Green Synthesis of High Temperature Stable Anatase Titanium Dioxide Nanoparticles Using Gum Kondagogu: Characterization and Solar Driven Photocatalytic Degradation of Organic Dye
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.1.05/2.1.00/19.0386; LM2015073 and HyHi, Reg. No. CZ.02.1.01/0.0/0.0/16_019/0000843
Ministry of Education, Youth and Sports
PubMed
30518035
PubMed Central
PMC6316888
DOI
10.3390/nano8121002
PII: nano8121002
Knihovny.cz E-zdroje
- Klíčová slova
- green synthesis, gum kondagogu, methylene blue, photocatalysis, titanium dioxide nanoparticles,
- Publikační typ
- časopisecké články MeSH
The present study reports a green and sustainable method for the synthesis of titanium dioxide (TiO₂) nanoparticles (NPs) from titanium oxysulfate solution using Kondagogu gum (Cochlospermum gossypium), a carbohydrate polymer, as the NPs formation agent. The synthesized TiO₂ NPs were categorized by techniques such as X-Ray Diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy analysis, Raman spectroscopy, scanning electron microscope- Energy-dispersive X-ray spectroscopy (SEM-EDX), Transmission electron microscopy (TEM), High-resolution transmission electron microscopy (HR-TEM), UV-visible spectroscopy, Brunauer-Emmett-Teller (BET) surface area and particle size analysis. Additionally, the photocatalytic actions of TiO₂ NPs were assessed with regard to their ability to degrade an organic dye (methylene blue) from aqueous solution in the presence of solar light. Various parameters affecting the photocatalytic activity of the TiO₂ NPs were examined, including catalyst loading, reaction time, pH value and calcination temperature of the aforementioned particles. This green synthesis method involving TiO₂ NPs explores the advantages of inexpensive and non-toxic precursors, the TiO₂ NPs themselves exhibiting excellent photocatalytic activity against dye molecules.
Department of Chemistry School of Physical Sciences Central University of Kerala Kerala 671316 India
Zobrazit více v PubMed
Makarov V.V., Love A.J., Sinitsyna O.V., Makarova S.S., Yaminsky I.V., Taliansky M.E., Kalinina N.O. “Green” Nanotechnologies: synthesis of metal nanoparticles using plants. Acta Naturae. 2014;6:35–44. PubMed PMC
Jana A., Scheer E., Polarz S. Synthesis of graphene–transition metal oxide hybrid nanoparticles and their application in various fields. Beilstein J. Nanotechnol. 2017;8:688–714. doi: 10.3762/bjnano.8.74. PubMed DOI PMC
Kim C.S., Moon B.K., Park J.H., Choi B.C., Seo H.J. Solvothermal synthesis of nanocrystalline TiO2 in toluene with surfactant. J. Cryst. Growth. 2003;257:309–315. doi: 10.1016/S0022-0248(03)01468-4. DOI
Gotić M., Musić S. Synthesis of nanocrystalline Iron oxide particles in the Iron(iii) acetate/alcohol/acetic acid system. Eur. J. Inorg. Chem. 2008;6:966–973. doi: 10.1002/ejic.200700986. DOI
Hayashi H., Hakuta Y. Hydrothermal synthesis of metal oxide nanoparticles in supercritical water. Materials. 2010;3:3794–3817. doi: 10.3390/ma3073794. PubMed DOI PMC
Sharma D., Kanchi S., Bisetty K. Biogenic synthesis of nanoparticles: A review. Arab. J. Chem. :2015. doi: 10.1016/j.arabjc.2015.11.002. DOI
Lin H., Li L., Zhao M., Huang X., Chen X., Li G., Yu R. Synthesis of high-quality brookite TiO2 single-crystalline nanosheets with specific facets exposed: tuning catalysts from inert to highly reactive. J. Am. Chem. Soc. 2012;134:8328–8331. doi: 10.1021/ja3014049. PubMed DOI
Diebold U. The surface science of titanium dioxide. Surf. Sci. Rep. 2003;48:53–229. doi: 10.1016/S0167-5729(02)00100-0. DOI
Fernandez-Garcia M., Belver C., Hanson J.C., Wang X., Rodriguez J.A. Anatase-TiO2 nanomaterials: analysis of key parameters controlling crystallization. J. Am. Chem. Soc. 2007;129:13604–13612. doi: 10.1021/ja074064m. PubMed DOI
Fernandez-Garcia M., Rodriguez J.A. Metal Oxide Nanoparticles. Brookhaven National Laboratory; Upton, NY, USA: 2007.
Bao S.J., Lei C., Xu M.W., Cai C.J., Cheng C.J., Li C.M. Environmentally-friendly biomimicking synthesis of TiO2 nanomaterials using saccharides to tailor morphology, crystal phase and photocatalytic activity. CrystEngComm. 2013;15:4694–4699. doi: 10.1039/c3ce40310f. DOI
Vinod V.T.P., Sashidhar R.B., Černík M. Morphology and metal binding characteristics of a natural polymer-kondagogu (Cochlospermum gossypium) gum. Molecules. 2013;18:8264–8274. doi: 10.3390/molecules18078264. PubMed DOI PMC
Vinod V.T.P., Wacławek S., Černík M., Varma R.S. Tree gum-based renewable materials: Sustainable applications in nanotechnology, biomedical and environmental fields. Biotechnol. Adv. 2018;36:1984–2016. PubMed PMC
Vinod V.T.P., Sashidhar R.B. Surface morphology, chemical and structural assignment of gum Kondagogu (Cochlospermum gossypium DC.): An exudate tree gum of India. Indian J. Nat. Prod. Resour. 2010;1:181–192.
Vinod V.T.P., Sashidhar R.B., Sukumar A.A. Competitive adsorption of toxic heavy metal contaminants by gum kondagogu (Cochlospermum gossypium): a natural hydrocolloid. Colloids Surf. B. 2010;75:490–495. doi: 10.1016/j.colsurfb.2009.09.023. PubMed DOI
Vinod V.T.P., Saravanan P., Sreedhar B., Devi D.K., Sashidhar R.B. A facile synthesis and characterization of Ag, Au and Pt nanoparticles using a natural hydrocolloid gum kondagogu (Cochlospermum gossypium) Colloids Surf. B. 2011;83:291–298. doi: 10.1016/j.colsurfb.2010.11.035. PubMed DOI
Padil V.V.T., Cernik M. Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application. Int. J. Nanomed. 2013;8:889–898. doi: 10.2147/IJN.S40599. PubMed DOI PMC
Vinod V.T.P., Sashidhar R.B., Suresh K.I., Rao B.R., Vijaya Saradhi U.V.R., Rao T.P. Morphological, physico-chemical and structural characterization of gum kondagogu (Cochlospermum gossypium): A tree gum from India. Food Hydrocoll. 2008;22:899–915. doi: 10.1016/j.foodhyd.2007.05.006. DOI
Vinod V.T.P., Sashidhar R.B., Sarma V.U.M., Vijaya Saradhi U.V.R. Compositional analysis and rheological properties of gum kondagogu (Cochlospermum gossypium): a tree gum from India. J. Agric. Food. Chem. 2008;56:2199–2207. doi: 10.1021/jf072766p. PubMed DOI
Naidu V.G.M., Madhusudhana K., Sashidhar R.B., Ramakrishna S., Khar R.K., Ahmed F.J., Diwan P.V. Polyelectrolyte complexes of gum kondagogu and chitosan, as diclofenac carriers. Carbohydr. Polym. 2009;76:464–471. doi: 10.1016/j.carbpol.2008.11.010. DOI
Khade G.V., Suwarnkar M.B., Gavade N.L., Garadkar K.M. Green synthesis of TiO2 and its photocatalytic activity. J. Mater. Sci. Mater. Electron. 2015;26:3309–3315. doi: 10.1007/s10854-015-2832-7. DOI
Kant R. Textile dyeing industry an environmental hazard. Nat. Sci. 2012;4:22–26. doi: 10.4236/ns.2012.41004. DOI
Neyaz N., Siddiqui W.A., Nair K.K. Application of surface functionalized Iron oxide nanomaterials as a nanosorbents in extraction of toxic heavy metals from ground water: a review. Int. J. Environ. Sci. 2014;4:472–483. doi: 10.6088/ijes.2014040400004. DOI
Byrne C., Fagan R., Hinder S., McCormack D.E., Pillai S.C. New approach of modifying the anatase to rutile transition temperature in TiO2 photocatalysts. RSC Adv. 2016;6:95232–95238. doi: 10.1039/C6RA19759K. DOI
Carp O., Huisman C.L., Reller A. Photoinduced reactivity of titanium dioxide. Prog. Solid State Chem. 2004;32:33–177. doi: 10.1016/j.progsolidstchem.2004.08.001. DOI
Mahlambi M.M., Ngila C.J., Mamba B.B. Recent developments in environmental photocatalytic degradation of organic pollutants: the case of titanium dioxide nanoparticles—A review. J Nanomater. 2015;2015:1–29. doi: 10.1155/2015/790173. DOI
Ahmed M.A., El-Katori E.E., Gharni Z.H. Photocatalytic degradation of methylene blue dye using Fe2O3/TiO2 nanoparticles prepared by sol–gel method. J. Alloys Compd. 2013;553:19–29. doi: 10.1016/j.jallcom.2012.10.038. DOI
Boury B., Plumejeau S. Metal oxides and polysaccharides: An efficient hybrid association for materials chemistry. Green Chem. 2015;17:72–88. doi: 10.1039/C4GC00957F. DOI
Dong Y., Wang Y., Cai T., Kou L., Yang G., Yan Z. Preparation and nitrogen-doping of three-dimensionally ordered macroporous TiO2 with enhanced photocatalytic activity. Ceram. Int. 2014;40:11213–11219. doi: 10.1016/j.ceramint.2014.03.161. DOI
Filippo E., Carlucci C., Capodilupo A.L., Perulli P., Conciauro F., Corrente G.A., Gigli G., Ciccarella G. Enhanced photocatalytic activity of pure anatase TiO2 and Pt-TiO2 nanoparticles synthesized by green microwave assisted route. Mater. Res. 2015;18:473–481. doi: 10.1590/1516-1439.301914. DOI
Haque F.Z., Nandanwar R., Singh P. Evaluating photodegradation properties of anatase and rutile TiO2 nanoparticles for organic compounds. Optik. 2017;128:191–200. doi: 10.1016/j.ijleo.2016.10.025. DOI
Ba-Abbad M.M., Kadhum A.A.H., Mohamad A.B., Takriff M.S., Sopian K. Synthesis and catalytic activity of TiO2 nanoparticles for photochemical oxidation of concentrated chlorophenols under direct solar radiation. Int. J. Electrochem. Sci. 2012;7:4871–4888.
Periyat P., Pillai S.C., McCormack D.E., Colreavy J., Hinder S.J. Improved high-temperature stability and sun-light-driven photocatalytic activity of sulfur-doped anatase TiO2. J. Phys. Chem. C. 2008;112:7644–7652. doi: 10.1021/jp0774847. DOI
Reddy G.B., Madhusudhan A., Ramakrishna D., Ayodhya D., Venkatesham M., Veerabhadram G. Green chemistry approach for the synthesis of gold nanoparticles with gum kondagogu: Characterization, catalytic and antibacterial activity. J. nanostructure chem. 2015;5:185–193. doi: 10.1007/s40097-015-0149-y. DOI
Chellappa M., Anjaneyulu U., Manivasagam G., Vijayalakshmi U. Preparation and evaluation of the cytotoxic nature of TiO2 nanoparticles by direct contact method. Int. J. Nanomed. 2015;10:31–41. doi: 10.2147/IJN.S79978. PubMed DOI PMC
Ma W., Lu Z., Zhang M. Investigation of structural transformations in nanophase titanium dioxide by Raman spectroscopy. Appl. Phys. A. 1998;66:621–627. doi: 10.1007/s003390050723. DOI
Ohsaka T. Temperature dependence of the raman spectrum in anatase TiO2. J. Phys. Soc. Jpn. 1980;48:1661–1668. doi: 10.1143/JPSJ.48.1661. DOI
Li Y., Qin Z., Guo H., Yang H., Zhang G., Ji S., Zeng T. Low-temperature synthesis of anatase TiO2 nanoparticles with tunable surface charges for enhancing photocatalytic activity. PloS one. 2014;9:1–19. doi: 10.1371/journal.pone.0114638. PubMed DOI PMC
Auvinen S., Alatalo M., Haario H., Jalava J.P., Lamminmäki R.J. Size and shape dependence of the electronic and spectral properties in TiO2nanoparticles. J. Phys. Chem. C. 2011;115:8484–8493. doi: 10.1021/jp112114p. DOI
Rauf M.A., Ashraf S.S. Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chem. Eng. J. 2009;151:10–18. doi: 10.1016/j.cej.2009.02.026. DOI
Wang C.C., Lee C.K., Lyu M.D., Juang L.C. Photocatalytic degradation of C.I. Basic Violet 10 using TiO2 catalysts supported by Y zeolite: An investigation of the effects of operational parameters. Dyes. Pigm. 2008;76:817–824. doi: 10.1016/j.dyepig.2007.02.004. DOI
Lakshmi S., Renganathan R., Fujita S. Study on TiO2-mediated photocatalytic degradation of methylene blue. J. Photochem. Photobiol. A. 1995;88:163–167. doi: 10.1016/1010-6030(94)04030-6. DOI