Fabrication of a Greener TiO2@Gum Arabic-Carbon Paste Electrode for the Electrochemical Detection of Pb2+ Ions in Plastic Toys
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
33043219
PubMed Central
PMC7542840
DOI
10.1021/acsomega.0c03781
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
A novel greener methodology is reported for the synthesis of titanium dioxide (TiO2) nanoparticles (NPs) using gum Arabic (Acacia senegal) and the characterization of the ensuing TiO2 NPs by various techniques such as X-ray diffraction (XRD), Fourier transform infrared, Raman spectroscopy, scanning electron microscopy-energy dispersive X-ray, transmission electron microscopy (TEM), high resolution-TEM, and UV-visible spectroscopy. The XRD analysis confirmed the formation of TiO2 NPs in the anatase phase with high crystal purity, while TEM confirmed the size to be 8.9 ± 1.5 nm with a spherical morphology. The electrode for the electrochemical detection of Pb2+ ions was modified by a carbon paste fabricated using the synthesized TiO2 NPs. Compared to the bare electrode, the fabricated electrode exhibited improved electro-catalytic activity toward the reduction of Pb2+ ions. The detection limit, quantification limit, and the sensitivity of the developed electrode were observed by using differential pulse voltammetry to be 506 ppb, 1.68 ppm, and 0.52 ± 0.01 μA μM-1, respectively. The constructed electrode was tested for the detection of lead content in plastic toys.
Chemistry Department Faculty of Science Shahid Chamran University of Ahvaz Ahvaz 6153753843 Iran
Department of Chemistry School of Physical Sciences Central University of Kerala Periye 671316 India
Institute for Polymers Composites and Biomaterials Naples 80125 Italy
Zobrazit více v PubMed
Limo M. J.; Sola-Rabada A.; Boix E.; Thota V.; Westcott Z. C.; Puddu V.; Perry C. C. Interactions between Metal Oxides and Biomolecules: From Fundamental Understanding to Applications. Chem. Rev. 2018, 118, 11118–11193. 10.1021/acs.chemrev.7b00660. PubMed DOI
Varma R. S. Greener and Sustainable Trends in Synthesis of Organics and Nanomaterials. ACS Sustainable Chem. Eng. 2016, 4, 5866–5878. 10.1021/acssuschemeng.6b01623. PubMed DOI PMC
Kou J.; Bennett-Stamper C.; Varma R. S. Green Synthesis of Noble Nanometals (Au, Pt, Pd) Using Glycerol under Microwave Irradiation Conditions. ACS Sustainable Chem. Eng. 2013, 1, 810–816. 10.1021/sc400007p. DOI
Makvandi P.; Wang C. y.; Zare E. N.; Borzacchiello A.; Niu L. n.; Tay F. R. Metal-Based Nanomaterials in Biomedical Applications: Antimicrobial Activity and Cytotoxicity Aspects. Adv. Funct. Mater. 2020, 30, 1910021.10.1002/adfm.201910021. DOI
Yang W.; Xu W.; Wang Y.; Chen D.; Wang X.; Cao Y.; Wu Q.; Tu J.; Zhen C. Photoelectrochemical Glucose Biosensor Based on the Heterogeneous Facets of Nanocrystalline TiO2 /Au/Glucose Oxidase Films. ACS Appl. Nano Mater. 2020, 3, 2723–2732. 10.1021/acsanm.0c00086. DOI
Bai J.; Zhou B. Titanium Dioxide Nanomaterials for Sensor Applications. Chem. Rev. 2014, 114, 10131–10176. 10.1021/cr400625j. PubMed DOI
Li F.; Wang S.; Yin H.; Chen Y.; Zhou Y.; Huang J.; Ai S. Photoelectrochemical Biosensor for DNA Formylation Detection in Genomic DNA of Maize Seedlings Based on Black TiO2-Enhanced Photoactivity of MoS2/WS2 Heterojunction. ACS Sens. 2020, 5, 1092–1101. 10.1021/acssensors.0c00036. PubMed DOI
Wongkaew N.; Simsek M.; Griesche C.; Baeumner A. J. Functional Nanomaterials and Nanostructures Enhancing Electrochemical Biosensors and Lab-on-a-Chip Performances: Recent Progress, Applications, and Future Perspective. Chem. Rev. 2019, 119, 120–194. 10.1021/acs.chemrev.8b00172. PubMed DOI
Zhu J.; Huo X.; Liu X.; Ju H. Gold Nanoparticles Deposited Polyaniline–TiO2 Nanotube for Surface Plasmon Resonance Enhanced Photoelectrochemical Biosensing. ACS Appl. Mater. Interfaces 2016, 8, 341–349. 10.1021/acsami.5b08837. PubMed DOI
Seekaew Y.; Pon-On W.; Wongchoosuk C. Ultrahigh Selective Room-Temperature Ammonia Gas Sensor Based on Tin–Titanium Dioxide/Reduced Graphene/Carbon Nanotube Nanocomposites by the Solvothermal Method. ACS Omega 2019, 4, 16916–16924. 10.1021/acsomega.9b02185. PubMed DOI PMC
Zhao G.; Xuan J.; Gong Q.; Wang L.; Ren J.; Sun M.; Jia F.; Yin G.; Liu B. In Situ Growing Double-Layer TiO 2 Nanorod Arrays on New-Type FTO Electrodes for Low-Concentration NH 3 Detection at Room Temperature. ACS Appl. Mater. Interfaces 2020, 12, 8573–8582. 10.1021/acsami.9b20337. PubMed DOI
Dhawale D. S.; Gujar T. P.; Lokhande C. D. TiO 2 Nanorods Decorated with Pd Nanoparticles for Enhanced Liquefied Petroleum Gas Sensing Performance. Anal. Chem. 2017, 89, 8531–8537. 10.1021/acs.analchem.7b02312. PubMed DOI
Kang Y.; Kim K.; Cho B.; Kwak Y.; Kim J. Highly Sensitive Detection of Benzene, Toluene, and Xylene Based on CoPP-Functionalized TiO 2 Nanoparticles with Low Power Consumption. ACS Sens. 2020, 5, 754.10.1021/acssensors.9b02310. PubMed DOI
Biapo U.; Ghisolfi A.; Gerer G.; Spitzer D.; Keller V.; Cottineau T. Functionalized TiO 2 Nanorods on a Microcantilever for the Detection of Organophosphorus Chemical Agents in Air. ACS Appl. Mater. Interfaces 2019, 11, 35122–35131. 10.1021/acsami.9b11504. PubMed DOI
Frank J. J.; Poulakos A. G.; Tornero-Velez R.; Xue J. Systematic Review and Meta-Analyses of Lead (Pb) Concentrations in Environmental Media (Soil, Dust, Water, Food, and Air) Reported in the United States from 1996 to 2016. Sci. Total Environ. 2019, 694, 133489.10.1016/j.scitotenv.2019.07.295. PubMed DOI PMC
Ziegler E. E.; Edwards B. B.; Jensen R. L.; Mahaffey K. R.; Fomon S. J. Absorption and Retention of Lead by Infants. Pediatr. Res. 1978, 12, 29–34. 10.1203/00006450-197801000-00008. PubMed DOI
Petrusz P.; Weaver C. M.; Grant L. D.; Mushak P.; Krigman M. R. Lead Poisoning and Reproduction: Effects on Pituitary and Serum Gonadotropins in Neonatal Rats. Environ. Res. 1979, 19, 383–391. 10.1016/0013-9351(79)90063-x. PubMed DOI
Alexander F. W. The Uptake of Lead by Children in Differing Environments. Environ. Health Perspect. 1974, 7, 155–159. 10.1289/ehp.747155. PubMed DOI PMC
Byers H. L.; McHenry L. J.; Grundl T. J. XRF Techniques to Quantify Heavy Metals in Vegetables at Low Detection Limits. Food Chem. 2019, 1, 100001.10.1016/j.fochx.2018.100001. DOI
Hutton L. A.; O’Neil G. D.; Read T. L.; Ayres Z. J.; Newton M. E.; Macpherson J. V. Electrochemical X-Ray Fluorescence Spectroscopy for Trace Heavy Metal Analysis: Enhancing X-Ray Fluorescence Detection Capabilities by Four Orders of Magnitude. Anal. Chem. 2014, 86, 4566–4572. 10.1021/ac500608d. PubMed DOI
Flores É. M. M.; Saidelles A. P. F.; Mattos J. C. P.; Müller E. I.; Pereira J. S. F.; Paniz J. N. G.; Dressler V. L. Determination of Cd and Pb in Medicinal Plants Using Solid Sampling Flame Atomic Absorption Spectrometry. Int. J. Environ. Anal. Chem. 2009, 89, 129–140. 10.1080/03067310802578945. DOI
Wang J.; Jansen JA; Yang F. Electrospraying: Possibilities and Challenges of Engineering Carriers for Biomedical Applications - a Mini Review. Front. Chem. 2019, 7, 258.10.3389/fchem.2019.00258. PubMed DOI PMC
Govindhan M.; Adhikari B.-R.; Chen A. Nanomaterials-Based Electrochemical Detection of Chemical Contaminants. RSC Adv. 2014, 4, 63741–63760. 10.1039/c4ra10399h. DOI
Das R.; Vecitis C. D.; Schulze A.; Cao B.; Ismail A. F.; Lu X.; Chen J.; Ramakrishna S. Recent Advances in Nanomaterials for Water Protection and Monitoring. Chem. Soc. Rev. 2017, 46, 6946–7020. 10.1039/c6cs00921b. PubMed DOI
Zhang Y.-n.; Niu Q.; Gu X.; Yang N.; Zhao G. Recent Progress on Carbon Nanomaterials for the Electrochemical Detection and Removal of Environmental Pollutants. Nanoscale 2019, 11, 11992–12014. 10.1039/c9nr02935d. PubMed DOI
Das R.; Vecitis C. D.; Schulze A.; Cao B.; Ismail A. F.; Lu X.; Chen J.; Ramakrishna S. Recent Advances in Nanomaterials for Water Protection and Monitoring. Chem. Soc. Rev. 2017, 46, 6946–7020. 10.1039/c6cs00921b. PubMed DOI
Vogiazi V.; de la Cruz A.; Mishra S.; Shanov V.; Heineman W. R.; Dionysiou D. D. A Comprehensive Review: Development of Electrochemical Biosensors for Detection of Cyanotoxins in Freshwater. ACS Sens. 2019, 4, 1151–1173. 10.1021/acssensors.9b00376. PubMed DOI PMC
Barua S.; Dutta H. S.; Gogoi S.; Devi R.; Khan R. Nanostructured MoS 2 -Based Advanced Biosensors: A Review. ACS Appl. Nano Mater. 2018, 1, 2–25. 10.1021/acsanm.7b00157. DOI
Huang X.; Liu Y.; Yung B.; Xiong Y.; Chen X. Nanotechnology-Enhanced No-Wash Biosensors for in Vitro Diagnostics of Cancer. ACS Nano 2017, 11, 5238–5292. 10.1021/acsnano.7b02618. PubMed DOI
Radhakrishnan R.; Suni I. I.; Bever C. S.; Hammock B. D. Impedance Biosensors: Applications to Sustainability and Remaining Technical Challenges. ACS Sustainable Chem. Eng. 2014, 2, 1649–1655. 10.1021/sc500106y. PubMed DOI PMC
Chernov K. G.; Redchuk T. A.; Omelina E. S.; Verkhusha V. V. Near-Infrared Fluorescent Proteins, Biosensors, and Optogenetic Tools Engineered from Phytochromes. Chem. Rev. 2017, 117, 6423–6446. 10.1021/acs.chemrev.6b00700. PubMed DOI
Masson J.-F. Surface Plasmon Resonance Clinical Biosensors for Medical Diagnostics. ACS Sens. 2017, 2, 16–30. 10.1021/acssensors.6b00763. PubMed DOI
Reta N.; Saint C. P.; Michelmore A.; Prieto-Simon B.; Voelcker N. H. Nanostructured Electrochemical Biosensors for Label-Free Detection of Water- and Food-Borne Pathogens. ACS Appl. Mater. Interfaces 2018, 10, 6055–6072. 10.1021/acsami.7b13943. PubMed DOI
Russell S. M.; de la Rica R. Policy Considerations for Mobile Biosensors. ACS Sens. 2018, 3, 1059–1068. 10.1021/acssensors.8b00289. PubMed DOI
Padil V. V. T.; Senan C.; Wacławek S.; Černík M.; Agarwal S.; Varma R. S. Bioplastic Fibers from Gum Arabic for Greener Food Wrapping Applications. ACS Sustainable Chem. Eng. 2019, 7, 5900–5911. 10.1021/acssuschemeng.8b05896. DOI
Saranya K. S.; Vellora Thekkae Padil V.; Senan C.; Pilankatta R.; Saranya K.; George B.; Wacławek S.; Černík M. Green Synthesis of High Temperature Stable Anatase Titanium Dioxide Nanoparticles Using Gum Kondagogu: Characterization and Solar Driven Photocatalytic Degradation of Organic Dye. Nanomaterials 2018, 8, 1002.10.3390/nano8121002. PubMed DOI PMC
Ohsaka T. Temperature Dependence of the Raman Spectrum in Anatase TiO2. J. Phys. Soc. Jpn. 1980, 48, 1661–1668. 10.1143/jpsj.48.1661. DOI
Ma W.; Lu Z.; Zhang M. Investigation of Structural Transformations in Nanophase Titanium Dioxide by Raman Spectroscopy. Appl. Phys. A: Mater. Sci. Process. 1998, 66, 621–627. 10.1007/s003390050723. DOI
Lindfors K.; Kalkbrenner T.; Stoller P.; Sandoghdar V. Detection and Spectroscopy of Gold Nanoparticles Using Supercontinuum White Light Confocal Microscopy. Phys. Rev. Lett. 2004, 93, 037401.10.1103/physrevlett.93.037401. PubMed DOI
Auvinen S.; Alatalo M.; Haario H.; Jalava J.-P.; Lamminmäki R.-J. Size and Shape Dependence of the Electronic and Spectral Properties in TiO2 Nanoparticles. J. Phys. Chem. C 2011, 115, 8484–8493. 10.1021/jp112114p. DOI
Jaswal B. B. S.; Rai P. K.; Singh T.; Zorba V.; Singh V. K. Detection and quantification of heavy metal elements in gallstones using X-ray fluorescence spectrometry. X-Ray Spectrom. 2019, 48, 178–187. 10.1002/xrs.3010. DOI
Pooja D.; Panyaram S.; Kulhari H.; Reddy B.; Rachamalla S. S.; Sistla R. Natural Polysaccharide Functionalized Gold Nanoparticles as Biocompatible Drug Delivery Carrier. Int. J. Biol. Macromol. 2015, 80, 48–56. 10.1016/j.ijbiomac.2015.06.022. PubMed DOI
Tajik S.; Beitollahi H.; Nejad F. G.; Safaei M.; Zhang K.; Van Le Q.; Varma R. S.; Jang H. W.; Shokouhimehr M. Developments and Applications of Nanomaterial-Based Carbon Paste Electrodes. RSC Adv. 2020, 10, 21561–21581. 10.1039/d0ra03672b. PubMed DOI PMC
Zhang W.; Zhu S.; Luque R.; Han S.; Hu L.; Xu G. Recent Development of Carbon Electrode Materials and Their Bioanalytical and Environmental Applications. Chem. Soc. Rev. 2016, 45, 715–752. 10.1039/c5cs00297d. PubMed DOI
Estrada-Aldrete J.; Hernández-López J. M.; García-León A. M.; Peralta-Hernández J. M.; Cerino-Córdova F. J. Electroanalytical Determination of Heavy Metals in Aqueous Solutions by Using a Carbon Paste Electrode Modified with Spent Coffee Grounds. J. Electroanal. Chem. 2020, 857, 113663.10.1016/j.jelechem.2019.113663. DOI
Radotić K.; Djikanović D.; Simonović Radosavljević J.; Jović-Jovičić N.; Mojović Z. Comparative Study of Lignocellulosic Biomass and Its Components as Electrode Modifiers for Detection of Lead and Copper Ions. J. Electroanal. Chem. 2020, 862, 114010.10.1016/j.jelechem.2020.114010. DOI
Zheng X.; Chen S.; Chen J.; Guo Y.; Peng J.; Zhou X.; Lv R.; Lin J.; Lin R. Highly Sensitive Determination of Lead and Cadmium by a Large Surface Area Mesoporous Alumina Modified Carbon Paste Electrode. RSC Adv. 2018, 8, 7883–7891. 10.1039/c8ra00041g. PubMed DOI PMC
Devnani H.; Satsangee S. P. Green Gold Nanoparticle Modified Anthocyanin-Based Carbon Paste Electrode for Voltammetric Determination of Heavy Metals. Int. J. Environ. Sci. Technol. 2015, 12, 1269–1282. 10.1007/s13762-014-0497-z. DOI
Zayed M. A.; Mahmoud W. H.; Abbas A. A.; Ali A. E.; Mohamed G. G. A Highly Sensitive, Selective and Renewable Carbon Paste Electrode Based on a Unique Acyclic Diamide Ionophore for the Potentiometric Determination of Lead Ions in Polluted Water Samples. RSC Adv. 2020, 10, 17552–17560. 10.1039/d0ra01435d. PubMed DOI PMC
Alizadeh T.; Hamidi N.; Ganjali M. R.; Rafiei F. An Extraordinarily Sensitive Voltammetric Sensor with Picomolar Detection Limit for Pb2+ Determination Based on Carbon Paste Electrode Impregnated with Nano-Sized Imprinted Polymer and Multi-Walled Carbon Nanotubes. J. Environ. Chem. Eng. 2017, 5, 4327–4336. 10.1016/j.jece.2017.08.009. DOI
Malakootian M.; Abolghasemi H.; Mahmoudi-Moghaddam H. A Novel Electrochemical Sensor Based on the Modified Carbon Paste Using Eu3+ Doped NiO for Simultaneous Determination of Pb (II) and Cd (II) in Food Samples. J. Electroanal. Chem. 2020, 876, 114474.10.1016/j.jelechem.2020.114474. DOI
Laghlimi C.; Ziat Y.; Moutcine A.; Hammi M.; Zarhri Z.; Maallah R.; Ifguis O.; Chtaini A. Analysis of Pb(II), Cu(II) and Co(II) in Drinking Water by a New Carbon Paste Electrode Modified with an Organic Molecule. Chem. Data Collect. 2020, 29, 100496.10.1016/j.cdc.2020.100496. DOI
Moutcine A.; Laghlimi C.; Ifguis O.; Smaini M. A.; El Qouatli S. E.; Hammi M.; Chtaini A. A Novel Carbon Paste Electrode Modified by NP-Al2O3 for the Electrochemical Simultaneous Detection of Pb (II) and Hg (II). Diamond Relat. Mater. 2020, 104, 107747.10.1016/j.diamond.2020.107747. DOI
Fathinezhad M.; AbbasiTarighat M.; Dastan D. Chemometrics Heavy Metal Content Clusters Using Electrochemical Data of Modified Carbon Paste Electrode. Environ. Nanotechnol. Monit. Manag. 2020, 14, 100307.10.1016/j.enmm.2020.100307. DOI
Hassan K. M.; Gaber S. E.; Altahan M. F.; Azzem M. A. Single and Simultaneous Voltammetric Sensing of Lead(II), Cadmium(II) and Zinc(II) Using a Bimetallic Hg-Bi Supported on Poly(1,2-Diaminoanthraquinone)/Glassy Carbon Modified Electrode. Sens. Bio-Sensing Res. 2020, 29, 100369.10.1016/j.sbsr.2020.100369. DOI
Xu C.; Liu J.; Bi Y.; Ma C.; Bai J.; Hu Z.; Zhou M. Biomass Derived Worm-like Nitrogen-Doped-Carbon Framework for Trace Determination of Toxic Heavy Metal Lead (II). Anal. Chim. Acta 2020, 1116, 16–26. 10.1016/j.aca.2020.04.033. PubMed DOI
U.S. EPA . Method 3050B: Acid Digestion of Sediments, Sludges, and Soils, Revision 2: Washington, DC, 1996.