Green Synthesis of High Temperature Stable Anatase Titanium Dioxide Nanoparticles Using Gum Kondagogu: Characterization and Solar Driven Photocatalytic Degradation of Organic Dye

. 2018 Dec 04 ; 8 (12) : . [epub] 20181204

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30518035

Grantová podpora
CZ.1.05/2.1.00/19.0386; LM2015073 and HyHi, Reg. No. CZ.02.1.01/0.0/0.0/16_019/0000843 Ministry of Education, Youth and Sports

The present study reports a green and sustainable method for the synthesis of titanium dioxide (TiO₂) nanoparticles (NPs) from titanium oxysulfate solution using Kondagogu gum (Cochlospermum gossypium), a carbohydrate polymer, as the NPs formation agent. The synthesized TiO₂ NPs were categorized by techniques such as X-Ray Diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy analysis, Raman spectroscopy, scanning electron microscope- Energy-dispersive X-ray spectroscopy (SEM-EDX), Transmission electron microscopy (TEM), High-resolution transmission electron microscopy (HR-TEM), UV-visible spectroscopy, Brunauer-Emmett-Teller (BET) surface area and particle size analysis. Additionally, the photocatalytic actions of TiO₂ NPs were assessed with regard to their ability to degrade an organic dye (methylene blue) from aqueous solution in the presence of solar light. Various parameters affecting the photocatalytic activity of the TiO₂ NPs were examined, including catalyst loading, reaction time, pH value and calcination temperature of the aforementioned particles. This green synthesis method involving TiO₂ NPs explores the advantages of inexpensive and non-toxic precursors, the TiO₂ NPs themselves exhibiting excellent photocatalytic activity against dye molecules.

Zobrazit více v PubMed

Makarov V.V., Love A.J., Sinitsyna O.V., Makarova S.S., Yaminsky I.V., Taliansky M.E., Kalinina N.O. “Green” Nanotechnologies: synthesis of metal nanoparticles using plants. Acta Naturae. 2014;6:35–44. PubMed PMC

Jana A., Scheer E., Polarz S. Synthesis of graphene–transition metal oxide hybrid nanoparticles and their application in various fields. Beilstein J. Nanotechnol. 2017;8:688–714. doi: 10.3762/bjnano.8.74. PubMed DOI PMC

Kim C.S., Moon B.K., Park J.H., Choi B.C., Seo H.J. Solvothermal synthesis of nanocrystalline TiO2 in toluene with surfactant. J. Cryst. Growth. 2003;257:309–315. doi: 10.1016/S0022-0248(03)01468-4. DOI

Gotić M., Musić S. Synthesis of nanocrystalline Iron oxide particles in the Iron(iii) acetate/alcohol/acetic acid system. Eur. J. Inorg. Chem. 2008;6:966–973. doi: 10.1002/ejic.200700986. DOI

Hayashi H., Hakuta Y. Hydrothermal synthesis of metal oxide nanoparticles in supercritical water. Materials. 2010;3:3794–3817. doi: 10.3390/ma3073794. PubMed DOI PMC

Sharma D., Kanchi S., Bisetty K. Biogenic synthesis of nanoparticles: A review. Arab. J. Chem. :2015. doi: 10.1016/j.arabjc.2015.11.002. DOI

Lin H., Li L., Zhao M., Huang X., Chen X., Li G., Yu R. Synthesis of high-quality brookite TiO2 single-crystalline nanosheets with specific facets exposed: tuning catalysts from inert to highly reactive. J. Am. Chem. Soc. 2012;134:8328–8331. doi: 10.1021/ja3014049. PubMed DOI

Diebold U. The surface science of titanium dioxide. Surf. Sci. Rep. 2003;48:53–229. doi: 10.1016/S0167-5729(02)00100-0. DOI

Fernandez-Garcia M., Belver C., Hanson J.C., Wang X., Rodriguez J.A. Anatase-TiO2 nanomaterials: analysis of key parameters controlling crystallization. J. Am. Chem. Soc. 2007;129:13604–13612. doi: 10.1021/ja074064m. PubMed DOI

Fernandez-Garcia M., Rodriguez J.A. Metal Oxide Nanoparticles. Brookhaven National Laboratory; Upton, NY, USA: 2007.

Bao S.J., Lei C., Xu M.W., Cai C.J., Cheng C.J., Li C.M. Environmentally-friendly biomimicking synthesis of TiO2 nanomaterials using saccharides to tailor morphology, crystal phase and photocatalytic activity. CrystEngComm. 2013;15:4694–4699. doi: 10.1039/c3ce40310f. DOI

Vinod V.T.P., Sashidhar R.B., Černík M. Morphology and metal binding characteristics of a natural polymer-kondagogu (Cochlospermum gossypium) gum. Molecules. 2013;18:8264–8274. doi: 10.3390/molecules18078264. PubMed DOI PMC

Vinod V.T.P., Wacławek S., Černík M., Varma R.S. Tree gum-based renewable materials: Sustainable applications in nanotechnology, biomedical and environmental fields. Biotechnol. Adv. 2018;36:1984–2016. PubMed PMC

Vinod V.T.P., Sashidhar R.B. Surface morphology, chemical and structural assignment of gum Kondagogu (Cochlospermum gossypium DC.): An exudate tree gum of India. Indian J. Nat. Prod. Resour. 2010;1:181–192.

Vinod V.T.P., Sashidhar R.B., Sukumar A.A. Competitive adsorption of toxic heavy metal contaminants by gum kondagogu (Cochlospermum gossypium): a natural hydrocolloid. Colloids Surf. B. 2010;75:490–495. doi: 10.1016/j.colsurfb.2009.09.023. PubMed DOI

Vinod V.T.P., Saravanan P., Sreedhar B., Devi D.K., Sashidhar R.B. A facile synthesis and characterization of Ag, Au and Pt nanoparticles using a natural hydrocolloid gum kondagogu (Cochlospermum gossypium) Colloids Surf. B. 2011;83:291–298. doi: 10.1016/j.colsurfb.2010.11.035. PubMed DOI

Padil V.V.T., Cernik M. Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application. Int. J. Nanomed. 2013;8:889–898. doi: 10.2147/IJN.S40599. PubMed DOI PMC

Vinod V.T.P., Sashidhar R.B., Suresh K.I., Rao B.R., Vijaya Saradhi U.V.R., Rao T.P. Morphological, physico-chemical and structural characterization of gum kondagogu (Cochlospermum gossypium): A tree gum from India. Food Hydrocoll. 2008;22:899–915. doi: 10.1016/j.foodhyd.2007.05.006. DOI

Vinod V.T.P., Sashidhar R.B., Sarma V.U.M., Vijaya Saradhi U.V.R. Compositional analysis and rheological properties of gum kondagogu (Cochlospermum gossypium): a tree gum from India. J. Agric. Food. Chem. 2008;56:2199–2207. doi: 10.1021/jf072766p. PubMed DOI

Naidu V.G.M., Madhusudhana K., Sashidhar R.B., Ramakrishna S., Khar R.K., Ahmed F.J., Diwan P.V. Polyelectrolyte complexes of gum kondagogu and chitosan, as diclofenac carriers. Carbohydr. Polym. 2009;76:464–471. doi: 10.1016/j.carbpol.2008.11.010. DOI

Khade G.V., Suwarnkar M.B., Gavade N.L., Garadkar K.M. Green synthesis of TiO2 and its photocatalytic activity. J. Mater. Sci. Mater. Electron. 2015;26:3309–3315. doi: 10.1007/s10854-015-2832-7. DOI

Kant R. Textile dyeing industry an environmental hazard. Nat. Sci. 2012;4:22–26. doi: 10.4236/ns.2012.41004. DOI

Neyaz N., Siddiqui W.A., Nair K.K. Application of surface functionalized Iron oxide nanomaterials as a nanosorbents in extraction of toxic heavy metals from ground water: a review. Int. J. Environ. Sci. 2014;4:472–483. doi: 10.6088/ijes.2014040400004. DOI

Byrne C., Fagan R., Hinder S., McCormack D.E., Pillai S.C. New approach of modifying the anatase to rutile transition temperature in TiO2 photocatalysts. RSC Adv. 2016;6:95232–95238. doi: 10.1039/C6RA19759K. DOI

Carp O., Huisman C.L., Reller A. Photoinduced reactivity of titanium dioxide. Prog. Solid State Chem. 2004;32:33–177. doi: 10.1016/j.progsolidstchem.2004.08.001. DOI

Mahlambi M.M., Ngila C.J., Mamba B.B. Recent developments in environmental photocatalytic degradation of organic pollutants: the case of titanium dioxide nanoparticles—A review. J Nanomater. 2015;2015:1–29. doi: 10.1155/2015/790173. DOI

Ahmed M.A., El-Katori E.E., Gharni Z.H. Photocatalytic degradation of methylene blue dye using Fe2O3/TiO2 nanoparticles prepared by sol–gel method. J. Alloys Compd. 2013;553:19–29. doi: 10.1016/j.jallcom.2012.10.038. DOI

Boury B., Plumejeau S. Metal oxides and polysaccharides: An efficient hybrid association for materials chemistry. Green Chem. 2015;17:72–88. doi: 10.1039/C4GC00957F. DOI

Dong Y., Wang Y., Cai T., Kou L., Yang G., Yan Z. Preparation and nitrogen-doping of three-dimensionally ordered macroporous TiO2 with enhanced photocatalytic activity. Ceram. Int. 2014;40:11213–11219. doi: 10.1016/j.ceramint.2014.03.161. DOI

Filippo E., Carlucci C., Capodilupo A.L., Perulli P., Conciauro F., Corrente G.A., Gigli G., Ciccarella G. Enhanced photocatalytic activity of pure anatase TiO2 and Pt-TiO2 nanoparticles synthesized by green microwave assisted route. Mater. Res. 2015;18:473–481. doi: 10.1590/1516-1439.301914. DOI

Haque F.Z., Nandanwar R., Singh P. Evaluating photodegradation properties of anatase and rutile TiO2 nanoparticles for organic compounds. Optik. 2017;128:191–200. doi: 10.1016/j.ijleo.2016.10.025. DOI

Ba-Abbad M.M., Kadhum A.A.H., Mohamad A.B., Takriff M.S., Sopian K. Synthesis and catalytic activity of TiO2 nanoparticles for photochemical oxidation of concentrated chlorophenols under direct solar radiation. Int. J. Electrochem. Sci. 2012;7:4871–4888.

Periyat P., Pillai S.C., McCormack D.E., Colreavy J., Hinder S.J. Improved high-temperature stability and sun-light-driven photocatalytic activity of sulfur-doped anatase TiO2. J. Phys. Chem. C. 2008;112:7644–7652. doi: 10.1021/jp0774847. DOI

Reddy G.B., Madhusudhan A., Ramakrishna D., Ayodhya D., Venkatesham M., Veerabhadram G. Green chemistry approach for the synthesis of gold nanoparticles with gum kondagogu: Characterization, catalytic and antibacterial activity. J. nanostructure chem. 2015;5:185–193. doi: 10.1007/s40097-015-0149-y. DOI

Chellappa M., Anjaneyulu U., Manivasagam G., Vijayalakshmi U. Preparation and evaluation of the cytotoxic nature of TiO2 nanoparticles by direct contact method. Int. J. Nanomed. 2015;10:31–41. doi: 10.2147/IJN.S79978. PubMed DOI PMC

Ma W., Lu Z., Zhang M. Investigation of structural transformations in nanophase titanium dioxide by Raman spectroscopy. Appl. Phys. A. 1998;66:621–627. doi: 10.1007/s003390050723. DOI

Ohsaka T. Temperature dependence of the raman spectrum in anatase TiO2. J. Phys. Soc. Jpn. 1980;48:1661–1668. doi: 10.1143/JPSJ.48.1661. DOI

Li Y., Qin Z., Guo H., Yang H., Zhang G., Ji S., Zeng T. Low-temperature synthesis of anatase TiO2 nanoparticles with tunable surface charges for enhancing photocatalytic activity. PloS one. 2014;9:1–19. doi: 10.1371/journal.pone.0114638. PubMed DOI PMC

Auvinen S., Alatalo M., Haario H., Jalava J.P., Lamminmäki R.J. Size and shape dependence of the electronic and spectral properties in TiO2nanoparticles. J. Phys. Chem. C. 2011;115:8484–8493. doi: 10.1021/jp112114p. DOI

Rauf M.A., Ashraf S.S. Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chem. Eng. J. 2009;151:10–18. doi: 10.1016/j.cej.2009.02.026. DOI

Wang C.C., Lee C.K., Lyu M.D., Juang L.C. Photocatalytic degradation of C.I. Basic Violet 10 using TiO2 catalysts supported by Y zeolite: An investigation of the effects of operational parameters. Dyes. Pigm. 2008;76:817–824. doi: 10.1016/j.dyepig.2007.02.004. DOI

Lakshmi S., Renganathan R., Fujita S. Study on TiO2-mediated photocatalytic degradation of methylene blue. J. Photochem. Photobiol. A. 1995;88:163–167. doi: 10.1016/1010-6030(94)04030-6. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...