CSF neurogranin levels as a biomarker in Alzheimer's disease and frontotemporal lobar degeneration: a cross-sectional analysis
Language English Country Great Britain, England Media electronic
Document type Journal Article
PubMed
39242539
PubMed Central
PMC11378641
DOI
10.1186/s13195-024-01566-w
PII: 10.1186/s13195-024-01566-w
Knihovny.cz E-resources
- Keywords
- APOE, Alzheimer’s disease, Frontotemporal lobar degeneration, Memory, Neurogranin,
- MeSH
- Alzheimer Disease * cerebrospinal fluid diagnosis MeSH
- Amyloid beta-Peptides cerebrospinal fluid MeSH
- Apolipoproteins E genetics cerebrospinal fluid MeSH
- Biomarkers * cerebrospinal fluid MeSH
- Frontotemporal Lobar Degeneration * cerebrospinal fluid diagnosis MeSH
- Cognitive Dysfunction * cerebrospinal fluid diagnosis MeSH
- Middle Aged MeSH
- Humans MeSH
- Neurogranin * cerebrospinal fluid MeSH
- Neuropsychological Tests MeSH
- Cross-Sectional Studies MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Amyloid beta-Peptides MeSH
- Apolipoproteins E MeSH
- Biomarkers * MeSH
- Neurogranin * MeSH
- NRGN protein, human MeSH Browser
BACKGROUND: There is initial evidence suggesting that biomarker neurogranin (Ng) may distinguish Alzheimer's disease (AD) from other neurodegenerative diseases. Therefore, we assessed (a) the discriminant ability of cerebrospinal fluid (CSF) Ng levels to distinguish between AD and frontotemporal lobar degeneration (FTLD) pathology and between different stages within the same disease, (b) the relationship between Ng levels and cognitive performance in both AD and FTLD pathology, and (c) whether CSF Ng levels vary by apolipoprotein E (APOE) polymorphism in the AD continuum. METHODS: Participants with subjective cognitive decline (SCD) (n = 33), amnestic mild cognitive impairment (aMCI) due to AD (n = 109), AD dementia (n = 67), MCI due to FTLD (n = 25), and FTLD dementia (n = 29) were recruited from the Czech Brain Aging Study. One-way analysis of covariance (ANCOVA) assessed Ng levels in diagnostic subgroups. Linear regressions evaluated the relationship between CSF Ng levels, memory scores, and APOE polymorphism. RESULTS: Ng levels were higher in aMCI-AD patients compared to MCI-FTLD (F[1, 134] = 15.16, p < .001), and in AD-dementia compared to FTLD-dementia (F[1, 96] = 4.60, p = .029). Additionally, Ng levels were higher in FTLD-dementia patients compared to MCI-FTLD (F[1, 54]= 4.35, p = .034), lower in SCD participants compared to aMCI-AD (F[1, 142] = 10.72, p = .001) and AD-dementia (F[1, 100] = 20.90, p < .001), and did not differ between SCD participants and MCI-FTLD (F[1, 58]= 1.02, p = .491) or FTLD-dementia (F[1, 62]= 2.27, p = .051). The main effect of diagnosis across the diagnostic subgroups on Aβ1-42/Ng ratio was significant too (F[4, 263]=, p < .001). We found a non-significant association between Ng levels and memory scores overall (β=-0.25, p = .154) or in AD diagnostic subgroups, and non-significant differences in this association between overall AD APOE ε4 carriers and non-carriers (β=-0.32, p = .358). CONCLUSIONS: In this first study to-date to assess MCI and dementia due to AD or FTLD within one study, elevated CSF Ng appears to be an early biomarker of AD-related impairment, but its role as a biomarker appears to diminish after dementia diagnosis, whereby dementia-related underlying processes in AD and FTLD may begin to merge. The Aβ1-42/Ng ratio discriminated AD from FTLD patients better than Ng alone. CSF Ng levels were not related to memory in AD or FTLD, suggesting that Ng may be a marker of the biological signs of disease state rather than cognitive deficits.
Clinical Neurochemistry Laboratory Sahlgrenska University Hospital Mölndal Sweden
Department of Clinical Biochemistry Hematology and Immunology Homolka Hospital Prague Czech Republic
Edson College of Nursing and Health Innovation Arizona State University Phoenix AZ USA
International Clinical Research Center St Anne's University Hospital Brno Brno Czech Republic
See more in PubMed
Kukull WA, Bowen JD. Dementia epidemiology. Med Clin North Am. 2002;86:573–90. 10.1016/S0025-7125(02)00010-X PubMed DOI
DeTure MA, Dickson DW. The neuropathological diagnosis of Alzheimer’s disease. Mol Neurodegener. 2019;14:32. 10.1186/s13024-019-0333-5 PubMed DOI PMC
Seelaar H, Rohrer JD, Pijnenburg YAL, Fox NC, van Swieten JC. Clinical, genetic and pathological heterogeneity of frontotemporal dementia: a review. J Neurol Neurosurg Psychiatry. 2011;82:476–86. 10.1136/jnnp.2010.212225 PubMed DOI
Antonioni A, Raho EM, Lopriore P, Pace AP, Latino RR, Assogna M et al. Frontotemporal Dementia, where do we stand? A narrative review. Int J Mol Sci. 2023;24. PubMed PMC
Boxer AL, Gold M, Huey E, Gao F-B, Burton EA, Chow T, et al. Frontotemporal degeneration, the next therapeutic frontier: molecules and animal models for frontotemporal degeneration drug development. Alzheimers Dement. 2013;9:176–88. 10.1016/j.jalz.2012.03.002 PubMed DOI PMC
Represa A, Deloulme JC, Sensenbrenner M, Ben-Ari Y, Baudier J. Neurogranin: immunocytochemical localization of a brain-specific protein kinase C substrate. J Neurosci. 1990;10:3782–92. 10.1523/JNEUROSCI.10-12-03782.1990 PubMed DOI PMC
Clarke MTM, Brinkmalm A, Foiani MS, Woollacott IOC, Heller C, Heslegrave A, et al. CSF synaptic protein concentrations are raised in those with atypical Alzheimer’s disease but not frontotemporal dementia. Alzheimers Res Ther. 2019;11:105. 10.1186/s13195-019-0564-2 PubMed DOI PMC
Janelidze S, Hertze J, Zetterberg H, Landqvist Waldö M, Santillo A, Blennow K, et al. Cerebrospinal fluid neurogranin and YKL-40 as biomarkers of Alzheimer’s disease. Ann Clin Transl Neurol. 2016;3:12–20. 10.1002/acn3.266 PubMed DOI PMC
Wellington H, Paterson RW, Portelius E, Törnqvist U, Magdalinou N, Fox NC, et al. Increased CSF neurogranin concentration is specific to Alzheimer disease. Neurology. 2016;86:829–35. 10.1212/WNL.0000000000002423 PubMed DOI PMC
Portelius E, Olsson B, Höglund K, Cullen NC, Kvartsberg H, Andreasson U, et al. Cerebrospinal fluid neurogranin concentration in neurodegeneration: relation to clinical phenotypes and neuropathology. Acta Neuropathol. 2018;136:363–76. 10.1007/s00401-018-1851-x PubMed DOI PMC
Kvartsberg H, Duits FH, Ingelsson M, Andreasen N, Öhrfelt A, Andersson K, et al. Cerebrospinal fluid levels of the synaptic protein neurogranin correlates with cognitive decline in prodromal Alzheimer’s disease. Alzheimers Dement. 2015;11:1180–90. 10.1016/j.jalz.2014.10.009 PubMed DOI
Kulczyńska-Przybik A, Dulewicz M, Doroszkiewicz J, Borawska R, Słowik A, Zetterberg H et al. The relationships between Cerebrospinal Fluid Glial (CXCL12, CX3CL, YKL-40) and synaptic biomarkers (Ng, NPTXR) in early Alzheimer’s Disease. Int J Mol Sci. 2023;24. PubMed PMC
Kester MI, Teunissen CE, Crimmins DL, Herries EM, Ladenson JH, Scheltens P, et al. Neurogranin as a cerebrospinal fluid biomarker for synaptic loss in symptomatic Alzheimer Disease. JAMA Neurol. 2015;72:1275–80. 10.1001/jamaneurol.2015.1867 PubMed DOI PMC
Piccoli T, Blandino V, Maniscalco L, Matranga D, Graziano F, Guajana F et al. Biomarkers related to synaptic dysfunction to Discriminate Alzheimer’s Disease from Other Neurological disorders. Int J Mol Sci. 2022;23. PubMed PMC
Pak JH, Huang FL, Li J, Balschun D, Reymann KG, Chiang C, et al. Involvement of neurogranin in the modulation of calcium/calmodulin-dependent protein kinase II, synaptic plasticity, and spatial learning: a study with knockout mice. Proc Natl Acad Sci U S A. 2000;97:11232–7. 10.1073/pnas.210184697 PubMed DOI PMC
Headley A, De Leon-Benedetti A, Dong C, Levin B, Loewenstein D, Camargo C, et al. Neurogranin as a predictor of memory and executive function decline in MCI patients. Neurology. 2018;90:e887–95. 10.1212/WNL.0000000000005057 PubMed DOI PMC
Pereira JB, Janelidze S, Ossenkoppele R, Kvartsberg H, Brinkmalm A, Mattsson-Carlgren N, et al. Untangling the association of amyloid-β and tau with synaptic and axonal loss in Alzheimer’s disease. Brain. 2021;144:310–24. 10.1093/brain/awaa395 PubMed DOI PMC
Casaletto KB, Elahi FM, Bettcher BM, Neuhaus J, Bendlin BB, Asthana S, et al. Neurogranin, a synaptic protein, is associated with memory independent of Alzheimer biomarkers. Neurology. 2017;89:1782–8. 10.1212/WNL.0000000000004569 PubMed DOI PMC
Teter B. ApoE-dependent plasticity in Alzheimer’s disease. J Mol Neurosci. 2004;23:167–79. 10.1385/JMN:23:3:167 PubMed DOI
Holtzman DM, Bales KR, Tenkova T, Fagan AM, Parsadanian M, Sartorius LJ, et al. Apolipoprotein E isoform-dependent amyloid deposition and neuritic degeneration in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A. 2000;97:2892–7. 10.1073/pnas.050004797 PubMed DOI PMC
Tannenberg RK, Scott HL, Tannenberg AEG, Dodd PR. Selective loss of synaptic proteins in Alzheimer’s disease: evidence for an increased severity with APOE varepsilon4. Neurochem Int. 2006;49:631–9. 10.1016/j.neuint.2006.05.004 PubMed DOI
Weeber EJ, Beffert U, Jones C, Christian JM, Forster E, Sweatt JD, et al. Reelin and ApoE receptors cooperate to enhance hippocampal synaptic plasticity and learning. J Biol Chem. 2002;277:39944–52. 10.1074/jbc.M205147200 PubMed DOI
Dumanis SB, Tesoriero JA, Babus LW, Nguyen MT, Trotter JH, Ladu MJ, et al. ApoE4 decreases spine density and dendritic complexity in cortical neurons in vivo. J Neurosci. 2009;29:15317–22. 10.1523/JNEUROSCI.4026-09.2009 PubMed DOI PMC
Butt OH, Long JM, Henson RL, Herries E, Sutphen CL, Fagan AM, et al. Cognitively normal APOE ε4 carriers have specific elevation of CSF SNAP-25. Neurobiol Aging. 2021;102:64–72. 10.1016/j.neurobiolaging.2021.02.008 PubMed DOI PMC
Wang L, Alzheimer’s Disease Neuroimaging Initiative. Association of cerebrospinal fluid neurogranin with Alzheimer’s disease. Aging Clin Exp Res. 2019;31:185–91. 10.1007/s40520-018-0948-3 PubMed DOI
Sheardova K, Vyhnalek M, Nedelska Z, Laczo J, Andel R, Marciniak R, et al. Czech Brain Aging Study (CBAS): prospective multicentre cohort study on risk and protective factors for dementia in the Czech Republic. BMJ Open. 2019;9:e030379. 10.1136/bmjopen-2019-030379 PubMed DOI PMC
Hort J, Glosova L, Vyhnalek M, Bojar M, Skoda D, Hladikova M. The liquor tau protein and beta amyloid in Alzheimer’s disease. Česká Slovenská Neurologie Neurochirurgie. 2007;70:30–6.
Jessen F, Amariglio RE, van Boxtel M, Breteler M, Ceccaldi M, Chételat G, et al. A conceptual framework for research on subjective cognitive decline in preclinical Alzheimer’s disease. Alzheimers Dement. 2014;10:844–52. 10.1016/j.jalz.2014.01.001 PubMed DOI PMC
Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7:270–9. 10.1016/j.jalz.2011.03.008 PubMed DOI PMC
McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR, Kawas CH, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7:263–9. 10.1016/j.jalz.2011.03.005 PubMed DOI PMC
Rascovsky K, Hodges JR, Knopman D, Mendez MF, Kramer JH, Neuhaus J, et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain. 2011;134:2456–77. 10.1093/brain/awr179 PubMed DOI PMC
Gorno-Tempini ML, Hillis AE, Weintraub S, Kertesz A, Mendez M, Cappa SF, et al. Classification of primary progressive aphasia and its variants. Neurology. 2011;76:1006–14. 10.1212/WNL.0b013e31821103e6 PubMed DOI PMC
Petersen RC. Mild cognitive impairment as a diagnostic entity. J Intern Med. 2004;256:183–94. 10.1111/j.1365-2796.2004.01388.x PubMed DOI
Sorbi S, Hort J, Erkinjuntti T, Fladby T, Gainotti G, Gurvit H, et al. EFNS-ENS guidelines on the diagnosis and management of disorders associated with dementia. Eur J Neurol. 2012;19:1159–79. 10.1111/j.1468-1331.2012.03784.x PubMed DOI
American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition. Arlington, VA, American Psychiatric Association, 2013.
Stepankova H, Nikolai T, Lukavsky J, Bezdicek O, Vrajova M, Kopecek M. Mini–Mental State examination – Czech normative study. Čes Slov Neurol Neurochir. 2015;78/111:57–63.
Nikolai T, Stepankova H, Kopecek M, Sulc Z, Vyhnalek M, Bezdicek O. Normative Data in Older Adults from an International Perspective. J Alzheimers Dis. 2018;61:1233–40. The Uniform Data Set, Czech Version:. PubMed PMC
Bezdicek O, Motak L, Axelrod BN, Preiss M, Nikolai T, Vyhnalek M, et al. Czech version of the trail making test: normative data and clinical utility. Arch Clin Neuropsychol. 2012;27:906–14. 10.1093/arclin/acs084 PubMed DOI
Drozdova K, Stepankova H, Lukavsky J, Bezdicek O, Kopecek M. Normative data for the rey-osterrieth complex figure test in older Czech adults. Ceska Slov Neurologie Neurochirurgie. 2015;78:542–9.
Zemanova N, Bezdicek O, Michalec J, Nikolai T, Roth J, Jech R, Ruzicka E. Validity study of the Boston naming Test Czech version. Ceska Slov Neurologie Neurochirurgie. 2016;79/112:307–16.
Nikolai T, Štěpánková H, Michalec J, Bezdíček O, Horáková K, Marková H, et al. Testy verbální fluence, česká normativní studie pro osoby vyššího věku. Ceska Slov Neurologie Neurochirurgie. 2015;78:292–9.10.14735/amcsnn2015292 DOI
Benton A, Hamsher K. Multilingual aphasia examination. University of Iowa; 1976.
Mazancova AF, Nikolai T, Stepankova H, Kopecek M, Bezdicek O. The reliability of clock drawing test Scoring systems modeled on the normative data in healthy aging and nonamnestic mild cognitive impairment. Assessment. 2017;24:945–57. 10.1177/1073191116632586 PubMed DOI
Gobom J, Parnetti L, Rosa-Neto P, Vyhnalek M, Gauthier S, Cataldi S, et al. Validation of the LUMIPULSE automated immunoassay for the measurement of core AD biomarkers in cerebrospinal fluid. Clin Chem Lab Med. 2022;60:207–19. 10.1515/cclm-2021-0651 PubMed DOI
Laczó J, Andel R, Vlček K, Mat’oška V, Vyhnálek M, Tolar M, et al. Spatial navigation and APOE in amnestic mild cognitive impairment. Neurodegener Dis. 2011;8:169–77. 10.1159/000321581 PubMed DOI
Hixson JE, Vernier DT. Restriction isotyping of human apolipoprotein E by gene amplification and cleavage with HhaI. J Lipid Res. 1990;31:545–8. 10.1016/S0022-2275(20)43176-1 PubMed DOI
Cohen J. Statistical power analysis for the behavioral sciences. 2 ed. Hillsdale: Lawrence Erlbaum Associates; 1988.
Nahm FS. Receiver operating characteristic curve: overview and practical use for clinicians. Korean J Anesthesiol. 2022;75:25–36. 10.4097/kja.21209 PubMed DOI PMC
Bogdanovic N, Davidsson P, Gottfries J, Volkman I, Winblad B, Blennow K. Regional and Cellular distribution of synaptic proteins in the normal human brain. Brain Aging. 2002;2:18–30.
Falgàs N, Ruiz-Peris M, Pérez-Millan A, Sala-Llonch R, Antonell A, Balasa M, et al. Contribution of CSF biomarkers to early-onset Alzheimer’s disease and frontotemporal dementia neuroimaging signatures. Hum Brain Mapp. 2020;41:2004–13. 10.1002/hbm.24925 PubMed DOI PMC
Nilsson J, Cousins KAQ, Gobom J, Portelius E, Chen-Plotkin A, Shaw LM, et al. Cerebrospinal fluid biomarker panel of synaptic dysfunction in Alzheimer’s disease and other neurodegenerative disorders. Alzheimers Dement. 2023;19:1775–84. 10.1002/alz.12809 PubMed DOI PMC
Antonell A, Tort-Merino A, Ríos J, Balasa M, Borrego-Écija S, Auge JM, et al. Synaptic, axonal damage and inflammatory cerebrospinal fluid biomarkers in neurodegenerative dementias. Alzheimers Dement. 2020;16:262–72. 10.1016/j.jalz.2019.09.001 PubMed DOI
Hampel H, Toschi N, Baldacci F, Zetterberg H, Blennow K, Kilimann I, et al. Alzheimer’s disease biomarker-guided diagnostic workflow using the added value of six combined cerebrospinal fluid candidates: Aβ1–42, total-tau, phosphorylated-tau, NFL, neurogranin, and YKL-40. Alzheimers Dement. 2018;14:492–501. 10.1016/j.jalz.2017.11.015 PubMed DOI
Lista S, Toschi N, Baldacci F, Zetterberg H, Blennow K, Kilimann I, et al. Cerebrospinal fluid neurogranin as a biomarker of neurodegenerative diseases: a cross-sectional study. J Alzheimers Dis. 2017;59:1327–34. 10.3233/JAD-170368 PubMed DOI
Mavroudis IA, Petridis F, Chatzikonstantinou S, Kazis D. A meta-analysis on CSF neurogranin levels for the diagnosis of Alzheimer’s disease and mild cognitive impairment. Aging Clin Exp Res. 2020;32:1639–46. 10.1007/s40520-019-01326-z PubMed DOI
Morar U, Izquierdo W, Martin H, Forouzannezhad P, Zarafshan E, Unger E, et al. A study of the longitudinal changes in multiple cerebrospinal fluid and volumetric magnetic resonance imaging biomarkers on converter and non-converter Alzheimer’s disease subjects with consideration for their amyloid beta status. Alzheimers Dement (Amst). 2022;14:e12258. 10.1002/dad2.12258 PubMed DOI PMC
Dulewicz M, Kulczyńska-Przybik A, Borawska R, Słowik A, Mroczko B. Evaluation of synaptic and axonal dysfunction biomarkers in Alzheimer’s disease and mild cognitive impairment based on CSF and Bioinformatic Analysis. Int J Mol Sci. 2022;23. PubMed PMC
Liu W, Lin H, He X, Chen L, Dai Y, Jia W, et al. Neurogranin as a cognitive biomarker in cerebrospinal fluid and blood exosomes for Alzheimer’s disease and mild cognitive impairment. Transl Psychiatry. 2020;10:125. 10.1038/s41398-020-0801-2 PubMed DOI PMC
Wang Z, Yang J, Zhu W, Tang Y, Jia J. The synaptic marker neurogranin as a disease state biomarker in Alzheimer’s disease: a systematic review and meta-analysis. Int J Neurosci. 2022;132:1245–53. 10.1080/00207454.2021.1881087 PubMed DOI
Álvarez I, Diez-Fairen M, Aguilar M, González JM, Ysamat M, Tartari JP, et al. Added value of cerebrospinal fluid multimarker analysis in diagnosis and progression of dementia. Eur J Neurol. 2021;28:1142–52. 10.1111/ene.14658 PubMed DOI
Hellwig K, Kvartsberg H, Portelius E, Andreasson U, Oberstein TJ, Lewczuk P, et al. Neurogranin and YKL-40: independent markers of synaptic degeneration and neuroinflammation in Alzheimer’s disease. Alzheimers Res Ther. 2015;7:74. 10.1186/s13195-015-0161-y PubMed DOI PMC
De Vos A, Jacobs D, Struyfs H, Fransen E, Andersson K, Portelius E, et al. C-terminal neurogranin is increased in cerebrospinal fluid but unchanged in plasma in Alzheimer’s disease. Alzheimers Dement. 2015;11:1461–9. 10.1016/j.jalz.2015.05.012 PubMed DOI
Xue M, Sun F-R, Ou Y-N, Shen X-N, Li H-Q, Huang Y-Y, et al. Association of cerebrospinal fluid neurogranin levels with cognition and neurodegeneration in Alzheimer’s disease. Aging. 2020;12:9365–79. 10.18632/aging.103211 PubMed DOI PMC
Tarawneh R, D’Angelo G, Crimmins D, Herries E, Griest T, Fagan AM, et al. Diagnostic and Prognostic Utility of the synaptic marker neurogranin in Alzheimer Disease. JAMA Neurol. 2016;73:561–71. 10.1001/jamaneurol.2016.0086 PubMed DOI PMC
Portelius E, Zetterberg H, Skillbäck T, Törnqvist U, Andreasson U, Trojanowski JQ, et al. Cerebrospinal fluid neurogranin: relation to cognition and neurodegeneration in Alzheimer’s disease. Brain. 2015;138:3373–85. 10.1093/brain/awv267 PubMed DOI PMC
Das S, Goossens J, Jacobs D, Dewit N, Pijnenburg YAL, I’tV SGJG, et al. Synaptic biomarkers in the cerebrospinal fluid associate differentially with classical neuronal biomarkers in patients with Alzheimer’s disease and frontotemporal dementia. Alzheimers Res Ther. 2023;15:62. 10.1186/s13195-023-01212-x PubMed DOI PMC
Petersen A, Gerges NZ. Neurogranin regulates CaM dynamics at dendritic spines. Sci Rep. 2015;5:11135. 10.1038/srep11135 PubMed DOI PMC
Rådestig MA, Skoog J, Zetterberg H, Skillbäck T, Zettergren A, Sterner TR, et al. Subtle differences in Cognition in 70-Year-Olds with elevated cerebrospinal fluid neurofilament light and neurogranin: a H70 cross-sectional study. J Alzheimers Dis. 2023;91:291–303. 10.3233/JAD-220452 PubMed DOI PMC
Liu C-C, Liu C-C, Kanekiyo T, Xu H, Bu G. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat Rev Neurol. 2013;9:106–18. 10.1038/nrneurol.2012.263 PubMed DOI PMC
Sun X, Dong C, Levin B, Crocco E, Loewenstein D, Zetterberg H, et al. APOE ε4 carriers may undergo synaptic damage conferring risk of Alzheimer’s disease. Alzheimers Dement. 2016;12:1159–66. 10.1016/j.jalz.2016.05.003 PubMed DOI PMC
Bos I, Vos S, Verhey F, Scheltens P, Teunissen C, Engelborghs S, et al. Cerebrospinal fluid biomarkers of neurodegeneration, synaptic integrity, and astroglial activation across the clinical Alzheimer’s disease spectrum. Alzheimers Dement. 2019;15:644–54. 10.1016/j.jalz.2019.01.004 PubMed DOI
Lista S, Hampel H. Synaptic degeneration and neurogranin in the pathophysiology of Alzheimer’s disease. Expert Rev Neurother. 2017;17:47–57. 10.1080/14737175.2016.1204234 PubMed DOI
Camporesi E, Nilsson J, Brinkmalm A, Becker B, Ashton NJ, Blennow K, et al. Fluid biomarkers for synaptic dysfunction and loss. Biomark Insights. 2020;15:1177271920950319. 10.1177/1177271920950319 PubMed DOI PMC
Zetterberg H, Skillbäck T, Mattsson N, Trojanowski JQ, Portelius E, Shaw LM, et al. Association of Cerebrospinal Fluid Neurofilament Light Concentration with Alzheimer Disease Progression. JAMA Neurol. 2016;73:60. 10.1001/jamaneurol.2015.3037 PubMed DOI PMC
Kim KY, Shin KY, Chang K-A. GFAP as a potential biomarker for Alzheimer’s Disease: a systematic review and Meta-analysis. Cells. 2023;12:1309. 10.3390/cells12091309 PubMed DOI PMC
Massa F, Halbgebauer S, Barba L, Oeckl P, Gómez de San José N, Bauckneht M, et al. Exploring the brain metabolic correlates of process-specific CSF biomarkers in patients with MCI due to Alzheimer’s disease: preliminary data. Neurobiol Aging. 2022;117:212–21. 10.1016/j.neurobiolaging.2022.03.019 PubMed DOI
Gaetani L, Blennow K, Calabresi P, Di Filippo M, Parnetti L, Zetterberg H. Neurofilament light chain as a biomarker in neurological disorders. J Neurol Neurosurg Psychiatry. 2019;90:870–81. 10.1136/jnnp-2018-320106 PubMed DOI