Cinnamomum tamala Leaf Extract Stabilized Zinc Oxide Nanoparticles: A Promising Photocatalyst for Methylene Blue Degradation

. 2021 Jun 13 ; 11 (6) : . [epub] 20210613

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34199291

Grantová podpora
CZ.02.2.69/0.0/0.0/18_054/0014685 Ministry of Education, Youth and Sports of the Czech Republic

A facile green synthetic method is proposed for the synthesis of zinc oxide nanoparticles (ZnO NPs) using the bio-template Cinnamomum tamala (C. tamala) leaves extract. The morphological, functional, and structural characterization of synthesized ZnO NPs were studied by adopting different techniques such as energy dispersive X-ray analysis (EDX), high-resolution transmission electron microscopy (HR-TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), UV-Visible spectroscopy, fourier transform infrared (FTIR) spectroscopy, raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The fabricated ZnO NPs exhibit an average size of 35 nm, with a hexagonal nanostructure. Further, the well-characterized ZnO NPs were employed for the photocatalytic degradation of methylene blue (MB) in an aqueous solution. The photocatalytic activity was analyzed by changing the various physicochemical factors such as reaction time, amount of photocatalyst, precursor concentration, and calcination temperature of the ZnO NPs. All the studies suggest that the ZnO synthesized through the green protocol exhibits excellent photocatalytic potency against the dye molecules.

Zobrazit více v PubMed

Zare E.N., Padil V.V.T., Mokhtari B., Venkateshaiah A., Wacławek S., Černík M., Tay F.R., Varma R.S., Makvandi P. Advances in Biogenically Synthesized Shaped Metal- and Carbon-Based Nanoarchitectures and Their Medicinal Applications. Adv. Colloid Interface Sci. 2020;283:1–17. doi: 10.1016/j.cis.2020.102236. PubMed DOI

Hebbalalu D., Lalley J., Nadagouda M.N., Varma R.S. Greener Techniques for the Synthesis of Silver Nanoparticles Using Plant Extracts, Enzymes, Bacteria, Biodegradable Polymers, and Microwaves. ACS Sustain. Chem. Eng. 2013;1:703–712. doi: 10.1021/sc4000362. DOI

Mohammadinejad R., Karimi S., Iravani S., Varma R.S. Plant-Derived Nanostructures: Types and Applications. Green Chem. 2015;18:20–52. doi: 10.1039/C5GC01403D. DOI

Kim C.S., Moon B.K., Park J.H., Choi B.C., Seo H.J. Solvothermal Synthesis of Nanocrystalline TiO2 in Toluene with Surfactant. J. Cryst. Growth. 2003;257:309–315. doi: 10.1016/S0022-0248(03)01468-4. DOI

Gotić M., Musić S. Synthesis of Nanocrystalline Iron Oxide Particles in the Iron(III) Acetate/Alcohol/Acetic Acid System. Eur. J. Inorg. Chem. 2008;6:966–973. doi: 10.1002/ejic.200700986. DOI

Hayashi H., Hakuta Y. Hydrothermal Synthesis of Metal Oxide Nanoparticles in Supercritical Water. Materials. 2010;3:3794–3817. doi: 10.3390/ma3073794. PubMed DOI PMC

Yadav A., Burak G., Ahmadivand A., Kaushik A., Cheng G.J., Ouyang Z., Wang Q., Yadav V.S., Mishra Y.K., Wu Y., et al. Controlled Self-Assembly of Plasmon-Based Photonic Nanocrystals for High Performance Photonic Technologies. Nano Today. 2021;37:101072. doi: 10.1016/j.nantod.2020.101072. DOI

Vabbina P.K., Sinha R., Ahmadivand A., Karabiyik M., Gerislioglu B., Awadallah O., Pala N. Sonochemical Synthesis of a Zinc Oxide Core-Shell Nanorod Radial p-n Homojunction Ultraviolet Photodetector. ACS Appl. Mater. Interfaces. 2017;9:19791–19799. doi: 10.1021/acsami.7b02634. PubMed DOI

Devatha C.P., Thalla A.K. Synthesis of Inorganic Nanomaterials. Elsevier; Amsterdam, The Netherlands: 2018. Green Synthesis of Nanomaterials; pp. 169–184.

Padil V.V.T., Wacławek S., Černík M., Varma R.S. Tree Gum-Based Renewable Materials: Sustainable Applications in Nanotechnology, Biomedical and Environmental Fields. Biotechnol. Adv. 2018;36:1984–2016. doi: 10.1016/j.biotechadv.2018.08.008. PubMed DOI PMC

Machado S., Pinto S.L., Grosso J.P., Nouws H.P.A., Albergaria J.T., Delerue-Matos C. Green Production of Zero-Valent Iron Nanoparticles Using Tree Leaf Extracts. Sci. Total Environ. 2013;445–446:1–8. doi: 10.1016/j.scitotenv.2012.12.033. PubMed DOI

Huang L., Weng X., Chen Z., Megharaj M., Naidu R. Green Synthesis of Iron Nanoparticles by Various Tea Extracts: Comparative Study of the Reactivity. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014;130:295–301. doi: 10.1016/j.saa.2014.04.037. PubMed DOI

Kumar M.D.K.R.A. Green Chemistry and Engineering. 1st ed. Academic Press; Cambridge, MA, USA: 2007.

Yadav S., Khurana J.M. Cinnamomum Tamala Leaf Extract-Mediated Green Synthesis of Ag Nanoparticles and Their Use in Pyranopyrazles Synthesis. Cuihua Xuebao/Chin. J. Catal. 2015;36:1042–1046. doi: 10.1016/S1872-2067(15)60853-1. DOI

Hassan W., Zainab Kazmi S.N. Antimicrobial Activity of Cinnamomum Tamala Leaves. J. Nutr. Disord. Ther. 2015;6 doi: 10.4172/2161-0509.1000190. DOI

Rastogi A., Zivcak M., Sytar O., Kalaji H.M., He X., Mbarki S., Brestic M. Impact of Metal and Metal Oxide Nanoparticles on Plant: A Critical Review. Front. Chem. 2017;5:1–16. doi: 10.3389/fchem.2017.00078. PubMed DOI PMC

Sabir S., Arshad M., Chaudhari S.K. Zinc Oxide Nanoparticles for Revolutionizing Agriculture: Synthesis and Applications. Sci. World J. 2014 doi: 10.1155/2014/925494. PubMed DOI PMC

Khalafi T., Buazar F., Ghanemi K. Phycosynthesis and Enhanced Photocatalytic Activity of Zinc Oxide Nanoparticles toward Organosulfur Pollutants. Sci. Rep. 2019 doi: 10.1038/s41598-019-43368-3. PubMed DOI PMC

Widiyandari H., Ketut Umiati N.A., Dwi Herdianti R. Synthesis and Photocatalytic Property of Zinc Oxide (ZnO) Fine Particle Using Flame Spray Pyrolysis Method. J. Phys. Conf. Ser. 2018;1025 doi: 10.1088/1742-6596/1025/1/012004. DOI

Akshay Kumar K.P., Zare E.N., Torres-Mendieta R., Wacławek S., Makvandi P., Černík M., Padil V.V.T., Varma R.S. Electrospun Fibers Based on Botanical, Seaweed, Microbial, and Animal Sourced Biomacromolecules and Their Multidimensional Applications. Int. J. Biol. Macromol. 2021;171:130–149. doi: 10.1016/j.ijbiomac.2020.12.205. PubMed DOI

Saeed K., Khan I., Shah T., Park S.Y. Synthesis, Characterization and Photocatalytic Activity of Silver Nanoparticles/Amidoxime-Modified Polyacrylonitrile Nanofibers. Fibers Polym. 2015;16:1870–1875. doi: 10.1007/s12221-015-5373-z. DOI

Venkateshaiah A., Cheong J.Y., Shin S.H., Akshaykumar K.P., Yun T.G., Bae J., Wacławek S., Černík M., Agarwal S., Greiner A., et al. Recycling Non-Food-Grade Tree Gum Wastes into Nanoporous Carbon for Sustainable Energy Harvesting. Green Chem. 2020;22:1198–1208. doi: 10.1039/C9GC04310A. DOI

Stoyanova M., Christoskova S. Catalytic Degradation of Methylene Blue in Aqueous Solutions over Ni- and Co-Oxide Systems. Cent. Eur. J. Chem. 2011;9:1000–1007. doi: 10.2478/s11532-011-0086-7. DOI

Ali R., Ooi B.S. Photodegradation of New Methylene Blue N in Aqueous Solution Using Zinc Oxide and Titanium Dioxide as Catalyst. J. Teknol. 2012;45:31–41. doi: 10.11113/jt.v45.339. DOI

Ledakowicz S., Solecka M., Zylla R. Biodegradation, Decolourisation and Detoxification of Textile Wastewater Enhanced by Advanced Oxidation Processes. J. Biotechnol. 2001;89:175–184. doi: 10.1016/S0168-1656(01)00296-6. PubMed DOI

Saranya K.S., Vellora V., Padil T., Senan C., Pilankatta R., Saranya K., George B., Wacławek S., Černík M. Green Synthesis of High Temperature Stable Anatase Titanium Dioxide Nanoparticles Using Gum Kondagogu: Characterization and Solar Driven Photocatalytic Degradation of Organic Dye. Nanomaterials. 2018;8:1002. doi: 10.3390/nano8121002. PubMed DOI PMC

Talam S., Karumuri S.R., Gunnam N. Synthesis, Characterization, and Spectroscopic Properties of ZnO Nanoparticles. ISRN Nanotechnol. 2012;2012:1–6. doi: 10.5402/2012/372505. DOI

Varma R.S. Journey on Greener Pathways: From the Use of Alternate Energy Inputs and Benign Reaction Media to Sustainable Applications of Nano-Catalysts in Synthesis and Environmental Remediation. Green Chem. 2014;16:2027–2041. doi: 10.1039/c3gc42640h. DOI

Reddy G.B., Madhusudhan A., Ramakrishna D., Ayodhya D., Venkatesham M., Veerabhadram G. Green Chemistry Approach for the Synthesis of Gold Nanoparticles with Gum Kondagogu: Characterization, Catalytic and Antibacterial Activity. J. Nanostruct. Chem. 2015;5:185–193. doi: 10.1007/s40097-015-0149-y. DOI

Winiarski J., Tylus W., Winiarska K., Szczygieł I., Szczygieł B. Characterization of Selected Synthetic Corrosion Products of Zinc Expected in Neutral Environment Containing Chloride Ions. J. Spectrosc. 2018 doi: 10.1155/2018/2079278. DOI

Kayani Z.N., Saleemi F., Batool I. Synthesis and Characterization of ZnO Nanoparticles. Mater. Today Proc. 2015;2:5619–5621. doi: 10.1016/j.matpr.2015.11.100. DOI

Shi S., Xu J., Li L. Preparation and Photocatalytic Activity of ZnO Nanorods and ZnO/Cu2O Nanocomposites. Main Group Chem. 2017;16:47–55. doi: 10.3233/MGC-160224. DOI

Li Z., Zhang Y., Zhang Y., Chen S., Ren Q. Facile Synthesis of ZnO/Ag Composites with the Enhanced Absorption and Degradation of MB and MO under Visible Light. Ferroelectrics. 2018;526:152–160. doi: 10.1080/00150193.2018.1456305. DOI

Chikkanna M.M., Neelagund S.E., Rajashekarappa K.K. Green Synthesis of Zinc Oxide Nanoparticles (ZnO NPs) and Their Biological Activity. SN Appl. Sci. :2019. doi: 10.1007/s42452-018-0095-7. DOI

Yang H.Y., Lee H., Kim W. Effect of Zinc Nitrate Concentration on the Structural and the Optical Properties of ZnO Nanostructures. Appl. Surf. Sci. 2010;256:6117–6120. doi: 10.1016/j.apsusc.2010.03.129. DOI

Alami Z.Y., Salem M., Gaidi M. Effect of Zn Concentration On Structural and Optical Proprieties of ZNO Thin Films Deposited By Spray Pyrolysis. Adv. Energy Int. J. 2015;2:11–24. doi: 10.5121/aeij.2015.2402. DOI

Rahman Q.I., Ahmad M., Misra S.K., Lohani M. Effective Photocatalytic Degradation of Rhodamine B Dye by ZnO Nanoparticles. Mater. Lett. 2013;91:170–174. doi: 10.1016/j.matlet.2012.09.044. DOI

Al-Kordy H.M.H., Sabry S.A., Mabrouk M.E.M. Statistical Optimization of Experimental Parameters for Extracellular Synthesis of Zinc Oxide Nanoparticles by a Novel Haloalaliphilic Alkalibacillus Sp.W7. Sci. Rep. 2021;11:1–14. doi: 10.1038/s41598-021-90408-y. PubMed DOI PMC

Sharmila G., Muthukumaran C., Sandiya K., Santhiya S., Pradeep R.S., Kumar N.M., Suriyanarayanan N., Thirumarimurugan M. Biosynthesis, Characterization, and Antibacterial Activity of Zinc Oxide Nanoparticles Derived from Bauhinia Tomentosa Leaf Extract. J. Nanostruct. Chem. 2018;8:293–299. doi: 10.1007/s40097-018-0271-8. DOI

Yang R.D., Tripathy S., Li Y., Sue H.J. Photoluminescence and Micro-Raman Scattering in ZnO Nanoparticles: The Influence of Acetate Adsorption. Chem. Phys. Lett. 2005;411:150–154. doi: 10.1016/j.cplett.2005.05.125. DOI

Steffy K., Shanthi G., Maroky A.S., Selvakumar S. Synthesis and Characterization of ZnO Phytonanocomposite Using Strychnos Nux-Vomica L. (Loganiaceae) and Antimicrobial Activity against Multidrug-Resistant Bacterial Strains from Diabetic Foot Ulcer. J. Adv. Res. 2018;9:69–77. doi: 10.1016/j.jare.2017.11.001. PubMed DOI PMC

Vasiljevic Z.Z., Dojcinovic M.P., Vujancevic J.D., Jankovic-Castvan I., Ognjanovic M., Tadic N.B., Stojadinovic S., Brankovic G.O., Nikolic M.V. Research Photocatalytic Degradation of Methylene Blue under Natural Sunlight Using Iron Titanate Nanoparticles Prepared by a Modified Sol-Gel Method. R. Soc. Open Sci. 2020 doi: 10.1098/rsos.200708. PubMed DOI PMC

Kumar S., Ae K., Ae N.K., Singh S. Photocatalytic Degradation of Two Commercial Reactive Dyes in Aqueous Phase Using Nanophotocatalysts. Nanoscale Res. Lett. 2009 doi: 10.1007/s11671-009-9300-3. PubMed DOI PMC

Chijioke-Okere M.O., Okorocha N.J., Anukam B.N., Oguzie E.E. Photocatalytic Degradation of a Basic Dye Using Zinc Oxide Nanocatalyst. Int. Lett. Chem. Phys. Astron. 2019;81:18–26. doi: 10.18052/www.scipress.com/ILCPA.81.18. DOI

Ram C., Pareek R.K., Singh V. Photocatalytic Degradation of Textile Dye by Using Titanium Dioxide Nanocatalyst. Int. J. Theor. Appl. Sci. 2012;4:82–88.

Bansal P., Sud D. Photodegradation of Commercial Dye, Procion Blue HERD from Real Textile Wastewater Using Nanocatalysts. Desalination. 2011;267:244–249. doi: 10.1016/j.desal.2010.09.034. DOI

Nadarajan R., Wan Abu Bakar W.A., Ali R. Effect of Calcination Temperature on Metal Oxides and Their Photocatalytic Activity. Adv. Mater. Res. 2015;1107:73–78. doi: 10.4028/www.scientific.net/AMR.1107.73. DOI

Lv K., Xiang Q., Yu J. Effect of Calcination Temperature on Morphology and Photocatalytic Activity. Appl. Catal. B Environ. 2011;104:275–281. doi: 10.1016/j.apcatb.2011.03.019. DOI

Balcha A., Prakash Yadav O., Dey T. Photocatalytic Degradation of Methylene Blue Dye by Zinc Oxide Nanoparticles Obtained from Precipitation and Sol-Gel Methods. Environ. Sci. Pollut. Res. 2016 doi: 10.1007/s11356-016-7750-6. PubMed DOI

Isai K.A., Shrivastava V.S. Photocatalytic Degradation of Methylene Blue Using ZnO and 2%Fe–ZnO Semiconductor Nanomaterials Synthesized by Sol–Gel Method: A Comparative Study. SN Appl. Sci. 2019;1 doi: 10.1007/s42452-019-1279-5. DOI

Kahsay M.H. Synthesis and Characterization of ZnO Nanoparticles Using Aqueous Extract of Becium Grandiflorum for Antimicrobial Activity and Adsorption of Methylene Blue. Appl. Water Sci. 2021;11:1–12. doi: 10.1007/s13201-021-01373-w. DOI

Ravichandran V., Sumitha S., Ning C.Y., Xian O.Y., Kiew Yu U., Paliwal N., Shah S.A.A., Tripathy M. Durian Waste Mediated Green Synthesis of Zinc Oxide Nanoparticles and Evaluation of Their Antibacterial, Antioxidant, Cytotoxicity and Photocatalytic Activity. Green Chem. Lett. Rev. 2020;13:102–116. doi: 10.1080/17518253.2020.1738562. DOI

Khan M., Ware P., Shimpi N. Synthesis of ZnO Nanoparticles Using Peels of Passiflora Foetida and Study of Its Activity as an Efficient Catalyst for the Degradation of Hazardous Organic Dye. SN Appl. Sci. 2021;3 doi: 10.1007/s42452-021-04436-4. DOI

Lu J., Batjikh I., Hurh J., Han Y., Ali H., Mathiyalagan R., Ling C., Ahn J.C., Yang D.C. Photocatalytic Degradation of Methylene Blue Using Biosynthesized Zinc Oxide Nanoparticles from Bark Extract of Kalopanax Septemlobus. Optik. 2019;182:980–985. doi: 10.1016/j.ijleo.2018.12.016. DOI

Alamdari S., Ghamsari M.S., Lee C., Han W., Park H., Tafreshi M.J., Afarideh H. Preparation and Characterization of Zinc Oxide Nanoparticles Using Leaf Extract of Sambucus ebulus. Appl. Sci. 2020;10:3620. doi: 10.3390/app10103620. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...