Ionic Environment Affects Biomolecular Interactions of Amyloid-β: SPR Biosensor Study
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-23787X
Grantová Agentura České Republiky
19-02739S
Grantová Agentura České Republiky
PubMed
33419257
PubMed Central
PMC7766583
DOI
10.3390/ijms21249727
PII: ijms21249727
Knihovny.cz E-zdroje
- Klíčová slova
- 17β-hydroxysteroid dehydrogenase 10 (17β-HSD10), amyloid beta (Aβ), biomolecular interactions, cyclophilin D (cypD), ionic environment, mitochondrial matrix, surface plasmon resonance (SPR),
- MeSH
- 17-hydroxysteroidní dehydrogenasy chemie genetika MeSH
- Alzheimerova nemoc diagnóza genetika patologie MeSH
- amyloidní beta-protein chemie MeSH
- biosenzitivní techniky metody MeSH
- ionty chemie MeSH
- lidé MeSH
- mitochondriální proteiny chemie MeSH
- mitochondrie chemie MeSH
- peptidové fragmenty chemie genetika MeSH
- peptidylprolylisomerasa F chemie genetika MeSH
- povrchová plasmonová rezonance metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 17-hydroxysteroidní dehydrogenasy MeSH
- 3 (or 17)-beta-hydroxysteroid dehydrogenase MeSH Prohlížeč
- amyloidní beta-protein MeSH
- ionty MeSH
- mitochondriální proteiny MeSH
- peptidové fragmenty MeSH
- peptidylprolylisomerasa F MeSH
In early stages of Alzheimer's disease (AD), amyloid beta (Aβ) accumulates in the mitochondrial matrix and interacts with mitochondrial proteins, such as cyclophilin D (cypD) and 17β-hydroxysteroid dehydrogenase 10 (17β-HSD10). Multiple processes associated with AD such as increased production or oligomerization of Aβ affect these interactions and disbalance the equilibrium between the biomolecules, which contributes to mitochondrial dysfunction. Here, we investigate the effect of the ionic environment on the interactions of Aβ (Aβ1-40, Aβ1-42) with cypD and 17β-HSD10 using a surface plasmon resonance (SPR) biosensor. We show that changes in concentrations of K+ and Mg2+ significantly affect the interactions and may increase the binding efficiency between the biomolecules by up to 35% and 65% for the interactions with Aβ1-40 and Aβ1-42, respectively, in comparison with the physiological state. We also demonstrate that while the binding of Aβ1-40 to cypD and 17β-HSD10 takes place preferentially around the physiological concentrations of ions, decreased concentrations of K+ and increased concentrations of Mg2+ promote the interaction of both mitochondrial proteins with Aβ1-42. These results suggest that the ionic environment represents an important factor that should be considered in the investigation of biomolecular interactions taking place in the mitochondrial matrix under physiological as well as AD-associated conditions.
Zobrazit více v PubMed
Murphy M.P., LeVine H., 3rd Alzheimer’s disease and the amyloid-beta peptide. J. Alzheimers Dis. Jad. 2010;19:311–323. doi: 10.3233/JAD-2010-1221. PubMed DOI PMC
Yan Y., Wang C. Aβ42 is More Rigid than Aβ40 at the C Terminus: Implications for Aβ Aggregation and Toxicity. J. Mol. Biol. 2006;364:853–862. doi: 10.1016/j.jmb.2006.09.046. PubMed DOI
Lührs T. 3D structure of Alzheimer’s amyloid-β(1–42) fibrils. Proc. Natl. Acad. Sci. USA. 2005;102:17342–17347. doi: 10.1073/pnas.0506723102. PubMed DOI PMC
Garai K., Frieden C. Quantitative analysis of the time course of Aβ oligomerization and subsequent growth steps using tetramethylrhodamine-labeled Aβ. Proc. Natl. Acad. Sci. USA. 2013;110:3321–3326. doi: 10.1073/pnas.1222478110. PubMed DOI PMC
Reddy P.H. Amyloid beta, mitochondrial structural and functional dynamics in Alzheimer’s disease. Exp. Neurol. 2009;218:286–292. doi: 10.1016/j.expneurol.2009.03.042. PubMed DOI PMC
Crouch P.J., Harding S.-M.E., White A.R., Camakaris J., Bush A.I., Masters C.L. Mechanisms of Aβ mediated neurodegeneration in Alzheimer’s disease. Int. J. Biochem. Cell Biol. 2008;40:181–198. doi: 10.1016/j.biocel.2007.07.013. PubMed DOI
Swerdlow R.H., Burns J.M., Khan S.M. The Alzheimer‘s disease mitochondrial cascade hypothesis: Progress and perspectives. Biochim. Et Biophys. Acta (Bba)-Mol. Basis Dis. 2014;1842:1219–1231. doi: 10.1016/j.bbadis.2013.09.010. PubMed DOI PMC
Cline E.N., Bicca M.A., Viola K.L., Klein W.L. The Amyloid-β Oligomer Hypothesis: Beginning of the Third Decade. J. Alzheimers Dis. Jad. 2018;64:S567–S610. doi: 10.3233/JAD-179941. PubMed DOI PMC
Berridge M.J. Calcium hypothesis of Alzheimer’s disease. Pflügers Arch. -Eur. J. Physiol. 2010;459:441–449. doi: 10.1007/s00424-009-0736-1. PubMed DOI
Sciacca M.F., Lolicato F., Tempra C., Scollo F., Sahoo B.R., Watson M.D., García-Viñuales S., Milardi D., Raudino A., Lee J.C. Lipid-Chaperone Hypothesis: A Common Molecular Mechanism of Membrane Disruption by Intrinsically Disordered Proteins. Acs Chem. Neurosci. 2020;11:4336–4350. doi: 10.1021/acschemneuro.0c00588. PubMed DOI PMC
Du H., Guo L., Fang F., Chen D., Sosunov A.A., McKhann G.M., Yan Y., Wang C., Zhang H., Molkentin J.D., et al. Cyclophilin D deficiency attenuates mitochondrial and neuronal perturbation and ameliorates learning and memory in Alzheimer’s disease. Nat. Med. 2008;14:1097–1105. doi: 10.1038/nm.1868. PubMed DOI PMC
Du H., Guo L., Zhang W., Rydzewska M., Yan S. Cyclophilin D deficiency improves mitochondrial function and learning/memory in aging Alzheimer disease mouse model. Neurobiol. Aging. 2011;32:398–406. doi: 10.1016/j.neurobiolaging.2009.03.003. PubMed DOI PMC
Yan Y., Liu Y., Sorci M., Belfort G., Lustbader J.W., Yan S.S., Wang C. Surface Plasmon Resonance and Nuclear Magnetic Resonance Studies of ABAD−Aβ Interaction. Biochemistry. 2007;46:1724–1731. doi: 10.1021/bi061314n. PubMed DOI
Lustbader J.W., Cirilli M., Lin C., Xu H.W., Takuma K., Wang N., Caspersen C., Chen X., Pollak S., Chaney M., et al. ABAD directly links Abeta to mitochondrial toxicity in Alzheimer’s disease. Science. 2004;304:448–452. doi: 10.1126/science.1091230. PubMed DOI
Yan S.D., Stern D.M. Mitochondrial dysfunction and Alzheimer‘s disease: Role of amyloid-β peptide alcohol dehydrogenase (ABAD) Int. J. Exp. Pathol. 2005;86:161–171. doi: 10.1111/j.0959-9673.2005.00427.x. PubMed DOI PMC
Luo Z., Zhang J., Wang Y., Chen J., Li Y., Duan Y. An aptamer based method for small molecules detection through monitoring salt-induced AuNPs aggregation and surface plasmon resonance (SPR) detection. Sens. Actuators B Chem. 2016;236:474–479. doi: 10.1016/j.snb.2016.06.035. DOI
Singh P., Suman S., Chandna S., Das T.K. Possible role of amyloid-beta, adenine nucleotide translocase and cyclophilin-D interaction in mitochondrial dysfunction of Alzheimer‘s disease. Bioinformation. 2009;3:440–445. doi: 10.6026/97320630003440. PubMed DOI PMC
Rao V.K., Carlson E.A., Yan S.S. Mitochondrial permeability transition pore is a potential drug target for neurodegeneration. Biochim. Et Biophys. Acta (Bba)-Mol. Basis Dis. 2014;1842:1267–1272. doi: 10.1016/j.bbadis.2013.09.003. PubMed DOI PMC
Bartolini M., Naldi M., Fiori J., Valle F., Biscarini F., Nicolau D.V., Andrisano V. Kinetic characterization of amyloid-beta 1–42 aggregation with a multimethodological approach. Anal. Biochem. 2011;414:215–225. doi: 10.1016/j.ab.2011.03.020. PubMed DOI
Hou L., Shao H., Zhang Y., Li H., Menon N.K., Neuhaus E.B., Brewer J.M., Byeon I.-J.L., Ray D.G., Vitek M.P., et al. Solution NMR Studies of the Aβ(1−40) and Aβ(1−42) Peptides Establish that the Met35 Oxidation State Affects the Mechanism of Amyloid Formation. J. Am. Chem. Soc. 2004;126:1992–2005. doi: 10.1021/ja036813f. PubMed DOI
Wang Q., Walsh D.M., Rowan M.J., Selkoe D.J., Anwyl R. Block of Long-Term Potentiation by Naturally Secreted and Synthetic Amyloid β-Peptide in Hippocampal Slices Is Mediated via Activation of the Kinases c-Jun N-Terminal Kinase, Cyclin-Dependent Kinase 5, and p38 Mitogen-Activated Protein Kinase as well as Metabotropic Glutamate Receptor Type 5. J. Neurosci. 2004;24:3370–3378. doi: 10.1523/jneurosci.1633-03.2004. PubMed DOI PMC
Kittelberger K.A., Piazza F., Tesco G., Reijmers L.G. Natural Amyloid-Beta Oligomers Acutely Impair the Formation of a Contextual Fear Memory in Mice. PLoS ONE. 2012;7:e29940. doi: 10.1371/journal.pone.0029940. PubMed DOI PMC
Hemmerová E., Špringer T., Krištofiková Z., Homola J. Study of Biomolecular Interactions of Mitochondrial Proteins Related to Alzheimer’s Disease: Toward Multi-Interaction Biomolecular Processes. Biomolecules. 2020;10:1214. doi: 10.3390/biom10091214. PubMed DOI PMC
Hemmerová E., Špringer T., Krištofiková Z., Homola J. In vitro study of interaction of 17β-hydroxysteroid dehydrogenase type 10 and cyclophilin D and its potential implications for Alzheimer’s disease. Sci. Rep. 2019;9:16700. doi: 10.1038/s41598-019-53157-7. PubMed DOI PMC
Krištofiková Z., Špringer T., Gedeonová E., Hofmannová A., Říčný J., Hromádková L., Vyhnálek M., Laczo J., Nikolai T., Hort J., et al. Interactions of 17β-Hydroxysteroid Dehydrogenase Type 10 and Cyclophilin D in Alzheimer’s Disease. Neurochem. Res. 2020;45:915–927. PubMed PMC
Bradshaw P.C., Pfeiffer D.R. Release of Ca2+ and Mg2+ from yeast mitochondria is stimulated by increased ionic strength. Bmc Biochem. 2006;7:4. doi: 10.1186/1471-2091-7-4. PubMed DOI PMC
Haumann J., Dash R.K., Stowe D.F., Boelens A.D., Beard D.A., Camara A.K. Mitochondrial free [Ca2+] increases during ATP/ADP antiport and ADP phosphorylation: Exploration of mechanisms. Biophys. J. 2010;99:997–1006. doi: 10.1016/j.bpj.2010.04.069. PubMed DOI PMC
Jung D.W., Apel L., Brierley G.P. Matrix free magnesium changes with metabolic state in isolated heart mitochondria. Biochemistry. 1990;29:4121–4128. doi: 10.1021/bi00469a015. PubMed DOI
Yamanaka R., Tabata S., Shindo Y., Hotta K., Suzuki K., Soga T., Oka K. Mitochondrial Mg2+ homeostasis decides cellular energy metabolism and vulnerability to stress. Sci. Rep. 2016;6:30027. doi: 10.1038/srep30027. PubMed DOI PMC
O’Rourke B., Cortassa S., Aon M.A. Mitochondrial Ion Channels: Gatekeepers of Life and Death. Physiology. 2005;20:303–315. doi: 10.1152/physiol.00020.2005. PubMed DOI PMC
Garlid K.D., Paucek P. Mitochondrial potassium transport: The K+ cycle. Biochim. Et Biophys. Acta (Bba)-Bioenerg. 2003;1606:23–41. doi: 10.1016/S0005-2728(03)00108-7. PubMed DOI
Kaasik A., Safiulina D., Zharkovsky A., Veksler V. Regulation of mitochondrial matrix volume. Am. J. Physiol. -Cell Physiol. 2007;292:C157–C163. doi: 10.1152/ajpcell.00272.2006. PubMed DOI
Augustynek B., Wrzosek A., Koprowski P., Kielbasa A., Bednarczyk P., Lukasiak A., Dolowy K., Szewczyk A. What we don’t know about mitochondrial potassium channels? Postepy Biochem. 2016;62:189–198. PubMed
Szabò I., Leanza L., Gulbins E., Zoratti M. Physiology of potassium channels in the inner membrane of mitochondria. Pflügers Arch. -Eur. J. Physiol. 2012;463:231–246. doi: 10.1007/s00424-011-1058-7. PubMed DOI
Zoeteweij J.P., van de Water B., de Bont H.J., Nagelkerke J.F. Mitochondrial K+ as modulator of Ca(2+)-dependent cytotoxicity in hepatocytes. Novel application of the K(+)-sensitive dye PBFI (K(+)-binding benzofuran isophthalate) to assess free mitochondrial K+ concentrations. Biochem. J. 1994;299:539–543. doi: 10.1042/bj2990539. PubMed DOI PMC
Yamanaka R., Shindo Y., Oka K. Magnesium Is a Key Player in Neuronal Maturation and Neuropathology. Int. J. Mol. Sci. 2019;20:3439. doi: 10.3390/ijms20143439. PubMed DOI PMC
Gout E., Rébeillé F., Douce R., Bligny R. Interplay of Mg(2+), ADP, and ATP in the cytosol and mitochondria: Unravelling the role of Mg(2+) in cell respiration. Proc. Natl. Acad. Sci. USA. 2014;111:E4560–E4567. doi: 10.1073/pnas.1406251111. PubMed DOI PMC
Pilchova I., Klacanova K., Tatarkova Z., Kaplan P., Racay P. The Involvement of Mg2+ in Regulation of Cellular and Mitochondrial Functions. Oxidative Med. Cell. Longev. 2017;2017:8. doi: 10.1155/2017/6797460. PubMed DOI PMC
Tramutola A., Lanzillotta C., Perluigi M., Butterfield D.A. Oxidative stress, protein modification and Alzheimer disease. Brain Res. Bull. 2017;133:88–96. doi: 10.1016/j.brainresbull.2016.06.005. PubMed DOI
Bednarczyk P., Dołowy K., Szewczyk A. Matrix Mg2+ regulates mitochondrial ATP-dependent potassium channel from heart. Febs Lett. 2005;579:1625–1632. doi: 10.1016/j.febslet.2005.01.077. PubMed DOI
Du H., Yan S.S. Mitochondrial permeability transition pore in Alzheimer’s disease: Cyclophilin D and amyloid beta. Biochim. Et Biophys. Acta (Bba)-Mol. Basis Dis. 2010;1802:198–204. doi: 10.1016/j.bbadis.2009.07.005. PubMed DOI PMC
Špringer T., Piliarik M., Homola J. Surface plasmon resonance sensor with dispersionless microfluidics for direct detection of nucleic acids at the low femtomole level. Sens. Actuators B Chem. 2010;145:588–591.
Špringer T., ChadtováSong X., Ermini M.L., Lamačová J., Homola J. Functional gold nanoparticles for optical affinity biosensing. Anal. Bioanal. Chem. 2017;409:4087–4097. PubMed