Impaired intestinal permeability in patients with multiple sclerosis
Jazyk angličtina Země Česko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
37581230
DOI
10.5507/bp.2023.033
Knihovny.cz E-zdroje
- Klíčová slova
- I-FABP, claudin-3, clinically isolated syndrome, intestinal permeability, multiple sclerosis,
- MeSH
- biologické markery krev MeSH
- claudin-3 * krev MeSH
- dospělí MeSH
- funkce střevní bariéry MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- permeabilita MeSH
- proteiny vázající mastné kyseliny * krev MeSH
- roztroušená skleróza * patofyziologie krev farmakoterapie MeSH
- střevní sliznice * metabolismus patofyziologie MeSH
- studie případů a kontrol MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biologické markery MeSH
- claudin-3 * MeSH
- CLDN3 protein, human MeSH Prohlížeč
- proteiny vázající mastné kyseliny * MeSH
BACKGROUND: A number of recent studies have shown that the intestinal microbiome, part of the brain-gut axis, is implicated in the pathophysiology of multiple sclerosis. An essential part of this axis, is the intestinal barrier and gastrointestinal disorders with intestinal barrier dysregulation appear to be linked to CNS demyelination, and hence involved in the etiopathogenesis of multiple sclerosis (MS). OBJECTIVE: The aim of this study was to evaluate the integrity of the intestinal barrier in patients with clinically definite multiple sclerosis (CDMS) and clinically isolated syndrome (CIS) using two serum biomarkers, claudin-3 (CLDN3), a component of tight epithelial junctions, and intestinal fatty acid binding protein (I-FABP), a cytosolic protein in enterocytes. METHODS: Serum levels of CLDN3 in 37 MS patients and 22 controls, and serum levels of I-FABP in 46 MS patients and 51 controls were measured using commercial ELISA kits. Complete laboratory tests excluded the presence of gluten-related disorders in all subjects. Thirty MS patients received either disease-modifying drugs (DMD), immunosuppression (IS) or corticosteroid treatment. RESULTS: CLDN3 levels were only significantly higher in the MS patients treated with DMD or IS compared to the control group (P=0.006). There were no differences in I-FABP serum levels between the groups. Serum CLDN3 levels did not correlate with serum I-FABP levels in CDMS, in CIS patients or controls. CONCLUSIONS: In multiple sclerosis patients, the intestinal epithelium may be impaired with increased permeability, but without significant enterocyte damage characterized by intracellular protein leakage. Based on our data, CLDN3 serum levels appear to assess intestinal dysfunction in MS patients but mainly in treated ones.
Zobrazit více v PubMed
Rodríguez Murúa S, Farez MF, Quintana FJ. The Immune Response in Multiple Sclerosis. Annual Review of Pathology: Mechanisms of Disease 2022;24;17(1):121-39. PubMed DOI
Eslahi M, Nematbakhsh N, Dastmalchi N, Teimourian S, Safaralizadeh R. An Updated Review of Epigenetic-Related Mechanisms and their Contribution to Multiple Sclerosis Disease. CNS Neurol Disord Drug Targets 2023;22(3):381-93. PubMed DOI
Farahmandfard MA, Naghibzadeh-Tahami A, Khanjani N. Ambient air pollution and multiple sclerosis: a systematic review. Rev Environ Health 2021;4;36(4):535-44. PubMed DOI
Fialová L, Bartos A, Švarcová J, Zimova D, Kotoucova J, Malbohan I. Serum and cerebrospinal fluid light neurofilaments and antibodies against them in clinically isolated syndrome and multiple sclerosis. J Neuroimmunol 2013;15;262(1-2):113-20. PubMed DOI
Fialová L, Bartos A, Švarcová J, Zimova D, Kotoucova J. Serum and cerebrospinal fluid heavy neurofilaments and antibodies against them in early multiple sclerosis. J Neuroimmunol 2013;259(1-2):81-7. PubMed DOI
Parodi B, Kerlero de Rosbo N. The Gut-Brain Axis in Multiple Sclerosis. Is Its Dysfunction a Pathological Trigger or a Consequence of the Disease? Front Immunol 2021;12:718220. PubMed DOI
Sorboni SG, Moghaddam HS, Jafarzadeh-Esfehani R, Soleimanpour S. A Comprehensive Review on the Role of the Gut Microbiome in Human Neurological Disorders. Clin Microbiol Rev 2022;35(1):e0033820. doi: 10.1128/CMR.00338-20 PubMed DOI
Tlaskalová-Hogenová H, Tucková L, Stepánková R, Hudcovic T, Palová-Jelínková L, Kozáková H, Rossmann P, Sanchez D, Cinová J, Hrncír T, Kverka M, Frolová L, Uhlig H, Powrie F, Bland P. Involvement of innate immunity in the development of inflammatory and autoimmune diseases. Ann N Y Acad Sci 2005;1051:787-98. PubMed DOI
Štětkářová I, Hoffmanová I, Bartoš A, Coufal Š, Zimová D, Szabová Z, Bučilová V, Medová E, Tlaskalová-Hogenová H. Indicators of enterocyte damage and small intestinal permeability in multiple sclerosis: a pilot study. Inflammation and tissue damage. Proceedings of ECTRIMS; 2015 7-10 October; Barcelona, Spain. Multiple Sclerosis Journal, p. 809-838.
Buscarinu MC, Cerasoli B, Annibali V, Policano C, Lionetto L, Capi M, Mechelli R, Romano S, Fornasiero A, Mattei G, Piras E, Angelini DF, Battistini L, Simmaco M, Umeton R, Salvetti M, Ristori G. Altered intestinal permeability in patients with relapsing-remitting multiple sclerosis: A pilot study. Mult Scler 2017;23(3):442-6. doi: 10.1177/1352458516652498 PubMed DOI
Sjöström B, Bredberg A, Mandl T, Alonso-Magdalena L, Ohlsson B, Lavasani S, Nouri M, Henriksson G. Increased intestinal permeability in primary Sjögren's syndrome and multiple sclerosis. Journal of Translational Autoimmunity [Internet] 2021 [cited 2022];4:100082. Available from: https://pubmed.ncbi.nlm.nih.gov/33506194/ PubMed DOI
Buscarinu MC, Gargano F, Lionetto L, Capi M, Morena E, Fornasiero A, Reni? R, Landi AC, Pellicciari G, Romano C, Mechelli R, Romano S, Borsellino G, Battistini L, Simmaco M, Fagnani C, Salvetti M, Ristori G. Intestinal Permeability and Circulating CD161+CCR6+CD8+T Cells in Patients With Relapsing-Remitting Multiple Sclerosis Treated With Dimethylfumarate. Front Neurol 2021;12:683398. doi: 10.3389/fneur.2021.683398 PubMed DOI
Alizadeh A, Akbari P, Garssen J, Fink-Gremmels J, Braber S. Epithelial integrity, junctional complexes, and biomarkers associated with intestinal functions. Tissue Barriers 2022;10(3):1996830. PubMed DOI
Schoultz I, Keita ?V. The Intestinal Barrier and Current Techniques for the Assessment of Gut Permeability. Cells 2020;17;9(8):1909. PubMed DOI
Lu Z, Ding L, Lu Q, Chen YH. Claudins in intestines. Tissue Barriers 2013;1(3):e24978. PubMed DOI
Günzel D, Yu AS. Claudins and the modulation of tight junction permeability. Physiol Rev 2013;93(2):525-69. PubMed DOI
Tsukita S, Tanaka H, Tamura A. The Claudins: From Tight Junctions to Biological Systems. Trends Biochem Sci 2019;44(2):141-52. doi: 10.1016/j.tibs.2018.09.008 PubMed DOI
Barmeyer C, Fromm M, Schulzke JD. Active and passive involvement of claudins in the pathophysiology of intestinal inflammatory diseases. Pflugers Arch 2017;469(1):15-26. PubMed DOI
Agellon LB, Toth MJ, Thomson AB. Intracellular lipid binding proteins of the small intestine. Mol Cell Biochem 2002;239(1-2):79-82. DOI
Funaoka H, Kanda T, Fujii H. Intestinal fatty acid-binding protein (I-FABP) as a new biomarker for intestinal diseases. Rinsho Byori 2010;58(2):162-8.
Gajda AM, Storch J. Enterocyte fatty acid-binding proteins (FABPs): different functions of liver and intestinal FABPs in the intestine. Prostaglandins Leukot Essent Fatty Acids 2015;93:9-16. doi: 10.1016/j.plefa.2014.10.001 PubMed DOI
Pelsers MM, Namiot Z, Kisielewski W, Namiot A, Januszkiewicz M, Hermens WT, Glatz JF. Intestinal-type and liver-type fatty acid-binding protein in the intestine. Tissue distribution and clinical utility. Clin Biochem 2003;36(7):529-35. PubMed DOI
Vreugdenhil AC, Wolters VM, Adriaanse MP, Van den Neucker AM, van Bijnen AA, Houwen R, Buurman WA. Additional value of serum I-FABP levels for evaluating celiac disease activity in children. Scand J Gastroenterol 2011;46(12):1435-41. PubMed DOI
Adriaanse MPM, Mubarak A, Riedl RG, Ten Kate FJW, Damoiseaux JGMC, Buurman WA, Houwen RHJ, Vreugdenhil ACE; Celiac Disease Study Group. Progress towards non-invasive diagnosis and follow-up of celiac disease in children; a prospective multicentre study to the usefulness of plasma I-FABP. Sci Rep 2017;7(1):8671. PubMed DOI
Thuijls G, van Wijck K, Grootjans J, Derikx JP, van Bijnen AA, Heineman E, Dejong CH, Buurman WA, Poeze M. Early diagnosis of intestinal ischemia using urinary and plasma fatty acid binding proteins. Ann Surg 2011;253(2):303-8. PubMed DOI
Yang G, Wang Y, Jiang X. Diagnostic Value of Intestinal Fatty-Acid-Binding Protein in Necrotizing Enterocolitis: A Systematic Review and Meta-Analysis. Indian J Pediatr 2016;83(12-13):1410-9. doi: 10.1007/s12098-016-2144-9 PubMed DOI
Cheng S, Yu J, Zhou M, Tu Y, Lu Q. Serologic Intestinal-Fatty Acid Binding Protein in Necrotizing Enterocolitis Diagnosis: A Meta-Analysis. Biomed Res Int 2015;2015:156704. doi: 10.1155/2015/156704 PubMed DOI
Sun DL, Cen YY, Li SM, Li WM, Lu QP, Xu PY. Accuracy of the serum intestinal fatty-acid-binding protein for diagnosis of acute intestinal ischemia: a meta-analysis. Scientific Reports 2016;29;6(1):34371. PubMed DOI
Akdis CA. Does the epithelial barrier hypothesis explain the increase in allergy, autoimmunity and other chronic conditions? Nat Rev Immunol 2021;21(11):739-51. PubMed DOI
Dumitrescu L, Marta D, Dănău A, Lefter A, Tulbă D, Cozma L, Manole E, Cherghiceanu M, Ceafalan CL, Popescu OB. Serum and Fecal Markers of Intestinal Inflammation and Intestinal Barrier Permeability Are Elevated in Parkinson's Disease. Front Neurosci 2021;15:689723. doi: 10.3389/fnins.2021.689723 PubMed DOI
Zhang R, Miller RG, Gascon R, Champion S, Katz J, Lancero M, Narvaez A, Honrada R, Ruvalcaba D, McGrath MS. Circulating endotoxin and systemic immune activation in sporadic amyotrophic lateral sclerosis (sALS). J Neuroimmunol 2009;206(1-2):121-4. PubMed DOI
Olsson A, Gustavsen S, Hasselbalch IC, Langkilde AR, Sellebjerg F, Oturai AB, S?ndergaard HB. Biomarkers of inflammation and epithelial barrier function in multiple sclerosis. Mult Scler Relat Disord 2020;46:102520. doi: 10.1016/j.msard.2020.102520 PubMed DOI
Olsson A, Gustavsen S, Langkilde AR, Hansen TH, Sellebjerg F, Bach S?ndergaard H, Oturau AB. Circulating levels of tight junction proteins in multiple sclerosis: Association with inflammation and disease activity before and after disease modifying therapy. Mult Scler Relat Disord 2021;54:103136. PubMed DOI
Schwiertz A, Spiegel J, Dillmann U, Grundmann D, Bürmann J, Faßbender K, Schafer KH, Unger MM. Fecal markers of intestinal inflammation and intestinal permeability are elevated in Parkinson's disease. Parkinsonism Relat Disord 2018;50:104-7. doi: 10.1016/j.parkreldis.2018.02.022 PubMed DOI
Thompson AJ, Banwell BL, Barkhof F, Carroll WM, Coetzee T, Comi G, Correale J, Fazekas F, Filippi M, Freedman MS, Fujihara K, Galetta SL, Hartung HP, Kappos L, Lublin FD, Marrie RA, Miller AE, Miller DH, Montalban X, Mowry EM, Sorensen PS, Tintoré M, Traboulsee AL, Trojano M, Uitdehaag BMJ, Vukusic S, Waubant E, Weinshenker BG, Reingold SC, Cohen JA. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol 2018;17(2):162-73. PubMed DOI
Hartung HP, Graf J, Aktas O, Mares J, Barnett MH. Diagnosis of multiple sclerosis: revisions of the McDonald criteria 2017 - continuity and change. Curr Opin Neurol 2019;32(3):327-37. PubMed DOI
Mirza A, Forbes JD, Zhu F, Bernstein CN, Van Domselaar G, Graham M, Waubant E, Tremlett H. The multiple sclerosis gut microbiota: A systematic review. Mult Scler Relat Disord 2020;37:101427. PubMed DOI
Derikx JP, van Waardenburg DA, Thuijls G, Willigers HM, Koenraads M, van Bijnen AA, Heineman E, Poeze M, Ambergen T, van Ooij A, van Rhijn LW, Buurman WA. New Insight in Loss of Gut Barrier during Major Non-Abdominal Surgery. PLoS One 2008;3(12):e3954. PubMed DOI
Typpo KV, Larmonier CB, Deschenes J, Redford D, Kiela PR, Ghishan FK. Clinical characteristics associated with postoperative intestinal epithelial barrier dysfunction in children with congenital heart disease. Pediatr Crit Care Med 2015;16(1):37-44. doi: 10.1097/PCC.0000000000000256 PubMed DOI
Wang Z, Wang A, Gong Z, Biviano I, Liu H, Hu J. Plasma claudin-3 is associated with tumor necrosis factor-alpha-induced intestinal endotoxemia in liver disease. Clin Res Hepatol Gastroenterol 2019;43(4):410-16. PubMed DOI
Camara-Lemarroy CR, Silva C, Greenfield J, Liu WQ, Metz LM, Yong VW. Biomarkers of intestinal barrier function in multiple sclerosis are associated with disease activity. Mult Scler 2020;26(11):1340-50. PubMed DOI
Wolburg H, Wolburg-Buchholz K, Kraus J, Rascher-Eggstein G, Liebner S, Hamm S, Duffner F, Grote EH, Risau W, Engelhardt B. Localization of claudin-3 in tight junctions of the blood-brain barrier is selectively lost during experimental autoimmune encephalomyelitis and human glioblastoma multiforme. Acta Neuropathologica 2003;25;105(6):586-92. PubMed DOI
Kratzer I, Vasiljevic A, Rey C, Fevre-Montange M, Saunders N, Strazielle N, Ghersi-Egea JF. Complexity and developmental changes in the expression pattern of claudins at the blood-CSF barrier. Histochem Cell Biol 2012;138(6):861-79. PubMed DOI
Kooij G, Kopplin K, Blasig R, Stuiver M, Koning N, Goverse G, van der Pol SM, van Het Hof B, Gollasch M, Drexhage JA, Reijerkerk A, Meij IC, Mebius R, Willnow TE, Müller D, Blasig IE, de Vries HE. Disturbed function of the blood-cerebrospinal fluid barrier aggravates neuro-inflammation. Acta Neuropathol 2014;128(2):267-77. PubMed DOI
Steinemann A, Galm I, Chip S, Nitsch C, Maly IP. Claudin-1, -2 and -3 Are Selectively Expressed in the Epithelia of the Choroid Plexus of the Mouse from Early Development and into Adulthood While Claudin-5 is Restricted to Endothelial Cells. Front Neuroanat 2016;10:16. doi: 10.3389/fnana.2016.00016 PubMed DOI
Castro Dias M, Coisne C, Lazarevic I, Baden P, Hata M, Iwamoto N, Francisco DMF, Vanlandewijck M, He L, Baier FA, Stroka D, Bruggmann R, Lyck R, Enzmann G, Deutsch U, Betsholtz C, Furuse M, Tsukita S, Engelhardt B. Claudin-3-deficient C57BL/6J mice display intact brain barriers. Sci Rep 2019;18;9(1):203. PubMed DOI
González-Oria MC, Márquez-Coello M, Girón-Ortega JA, Argente J, Moya M, Girón-González JA. Monocyte and Lymphocyte Activation and Regulation in Multiple Sclerosis Patients. Therapy Effects. J Neuroimmune Pharmacol 2019;14(3):413-22. doi: 10.1007/s11481-018-09832-z PubMed DOI
Saresella M, Marventano I, Barone M, La Rosa F, Piancone F, Mendozzi L, d'Arma A, Rossi V, Pugnetti L, Roda G, Casagni E, Cas MD, Paroni R, Brigidi P, Turroni S, Clerici M. Alterations in Circulating Fatty Acid Are Associated With Gut Microbiota Dysbiosis and Inflammation in Multiple Sclerosis. Front Immunol 2020;11:1390. doi: 10.3389/fimmu.2020.01390 PubMed DOI
Camara-Lemarroy CR. Can Our Guts Tell Us Anything About MS? J Neuroimmune Pharmacol 2019;14(3):367-8. doi: 10.1007/s11481-019-09841-6 PubMed DOI
Sikora M, Stec A, Chrabaszcz M, Giebultowicz J, Samborowska E, Jazwiec R, Dadlez M, Olszewska M, Rudnicka L. Clinical Implications of Intestinal Barrier Damage in Psoriasis. J Inflamm Res 2021;14:237-43. PubMed DOI