ed., Academic Press; 2019; Vol. 52, pp. 153–176.

Decker M.Design of hybrid molecules for drug development, Elsevier; 2017.

Carlier P. R.; Chow E. S.; Han Y.; Liu J.; El Yazal J.; Pang Y. P. Heterodimeric tacrine-based acetylcholinesterase inhibitors: investigating ligand-peripheral site interactions. J. Med. Chem. 1999, 42, 4225–4231. 10.1021/jm990224w. PubMed DOI

Milelli A.; De Simone A.; Ticchi N.; Chen H. H.; Betari N.; Andrisano V.; Tumiatti V. Tacrine-based multifunctional agents in Alzheimer’s disease: an old story in continuous development. Curr. Med. Chem. 2017, 24, 3522–3546. 10.2174/0929867324666170309123920. PubMed DOI

Hemshekhar M.; Sebastin Santhosh M.; Kemparaju K.; Girish K. S. Emerging roles of anacardic acid and its derivatives: a pharmacological overview. Basic Clin. Pharmacol. Toxicol. 2012, 110, 122–132. 10.1111/j.1742-7843.2011.00833.x. PubMed DOI

Lomonaco D.; Pinheiro Santiago G. M.; Ferreira Y. S.; Campos Arriaga Â. M.; Mazzetto S. E.; Mele G.; Vasapollo G. Study of technical CNSL and its main components as new green larvicides. Green Chem. 2009, 11, 31–33. 10.1039/B811504D. DOI

de Souza M. Q.; Teotônio I. M. S. N.; de Almeida F. C.; Heyn G. S.; Alves P. S.; Romeiro L. A. S.; Pratesi R.; de Medeiros Nóbrega Y. K.; Pratesi C. B. Molecular evaluation of anti-inflammatory activity of phenolic lipid extracted from cashew nut shell liquid (CNSL). BMC Complementary Altern. Med. 2018, 18, 181.10.1186/s12906-018-2247-0. PubMed DOI PMC

Heneka M. T.; Carson M. J.; El Khoury J.; Landreth G. E.; Brosseron F.; Feinstein D. L.; Jacobs A. H.; Wyss-Coray T.; Vitorica J.; Ransohoff R. M.; Herrup K.; Frautschy S. A.; Finsen B.; Brown G. C.; Verkhratsky A.; Yamanaka K.; Koistinaho J.; Latz E.; Halle A.; Petzold G. C.; Town T.; Morgan D.; Shinohara M. L.; Perry V. H.; Holmes C.; Bazan N. G.; Brooks D. J.; Hunot S.; Joseph B.; Deigendesch N.; Garaschuk O.; Boddeke E.; Dinarello C. A.; Breitner J. C.; Cole G. M.; Golenbock D. T.; Kummer M. P. Neuroinflammation in Alzheimer’s disease. Lancet Neurol 2015, 14, 388–405. 10.1016/S1474-4422(15)70016-5. PubMed DOI PMC

Fu W.-Y.; Wang X.; Ip N. Y. Targeting neuroinflammation as a therapeutic strategy for Alzheimer’s disease: mechanisms, drug candidates, and new opportunities. ACS Chem. Neurosci. 2019, 10, 872–879. 10.1021/acschemneuro.8b00402. PubMed DOI

Reale M.; Di Nicola M.; Velluto L.; D’Angelo C.; Costantini E.; Lahiri D. K.; Kamal M. A.; Yu Q.-s.; Greig N. H. Selective acetyl- and butyrylcholinesterase inhibitors reduce amyloid-β ex vivo activation of peripheral chemo-cytokines from Alzheimer’s disease subjects: exploring the cholinergic anti-inflammatory pathway. Curr. Alzheimer Res. 2014, 11, 608–622. 10.2174/1567205010666131212113218. PubMed DOI PMC

Bolognesi M. L. Harnessing polypharmacology with medicinal chemistry. ACS Med. Chem. Lett. 2019, 10, 273–275. 10.1021/acsmedchemlett.9b00039. PubMed DOI PMC

Romero A.; Cacabelos R.; Oset-Gasque M. J.; Samadi A.; Marco-Contelles J. Novel tacrine-related drugs as potential candidates for the treatment of Alzheimer’s disease. Bioorg. Med. Chem. Lett. 2013, 23, 1916–1922. 10.1016/j.bmcl.2013.02.017. PubMed DOI

Sameem B.; Saeedi M.; Mahdavi M.; Shafiee A. A review on tacrine-based scaffolds as multi-target drugs (MTDLs) for Alzheimer’s disease. Eur. J. Med. Chem. 2017, 128, 332–345. 10.1016/j.ejmech.2016.10.060. PubMed DOI

Mesiti F.; Chavarria D.; Gaspar A.; Alcaro S.; Borges F. The chemistry toolbox of multitarget-directed ligands for Alzheimer’s disease. Eur. J. Med. Chem. 2019, 181, 111572.10.1016/j.ejmech.2019.111572. PubMed DOI

Lane R. M.; Potkin S. G.; Enz A. Targeting acetylcholinesterase and butyrylcholinesterase in dementia. Int. J. Neuropsychopharmacol. 2006, 9, 101–124. 10.1017/S1461145705005833. PubMed DOI

Lin H.; Li Q.; Gu K.; Zhu J.; Jiang X.; Chen Y.; Sun H. Therapeutic agents in Alzheimer’s disease through a multi-target-directed ligands strategy: recent progress based on tacrine core. Curr. Top. Med. Chem. 2017, 17, 3000–3016. 10.2174/1568026617666170717114944. PubMed DOI

Mollabagher H.; Taheri S.; Mojtahedi M. M.; Seyedmousavi S. Cu-metal organic frameworks (Cu-MOF) as an environment-friendly and economical catalyst for one pot synthesis of tacrine derivatives. RSC Adv. 2020, 10, 1995–2003. 10.1039/C9RA10111J. PubMed DOI PMC

Pajouhesh H.; Lenz G. R. Medicinal chemical properties of successful central nervous system drugs. NeuroRx 2005, 2, 541–553. 10.1602/neurorx.2.4.541. PubMed DOI PMC

Xie S.-S.; Wang X.-B.; Li J.-Y.; Yang L.; Kong L.-Y. Design, synthesis and evaluation of novel tacrine-coumarin hybrids as multifunctional cholinesterase inhibitors against Alzheimer’s disease. Eur. J. Med. Chem. 2013, 64, 540–553. 10.1016/j.ejmech.2013.03.051. PubMed DOI

Prat D.; Wells A.; Hayler J.; Sneddon H.; McElroy C. R.; Abou-Shehada S.; Dunn P. J. CHEM21 selection guide of classical- and less classical-solvents. Green Chem. 2016, 18, 288–296. 10.1039/C5GC01008J. DOI

Fanelli F.; Parisi G.; Degennaro L.; Luisi R. Contribution of microreactor technology and flow chemistry to the development of green and sustainable synthesis. Beilstein J. Org. Chem. 2017, 13, 520–542. 10.3762/bjoc.13.51. PubMed DOI PMC

Ellman G. L.; Courtney K. D.; Andres V.; Featherstone R. M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–90. 10.1016/0006-2952(61)90145-9. PubMed DOI

Savini L.; Gaeta A.; Fattorusso C.; Catalanotti B.; Campiani G.; Chiasserini L.; Pellerano C.; Novellino E.; McKissic D.; Saxena A. Specific targeting of acetylcholinesterase and butyrylcholinesterase recognition sites. Rational design of novel, selective, and highly potent cholinesterase inhibitors. J. Med. Chem. 2003, 46, 1–4. 10.1021/jm0255668. PubMed DOI

Soukup O.; Jun D.; Zdarova-Karasova J.; Patocka J.; Musilek K.; Korabecny J.; Krusek J.; Kaniakova M.; Sepsova V.; Mandikova J.; Trejtnar F.; Pohanka M.; Drtinova L.; Pavlik M.; Tobin G.; Kuca K. A resurrection of 7-MEOTA: a comparison with tacrine. Curr. Alzheimer Res. 2013, 10, 893–906. 10.2174/1567205011310080011. PubMed DOI

Elsinghorst P. W.; González Tanarro C. M.; Gütschow M. Novel heterobivalent tacrine derivatives as cholinesterase inhibitors with notable selectivity toward butyrylcholinesterase. J. Med. Chem. 2006, 49, 7540–7544. 10.1021/jm060742o. PubMed DOI

Greig N. H.; Lahiri D. K.; Sambamurti K. Butyrylcholinesterase: an important new target in Alzheimer’s disease therapy. Int Psychogeriatr 2002, 14, 77–91. 10.1017/S1041610203008676. PubMed DOI

Darreh-Shori T.; Vijayaraghavan S.; Aeinehband S.; Piehl F.; Lindblom R. P. F.; Nilsson B.; Ekdahl K. N.; Långström B.; Almkvist O.; Nordberg A. Functional variability in butyrylcholinesterase activity regulates intrathecal cytokine and astroglial biomarker profiles in patients with Alzheimer’s disease. Neurobiol. Aging 2013, 34, 2465–2481. 10.1016/j.neurobiolaging.2013.04.027. PubMed DOI

Xing S.; Li Q.; Xiong B.; Chen Y.; Feng F.; Liu W.; Sun H. Structure and therapeutic uses of butyrylcholinesterase: Application in detoxification, Alzheimer’s disease, and fat metabolism. Med. Res. Rev. 2021, 41, 858–901. 10.1002/med.21745. PubMed DOI

Dighe S. N.; Deora G. S.; De la Mora E.; Nachon F.; Chan S.; Parat M.-O.; Brazzolotto X.; Ross B. P. Discovery and Structure–Activity Relationships of a Highly Selective Butyrylcholinesterase Inhibitor by Structure-Based Virtual Screening. J. Med. Chem. 2016, 59, 7683–7689. 10.1021/acs.jmedchem.6b00356. PubMed DOI

Košak U.; Brus B.; Knez D.; Žakelj S.; Trontelj J.; Pišlar A.; Šink R.; Jukič M.; Živin M.; Podkowa A.; Nachon F.; Brazzolotto X.; Stojan J.; Kos J.; Coquelle N.; Sałat K.; Colletier J.-P.; Gobec S. The magic of crystal structure-based inhibitor optimization: development of a butyrylcholinesterase inhibitor with picomolar affinity and in vivo activity. J. Med. Chem. 2018, 61, 119–139. 10.1021/acs.jmedchem.7b01086. PubMed DOI

Hoffmann M.; Stiller C.; Endres E.; Scheiner M.; Gunesch S.; Sotriffer C.; Maurice T.; Decker M. Highly selective butyrylcholinesterase inhibitors with tunable duration of action by chemical modification of transferable carbamate units exhibit pronounced neuroprotective effect in an Alzheimer’s disease mouse model. J. Med. Chem. 2019, 62, 9116–9140. 10.1021/acs.jmedchem.9b01012. PubMed DOI

Li Q.; Xing S.; Chen Y.; Liao Q.; Xiong B.; He S.; Lu W.; Liu Y.; Yang H.; Li Q.; Feng F.; Liu W.; Chen Y.; Sun H. Discovery and biological evaluation of a novel highly potent selective butyrylcholinsterase inhibitor. J. Med. Chem. 2020, 63, 10030–10044. 10.1021/acs.jmedchem.0c01129. PubMed DOI

Panek D.; Wiȩckowska A.; Jończyk J.; Godyń J.; Bajda M.; Wichur T.; Pasieka A.; Knez D.; Pišlar A.; Korabecny J.; Soukup O.; Sepsova V.; Sabaté R.; Kos J.; Gobec S.; Malawska B. Design, synthesis, and biological evaluation of 1-benzylamino-2-hydroxyalkyl derivatives as new potential disease-modifying multifunctional anti-Alzheimer’s agents. ACS Chem. Neurosci. 2018, 9, 1074–1094. 10.1021/acschemneuro.7b00461. PubMed DOI

Viayna E.; Coquelle N.; Cieslikiewicz-Bouet M.; Cisternas P.; Oliva C. A.; Sánchez-López E.; Ettcheto M.; Bartolini M.; De Simone A.; Ricchini M.; Rendina M.; Pons M.; Firuzi O.; Pérez B.; Saso L.; Andrisano V.; Nachon F.; Brazzolotto X.; García M. L.; Camins A.; Silman I.; Jean L.; Inestrosa N. C.; Colletier J.-P.; Renard P.-Y.; Muñoz-Torrero D. Discovery of a potent dual inhibitor of acetylcholinesterase and butyrylcholinesterase with antioxidant activity that alleviates Alzheimer-like pathology in old APP/PS1 mice. J. Med. Chem. 2021, 64, 812–839. 10.1021/acs.jmedchem.0c01775. PubMed DOI

Butini S.; Brindisi M.; Brogi S.; Maramai S.; Guarino E.; Panico A.; Saxena A.; Chauhan V.; Colombo R.; Verga L.; de Lorenzi E.; Bartolini M.; Andrisano V.; Novellino E.; Campiani G.; Gemma S. Multifunctional cholinesterase and amyloid beta fibrillization modulators. Synthesis and biological investigation. ACS Med. Chem. Lett. 2013, 4, 1178–1182. 10.1021/ml4002908. PubMed DOI PMC

Nachon F.; Carletti E.; Ronco C.; Trovaslet M.; Nicolet Y.; Jean L.; Renard P.-Y. Crystal structures of human cholinesterases in complex with huprine W and tacrine: elements of specificity for anti-Alzheimer’s drugs targeting acetyl- and butyryl-cholinesterase. Biochem. J. 2013, 453, 393–399. 10.1042/BJ20130013. PubMed DOI

Rydberg E. H.; Brumshtein B.; Greenblatt H. M.; Wong D. M.; Shaya D.; Williams L. D.; Carlier P. R.; Pang Y. P.; Silman I.; Sussman J. L. Complexes of alkylene-linked tacrine dimers with Torpedo californica acetylcholinesterase: Binding of Bis(5)-tacrine produces a dramatic rearrangement in the active-site gorge. J. Med. Chem. 2006, 49, 5491–5500. 10.1021/jm060164b. PubMed DOI

Rosenberry T. L.; Brazzolotto X.; Macdonald I. R.; Wandhammer M.; Trovaslet-Leroy M.; Darvesh S.; Nachon F. Comparison of the binding of reversible inhibitors to human butyrylcholinesterase and acetylcholinesterase: a crystallographic, kinetic and calorimetric study. Molecules 2017, 22, 2098.10.3390/molecules22122098. PubMed DOI PMC

Cheung J.; Rudolph M. J.; Burshteyn F.; Cassidy M. S.; Gary E. N.; Love J.; Franklin M. C.; Height J. J. Structures of human acetylcholinesterase in complex with pharmacologically important ligands. J. Med. Chem. 2012, 55, 10282–10286. 10.1021/jm300871x. PubMed DOI

Masson P.; Froment M.-T.; Gillon E.; Nachon F.; Lockridge O.; Schopfer L. M. Hydrolysis of oxo- and thio-esters by human butyrylcholinesterase. Biochim. Biophys. Acta 2007, 1774, 16–34. 10.1016/j.bbapap.2006.10.012. PubMed DOI

Liebschner D.; Afonine P. V.; Moriarty N. W.; Poon B. K.; Sobolev O. V.; Terwilliger T. C.; Adams P. D. Polder maps: improving OMIT maps by excluding bulk solvent. Acta Cryst. 2017, 73, 148–157. 10.1107/S2059798316018210. PubMed DOI PMC

Nicolet Y.; Lockridge O.; Masson P.; Fontecilla-Camps J. C.; Nachon F. Crystal structure of human butyrylcholinesterase and of its complexes with substrate and products. J. Biol. Chem. 2003, 278, 41141–41147. 10.1074/jbc.M210241200. PubMed DOI

Cummings J. L.; Morstorf T.; Zhong K. Alzheimer’s disease drug-development pipeline: few candidates, frequent failures. Alzheimer’s Res. Ther. 2014, 6, 37.10.1186/alzrt269. PubMed DOI PMC

Fang L.; Appenroth D.; Decker M.; Kiehntopf M.; Roegler C.; Deufel T.; Fleck C.; Peng S.; Zhang Y.; Lehmann J. Synthesis and biological evaluation of NO-donor-tacrine hybrids as hepatoprotective anti-Alzheimer drug candidates. J. Med. Chem. 2008, 51, 713–716. 10.1021/jm701491k. PubMed DOI

Chen X.; Zenger K.; Lupp A.; Kling B.; Heilmann J.; Fleck C.; Kraus B.; Decker M. Tacrine-silibinin codrug shows neuro- and hepatoprotective effects in vitro and pro-cognitive and hepatoprotective effects in vivo. J. Med. Chem. 2012, 55, 5231–5242. 10.1021/jm300246n. PubMed DOI

Nepovimova E.; Uliassi E.; Korabecny J.; Peña-Altamira L. E.; Samez S.; Pesaresi A.; Garcia G. E.; Bartolini M.; Andrisano V.; Bergamini C.; Fato R.; Lamba D.; Roberti M.; Kuca K.; Monti B.; Bolognesi M. L. Multitarget drug design strategy: quinone-tacrine hybrids designed to block amyloid-β aggregation and to exert anticholinesterase and antioxidant effects. J. Med. Chem. 2014, 57, 8576–8589. 10.1021/jm5010804. PubMed DOI

Leng F.; Edison P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here?. Nat. Rev. Neurol. 2021, 17, 157–172. 10.1038/s41582-020-00435-y. PubMed DOI

Streit W. J. Microglial response to brain injury: a brief synopsis. Toxicol. Pathol. 2000, 28, 28–30. 10.1177/019262330002800104. PubMed DOI

Kim S. U.; de Vellis J. Microglia in health and disease. J. Neurosci. Res. 2005, 81, 302–313. 10.1002/jnr.20562. PubMed DOI

Gomez-Nicola D.; Perry V. H. Microglial dynamics and role in the healthy and diseased brain: a paradigm of functional plasticity. Neuroscientist 2015, 21, 169–184. 10.1177/1073858414530512. PubMed DOI PMC

Wolf S. A.; Boddeke H. W. G. M.; Kettenmann H. Microglia in physiology and disease. Annu. Rev. Physiol. 2017, 79, 619–643. 10.1146/annurev-physiol-022516-034406. PubMed DOI

Cherry J. D.; Olschowka J. A.; O’Banion M. Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. J. Neuroinflammation 2014, 11, 98.10.1186/1742-2094-11-98. PubMed DOI PMC

Hanisch U.-K.; Kettenmann H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat. Neurosci. 2007, 10, 1387–1394. 10.1038/nn1997. PubMed DOI

Huang J.; Huang N.; Xu S.; Luo Y.; Li Y.; Jin H.; Yu C.; Shi J.; Jin F. Signaling mechanisms underlying inhibition of neuroinflammation by resveratrol in neurodegenerative diseases. J. Nutr. Biochem. 2021, 88, 108552.10.1016/j.jnutbio.2020.108552. PubMed DOI

Martinez F. O.; Helming L.; Gordon S. Alternative activation of macrophages: an immunologic functional perspective. Annu. Rev. Immunol. 2009, 27, 451–483. 10.1146/annurev.immunol.021908.132532. PubMed DOI

de Oliveira A. C. P.; Candelario-Jalil E.; Bhatia H. S.; Lieb K.; Hüll M.; Fiebich B. L. Regulation of prostaglandin E2 synthase expression in activated primary rat microglia: evidence for uncoupled regulation of mPGES-1 and COX-2. Glia 2008, 56, 844–855. 10.1002/glia.20658. PubMed DOI

Azrad M.; Zeineh N.; Weizman A.; Veenman L.; Gavish M. The TSPO ligands 2-Cl-MGV-1, MGV-1, and PK11195 differentially suppress the inflammatory response of BV-2 microglial cell to LPS. Int. J. Mol. Sci. 2019, 20, 594.10.3390/ijms20030594. PubMed DOI PMC

Olajide O. A.; Kumar A.; Velagapudi R.; Okorji U. P.; Fiebich B. L. Punicalagin inhibits neuroinflammation in LPS-activated rat primary microglia. Mol. Nutr. Food Res. 2014, 58, 1843–1851. 10.1002/mnfr.201400163. PubMed DOI

Henn A.; Lund S.; Hedtjärn M.; Schrattenholz A.; Pörzgen P.; Leist M. The suitability of BV2 cells as alternative model system for primary microglia cultures or for animal experiments examining brain inflammation. Altex 2009, 26, 83–94. 10.14573/altex.2009.2.83. PubMed DOI

Rubio-Perez J. M.; Morillas-Ruiz J. M. A review: inflammatory process in Alzheimer’s disease, role of cytokines. Sci. World J. 2012, 2012, 756357.10.1100/2012/756357. PubMed DOI PMC

Choi S.-H.; Aid S.; Bosetti F. The distinct roles of cyclooxygenase-1 and -2 in neuroinflammation: implications for translational research. Trends Pharmacol. Sci. 2009, 30, 174–181. 10.1016/j.tips.2009.01.002. PubMed DOI PMC

Li Q.; Verma I. M. NF-κB regulation in the immune system. Nat. Rev. Immunol. 2002, 2, 725–734. 10.1038/nri910. PubMed DOI

Kopitar-Jerala N. Innate Immune Response in Brain, NF-Kappa B Signaling and Cystatins. Front Mol Neurosci 2015, 8, 73.10.3389/fnmol.2015.00073. PubMed DOI PMC

Nachon F.; Nicolet Y.; Viguié N.; Masson P.; Fontecilla-Camps J. C.; Lockridge O. Engineering of a monomeric and low-glycosylated form of human butyrylcholinesterase: expression, purification, characterization and crystallization. Eur. J. Biochem. 2002, 269, 630–637. 10.1046/j.0014-2956.2001.02692.x. PubMed DOI

Brazzolotto X.; Wandhammer M.; Ronco C.; Trovaslet M.; Jean L.; Lockridge O.; Renard P.-Y.; Nachon F. Human butyrylcholinesterase produced in insect cells: huprine-based affinity purification and crystal structure. FEBS J. 2012, 279, 2905–2916. 10.1111/j.1742-4658.2012.08672.x. PubMed DOI

Kabsch W. Xds. Acta Cryst. 2010, 66, 125–132. 10.1107/S0907444909047337. PubMed DOI PMC

Adams P. D.; Afonine P. V.; Bunkóczi G.; Chen V. B.; Davis I. W.; Echols N.; Headd J. J.; Hung L.-W.; Kapral G. J.; Grosse-Kunstleve R. W.; McCoy A. J.; Moriarty N. W.; Oeffner R.; Read R. J.; Richardson D. C.; Richardson J. S.; Terwilliger T. C.; Zwart P. H. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Cryst. 2010, 66, 213–221. 10.1107/S0907444909052925. PubMed DOI PMC

McCoy A. J.; Grosse-Kunstleve R. W.; Adams P. D.; Winn M. D.; Storoni L. C.; Read R. J. Phaser crystallographic software. J. Appl. Crystallogr. 2007, 40, 658–674. 10.1107/S0021889807021206. PubMed DOI PMC

Moriarty N. W.; Grosse-Kunstleve R. W.; Adams P. D. electronic Ligand Builder and Optimization Workbench (eLBOW): a tool for ligand coordinate and restraint generation. Acta Cryst. 2009, 65, 1074–1080. 10.1107/S0907444909029436. PubMed DOI PMC

Emsley P.; Lohkamp B.; Scott W. G.; Cowtan K. Features and development of Coot. Acta Cryst. 2010, 66, 486–501. 10.1107/S0907444910007493. PubMed DOI PMC

Nzekoue F. K.; Angeloni S.; Navarini L.; Angeloni C.; Freschi M.; Hrelia S.; Vitali L. A.; Sagratini G.; Vittori S.; Caprioli G. Coffee silverskin extracts: Quantification of 30 bioactive compounds by a new HPLC-MS/MS method and evaluation of their antioxidant and antibacterial activities. Food Res. Int. 2020, 133, 109128.10.1016/j.foodres.2020.109128. PubMed DOI

Antognoni F.; Potente G.; Mandrioli R.; Angeloni C.; Freschi M.; Malaguti M.; Hrelia S.; Lugli S.; Gennari F.; Muzzi E.; Tartarini S. Fruit quality characterization of new sweet cherry cultivars as a good source of bioactive phenolic compounds with antioxidant and neuroprotective potential. Antioxidants 2020, 9, 677.10.3390/antiox9080677. PubMed DOI PMC

Di L.; Kerns E. H.; Fan K.; McConnell O. J.; Carter G. T. High throughput artificial membrane permeability assay for blood-brain barrier. Eur. J. Med. Chem. 2003, 38, 223–232. 10.1016/S0223-5234(03)00012-6. PubMed DOI

Nepovimova E.; Korabecny J.; Dolezal R.; Babkova K.; Ondrejicek A.; Jun D.; Sepsova V.; Horova A.; Hrabinova M.; Soukup O.; Bukum N.; Jost P.; Muckova L.; Kassa J.; Malinak D.; Andrs M.; Kuca K. Tacrine-Trolox Hybrids: A Novel Class of Centrally Active, Nonhepatotoxic Multi-Target-Directed Ligands Exerting Anticholinesterase and Antioxidant Activities with Low In Vivo Toxicity. J. Med. Chem. 2015, 58, 8985–9003. 10.1021/acs.jmedchem.5b01325. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...