Ionic Environment Affects Biomolecular Interactions of Amyloid-β: SPR Biosensor Study

. 2020 Dec 20 ; 21 (24) : . [epub] 20201220

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33419257

Grantová podpora
20-23787X Grantová Agentura České Republiky
19-02739S Grantová Agentura České Republiky

In early stages of Alzheimer's disease (AD), amyloid beta (Aβ) accumulates in the mitochondrial matrix and interacts with mitochondrial proteins, such as cyclophilin D (cypD) and 17β-hydroxysteroid dehydrogenase 10 (17β-HSD10). Multiple processes associated with AD such as increased production or oligomerization of Aβ affect these interactions and disbalance the equilibrium between the biomolecules, which contributes to mitochondrial dysfunction. Here, we investigate the effect of the ionic environment on the interactions of Aβ (Aβ1-40, Aβ1-42) with cypD and 17β-HSD10 using a surface plasmon resonance (SPR) biosensor. We show that changes in concentrations of K+ and Mg2+ significantly affect the interactions and may increase the binding efficiency between the biomolecules by up to 35% and 65% for the interactions with Aβ1-40 and Aβ1-42, respectively, in comparison with the physiological state. We also demonstrate that while the binding of Aβ1-40 to cypD and 17β-HSD10 takes place preferentially around the physiological concentrations of ions, decreased concentrations of K+ and increased concentrations of Mg2+ promote the interaction of both mitochondrial proteins with Aβ1-42. These results suggest that the ionic environment represents an important factor that should be considered in the investigation of biomolecular interactions taking place in the mitochondrial matrix under physiological as well as AD-associated conditions.

Zobrazit více v PubMed

Murphy M.P., LeVine H., 3rd Alzheimer’s disease and the amyloid-beta peptide. J. Alzheimers Dis. Jad. 2010;19:311–323. doi: 10.3233/JAD-2010-1221. PubMed DOI PMC

Yan Y., Wang C. Aβ42 is More Rigid than Aβ40 at the C Terminus: Implications for Aβ Aggregation and Toxicity. J. Mol. Biol. 2006;364:853–862. doi: 10.1016/j.jmb.2006.09.046. PubMed DOI

Lührs T. 3D structure of Alzheimer’s amyloid-β(1–42) fibrils. Proc. Natl. Acad. Sci. USA. 2005;102:17342–17347. doi: 10.1073/pnas.0506723102. PubMed DOI PMC

Garai K., Frieden C. Quantitative analysis of the time course of Aβ oligomerization and subsequent growth steps using tetramethylrhodamine-labeled Aβ. Proc. Natl. Acad. Sci. USA. 2013;110:3321–3326. doi: 10.1073/pnas.1222478110. PubMed DOI PMC

Reddy P.H. Amyloid beta, mitochondrial structural and functional dynamics in Alzheimer’s disease. Exp. Neurol. 2009;218:286–292. doi: 10.1016/j.expneurol.2009.03.042. PubMed DOI PMC

Crouch P.J., Harding S.-M.E., White A.R., Camakaris J., Bush A.I., Masters C.L. Mechanisms of Aβ mediated neurodegeneration in Alzheimer’s disease. Int. J. Biochem. Cell Biol. 2008;40:181–198. doi: 10.1016/j.biocel.2007.07.013. PubMed DOI

Swerdlow R.H., Burns J.M., Khan S.M. The Alzheimer‘s disease mitochondrial cascade hypothesis: Progress and perspectives. Biochim. Et Biophys. Acta (Bba)-Mol. Basis Dis. 2014;1842:1219–1231. doi: 10.1016/j.bbadis.2013.09.010. PubMed DOI PMC

Cline E.N., Bicca M.A., Viola K.L., Klein W.L. The Amyloid-β Oligomer Hypothesis: Beginning of the Third Decade. J. Alzheimers Dis. Jad. 2018;64:S567–S610. doi: 10.3233/JAD-179941. PubMed DOI PMC

Berridge M.J. Calcium hypothesis of Alzheimer’s disease. Pflügers Arch. -Eur. J. Physiol. 2010;459:441–449. doi: 10.1007/s00424-009-0736-1. PubMed DOI

Sciacca M.F., Lolicato F., Tempra C., Scollo F., Sahoo B.R., Watson M.D., García-Viñuales S., Milardi D., Raudino A., Lee J.C. Lipid-Chaperone Hypothesis: A Common Molecular Mechanism of Membrane Disruption by Intrinsically Disordered Proteins. Acs Chem. Neurosci. 2020;11:4336–4350. doi: 10.1021/acschemneuro.0c00588. PubMed DOI PMC

Du H., Guo L., Fang F., Chen D., Sosunov A.A., McKhann G.M., Yan Y., Wang C., Zhang H., Molkentin J.D., et al. Cyclophilin D deficiency attenuates mitochondrial and neuronal perturbation and ameliorates learning and memory in Alzheimer’s disease. Nat. Med. 2008;14:1097–1105. doi: 10.1038/nm.1868. PubMed DOI PMC

Du H., Guo L., Zhang W., Rydzewska M., Yan S. Cyclophilin D deficiency improves mitochondrial function and learning/memory in aging Alzheimer disease mouse model. Neurobiol. Aging. 2011;32:398–406. doi: 10.1016/j.neurobiolaging.2009.03.003. PubMed DOI PMC

Yan Y., Liu Y., Sorci M., Belfort G., Lustbader J.W., Yan S.S., Wang C. Surface Plasmon Resonance and Nuclear Magnetic Resonance Studies of ABAD−Aβ Interaction. Biochemistry. 2007;46:1724–1731. doi: 10.1021/bi061314n. PubMed DOI

Lustbader J.W., Cirilli M., Lin C., Xu H.W., Takuma K., Wang N., Caspersen C., Chen X., Pollak S., Chaney M., et al. ABAD directly links Abeta to mitochondrial toxicity in Alzheimer’s disease. Science. 2004;304:448–452. doi: 10.1126/science.1091230. PubMed DOI

Yan S.D., Stern D.M. Mitochondrial dysfunction and Alzheimer‘s disease: Role of amyloid-β peptide alcohol dehydrogenase (ABAD) Int. J. Exp. Pathol. 2005;86:161–171. doi: 10.1111/j.0959-9673.2005.00427.x. PubMed DOI PMC

Luo Z., Zhang J., Wang Y., Chen J., Li Y., Duan Y. An aptamer based method for small molecules detection through monitoring salt-induced AuNPs aggregation and surface plasmon resonance (SPR) detection. Sens. Actuators B Chem. 2016;236:474–479. doi: 10.1016/j.snb.2016.06.035. DOI

Singh P., Suman S., Chandna S., Das T.K. Possible role of amyloid-beta, adenine nucleotide translocase and cyclophilin-D interaction in mitochondrial dysfunction of Alzheimer‘s disease. Bioinformation. 2009;3:440–445. doi: 10.6026/97320630003440. PubMed DOI PMC

Rao V.K., Carlson E.A., Yan S.S. Mitochondrial permeability transition pore is a potential drug target for neurodegeneration. Biochim. Et Biophys. Acta (Bba)-Mol. Basis Dis. 2014;1842:1267–1272. doi: 10.1016/j.bbadis.2013.09.003. PubMed DOI PMC

Bartolini M., Naldi M., Fiori J., Valle F., Biscarini F., Nicolau D.V., Andrisano V. Kinetic characterization of amyloid-beta 1–42 aggregation with a multimethodological approach. Anal. Biochem. 2011;414:215–225. doi: 10.1016/j.ab.2011.03.020. PubMed DOI

Hou L., Shao H., Zhang Y., Li H., Menon N.K., Neuhaus E.B., Brewer J.M., Byeon I.-J.L., Ray D.G., Vitek M.P., et al. Solution NMR Studies of the Aβ(1−40) and Aβ(1−42) Peptides Establish that the Met35 Oxidation State Affects the Mechanism of Amyloid Formation. J. Am. Chem. Soc. 2004;126:1992–2005. doi: 10.1021/ja036813f. PubMed DOI

Wang Q., Walsh D.M., Rowan M.J., Selkoe D.J., Anwyl R. Block of Long-Term Potentiation by Naturally Secreted and Synthetic Amyloid β-Peptide in Hippocampal Slices Is Mediated via Activation of the Kinases c-Jun N-Terminal Kinase, Cyclin-Dependent Kinase 5, and p38 Mitogen-Activated Protein Kinase as well as Metabotropic Glutamate Receptor Type 5. J. Neurosci. 2004;24:3370–3378. doi: 10.1523/jneurosci.1633-03.2004. PubMed DOI PMC

Kittelberger K.A., Piazza F., Tesco G., Reijmers L.G. Natural Amyloid-Beta Oligomers Acutely Impair the Formation of a Contextual Fear Memory in Mice. PLoS ONE. 2012;7:e29940. doi: 10.1371/journal.pone.0029940. PubMed DOI PMC

Hemmerová E., Špringer T., Krištofiková Z., Homola J. Study of Biomolecular Interactions of Mitochondrial Proteins Related to Alzheimer’s Disease: Toward Multi-Interaction Biomolecular Processes. Biomolecules. 2020;10:1214. doi: 10.3390/biom10091214. PubMed DOI PMC

Hemmerová E., Špringer T., Krištofiková Z., Homola J. In vitro study of interaction of 17β-hydroxysteroid dehydrogenase type 10 and cyclophilin D and its potential implications for Alzheimer’s disease. Sci. Rep. 2019;9:16700. doi: 10.1038/s41598-019-53157-7. PubMed DOI PMC

Krištofiková Z., Špringer T., Gedeonová E., Hofmannová A., Říčný J., Hromádková L., Vyhnálek M., Laczo J., Nikolai T., Hort J., et al. Interactions of 17β-Hydroxysteroid Dehydrogenase Type 10 and Cyclophilin D in Alzheimer’s Disease. Neurochem. Res. 2020;45:915–927. PubMed PMC

Bradshaw P.C., Pfeiffer D.R. Release of Ca2+ and Mg2+ from yeast mitochondria is stimulated by increased ionic strength. Bmc Biochem. 2006;7:4. doi: 10.1186/1471-2091-7-4. PubMed DOI PMC

Haumann J., Dash R.K., Stowe D.F., Boelens A.D., Beard D.A., Camara A.K. Mitochondrial free [Ca2+] increases during ATP/ADP antiport and ADP phosphorylation: Exploration of mechanisms. Biophys. J. 2010;99:997–1006. doi: 10.1016/j.bpj.2010.04.069. PubMed DOI PMC

Jung D.W., Apel L., Brierley G.P. Matrix free magnesium changes with metabolic state in isolated heart mitochondria. Biochemistry. 1990;29:4121–4128. doi: 10.1021/bi00469a015. PubMed DOI

Yamanaka R., Tabata S., Shindo Y., Hotta K., Suzuki K., Soga T., Oka K. Mitochondrial Mg2+ homeostasis decides cellular energy metabolism and vulnerability to stress. Sci. Rep. 2016;6:30027. doi: 10.1038/srep30027. PubMed DOI PMC

O’Rourke B., Cortassa S., Aon M.A. Mitochondrial Ion Channels: Gatekeepers of Life and Death. Physiology. 2005;20:303–315. doi: 10.1152/physiol.00020.2005. PubMed DOI PMC

Garlid K.D., Paucek P. Mitochondrial potassium transport: The K+ cycle. Biochim. Et Biophys. Acta (Bba)-Bioenerg. 2003;1606:23–41. doi: 10.1016/S0005-2728(03)00108-7. PubMed DOI

Kaasik A., Safiulina D., Zharkovsky A., Veksler V. Regulation of mitochondrial matrix volume. Am. J. Physiol. -Cell Physiol. 2007;292:C157–C163. doi: 10.1152/ajpcell.00272.2006. PubMed DOI

Augustynek B., Wrzosek A., Koprowski P., Kielbasa A., Bednarczyk P., Lukasiak A., Dolowy K., Szewczyk A. What we don’t know about mitochondrial potassium channels? Postepy Biochem. 2016;62:189–198. PubMed

Szabò I., Leanza L., Gulbins E., Zoratti M. Physiology of potassium channels in the inner membrane of mitochondria. Pflügers Arch. -Eur. J. Physiol. 2012;463:231–246. doi: 10.1007/s00424-011-1058-7. PubMed DOI

Zoeteweij J.P., van de Water B., de Bont H.J., Nagelkerke J.F. Mitochondrial K+ as modulator of Ca(2+)-dependent cytotoxicity in hepatocytes. Novel application of the K(+)-sensitive dye PBFI (K(+)-binding benzofuran isophthalate) to assess free mitochondrial K+ concentrations. Biochem. J. 1994;299:539–543. doi: 10.1042/bj2990539. PubMed DOI PMC

Yamanaka R., Shindo Y., Oka K. Magnesium Is a Key Player in Neuronal Maturation and Neuropathology. Int. J. Mol. Sci. 2019;20:3439. doi: 10.3390/ijms20143439. PubMed DOI PMC

Gout E., Rébeillé F., Douce R., Bligny R. Interplay of Mg(2+), ADP, and ATP in the cytosol and mitochondria: Unravelling the role of Mg(2+) in cell respiration. Proc. Natl. Acad. Sci. USA. 2014;111:E4560–E4567. doi: 10.1073/pnas.1406251111. PubMed DOI PMC

Pilchova I., Klacanova K., Tatarkova Z., Kaplan P., Racay P. The Involvement of Mg2+ in Regulation of Cellular and Mitochondrial Functions. Oxidative Med. Cell. Longev. 2017;2017:8. doi: 10.1155/2017/6797460. PubMed DOI PMC

Tramutola A., Lanzillotta C., Perluigi M., Butterfield D.A. Oxidative stress, protein modification and Alzheimer disease. Brain Res. Bull. 2017;133:88–96. doi: 10.1016/j.brainresbull.2016.06.005. PubMed DOI

Bednarczyk P., Dołowy K., Szewczyk A. Matrix Mg2+ regulates mitochondrial ATP-dependent potassium channel from heart. Febs Lett. 2005;579:1625–1632. doi: 10.1016/j.febslet.2005.01.077. PubMed DOI

Du H., Yan S.S. Mitochondrial permeability transition pore in Alzheimer’s disease: Cyclophilin D and amyloid beta. Biochim. Et Biophys. Acta (Bba)-Mol. Basis Dis. 2010;1802:198–204. doi: 10.1016/j.bbadis.2009.07.005. PubMed DOI PMC

Špringer T., Piliarik M., Homola J. Surface plasmon resonance sensor with dispersionless microfluidics for direct detection of nucleic acids at the low femtomole level. Sens. Actuators B Chem. 2010;145:588–591.

Špringer T., ChadtováSong X., Ermini M.L., Lamačová J., Homola J. Functional gold nanoparticles for optical affinity biosensing. Anal. Bioanal. Chem. 2017;409:4087–4097. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...