In vitro study of interaction of 17β-hydroxysteroid dehydrogenase type 10 and cyclophilin D and its potential implications for Alzheimer's disease
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31723183
PubMed Central
PMC6853915
DOI
10.1038/s41598-019-53157-7
PII: 10.1038/s41598-019-53157-7
Knihovny.cz E-zdroje
- MeSH
- 17-hydroxysteroidní dehydrogenasy metabolismus MeSH
- Alzheimerova nemoc metabolismus patologie MeSH
- amyloidní beta-protein metabolismus MeSH
- lidé MeSH
- mitochondrie metabolismus MeSH
- peptidylprolylisomerasa F metabolismus MeSH
- přechodový pór mitochondriální permeability MeSH
- techniky in vitro MeSH
- transportní proteiny mitochondriální membrány metabolismus MeSH
- vápník metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 17-hydroxysteroidní dehydrogenasy MeSH
- 3 (or 17)-beta-hydroxysteroid dehydrogenase MeSH Prohlížeč
- amyloidní beta-protein MeSH
- peptidylprolylisomerasa F MeSH
- přechodový pór mitochondriální permeability MeSH
- transportní proteiny mitochondriální membrány MeSH
- vápník MeSH
In early stages of Alzheimer's disease (AD), amyloid-β (Aβ) accumulates in neuronal mitochondria where it interacts with a number of biomolecules including 17beta-hydroxysteroide dehydrogenase 10 (17β-HSD10) and cyclophilin D (cypD). It has been hypothesized that 17β-HSD10 interacts with cypD preventing it from opening mitochondrial permeability transition pores and that its regulation during AD may be affected by the accumulation of Aβ. In this work, we demonstrate for the first time that 17β-HSD10 and cypD form a stable complex in vitro. Furthermore, we show that factors, such as pH, ionic environment and the presence of Aβ, affect the ability of 17β-HSD10 to bind cypD. We demonstrate that K+ and Mg2+ ions present at low levels may facilitate this binding. We also show that different fragments of Aβ (Aβ1-40 and Aβ1-42) affect the interaction between 17β-HSD10 and cypD differently and that Aβ1-42 (in contrast to Aβ1-40) is capable of simultaneously binding both 17β-HSD10 and cypD in a tri-complex.
Zobrazit více v PubMed
Helmerhorst E, Chandler DJ, Nussio M, Mamotte CD. Real-time and Label-free Bio-sensing of Molecular Interactions by Surface Plasmon Resonance: A Laboratory Medicine Perspective. Clin Biochem Rev. 2012;33:161–173. PubMed PMC
Ditto NT, Brooks BD. The emerging role of biosensor-based epitope binning and mapping in antibody-based drug discovery. Expert Opinion on Drug Discovery. 2016;11:925–937. doi: 10.1080/17460441.2016.1229295. PubMed DOI
Yasmeen Anila, Ringe Rajesh, Derking Ronald, Cupo Albert, Julien Jean-Philippe, Burton Dennis R, Ward Andrew B, Wilson Ian A, Sanders Rogier W, Moore John P, Klasse Per. Differential binding of neutralizing and non-neutralizing antibodies to native-like soluble HIV-1 Env trimers, uncleaved Env proteins, and monomeric subunits. Retrovirology. 2014;11(1):41. doi: 10.1186/1742-4690-11-41. PubMed DOI PMC
Murphy MP, LeVine H., III Alzheimer’s disease and the amyloid-beta peptide. Journal of Alzheimer’s disease: JAD. 2010;19:311–323. doi: 10.3233/JAD-2010-1221. PubMed DOI PMC
Gabelle A, et al. Correlations between soluble α/β forms of amyloid precursor protein and Aβ38, 40, and 42 in human cerebrospinal fluid. Brain Research. 2010;1357:175–183. doi: 10.1016/j.brainres.2010.08.022. PubMed DOI
Suzuki N, et al. An increased percentage of long amyloid beta protein secreted by familial amyloid beta protein precursor (beta APP717) mutants. Science. 1994;264:1336–1340. doi: 10.1126/science.8191290. PubMed DOI
Crouch PJ, et al. Mechanisms of Aβ mediated neurodegeneration in Alzheimer’s disease. The International Journal of Biochemistry & Cell Biology. 2008;40:181–198. doi: 10.1016/j.biocel.2007.07.013. PubMed DOI
Lührs T, et al. 3D structure of Alzheimer’s amyloid-β(1–42) fibrils. Proceedings of the National Academy of Sciences of the United States of America. 2005;102:17342–17347. doi: 10.1073/pnas.0506723102. PubMed DOI PMC
Garai K, Frieden C. Quantitative analysis of the time course of Aβ oligomerization and subsequent growth steps using tetramethylrhodamine-labeled Aβ. Proceedings of the National Academy of Sciences of the United States of America. 2013;110:3321–3326. doi: 10.1073/pnas.1222478110. PubMed DOI PMC
Muirhead KE, Borger E, Aitken L, Conway SJ, Gunn-Moore FJ. The consequences of mitochondrial amyloid beta-peptide in Alzheimer’s disease. The Biochemical journal. 2010;426:255–270. doi: 10.1042/bj20091941. PubMed DOI
Benek O, et al. A Direct Interaction Between Mitochondrial Proteins and Amyloid-beta Peptide and its Significance for the Progression and Treatment of Alzheimer’s Disease. Current medicinal chemistry. 2015;22:1056–1085. doi: 10.2174/0929867322666150114163051. PubMed DOI
Manczak M, et al. Mitochondria are a direct site of A beta accumulation in Alzheimer’s disease neurons: implications for free radical generation and oxidative damage in disease progression. Human molecular genetics. 2006;15:1437–1449. doi: 10.1093/hmg/ddl066. PubMed DOI
Hansson Petersen CA, et al. The amyloid beta-peptide is imported into mitochondria via the TOM import machinery and localized to mitochondrial cristae. Proc Natl Acad Sci USA. 2008;105:13145–13150. doi: 10.1073/pnas.0806192105. PubMed DOI PMC
Yan SD, Stern DM. Mitochondrial dysfunction and Alzheimer’s disease: role of amyloid-β peptide alcohol dehydrogenase (ABAD) International Journal of Experimental Pathology. 2005;86:161–171. doi: 10.1111/j.0959-9673.2005.00427.x. PubMed DOI PMC
Yan Y, et al. Surface Plasmon Resonance and Nuclear Magnetic Resonance Studies of ABAD−Aβ Interaction. Biochemistry. 2007;46:1724–1731. doi: 10.1021/bi061314n. PubMed DOI
Marques AT, Fernandes PA, Ramos MJ. Molecular dynamics simulations of the amyloid-beta binding alcohol dehydrogenase (ABAD) enzyme. Bioorganic & Medicinal Chemistry. 2008;16:9511–9518. doi: 10.1016/j.bmc.2008.09.043. PubMed DOI
Du H, et al. Cyclophilin D deficiency attenuates mitochondrial and neuronal perturbation and ameliorates learning and memory in Alzheimer’s disease. Nature medicine. 2008;14:1097–1105. doi: 10.1038/nm.1868. PubMed DOI PMC
Du H, Guo L, Zhang W, Rydzewska M, Yan S. Cyclophilin D deficiency improves mitochondrial function and learning/memory in aging Alzheimer disease mouse model. Neurobiology of Aging. 2011;32:398–406. doi: 10.1016/j.neurobiolaging.2009.03.003. PubMed DOI PMC
Yang S-Y, He X-Y, Miller D. Hydroxysteroid (17β) dehydrogenase X in human health and disease. Molecular and Cellular Endocrinology. 2011;343:1–6. doi: 10.1016/j.mce.2011.06.011. PubMed DOI
Rauschenberger K, et al. A non-enzymatic function of 17beta-hydroxysteroid dehydrogenase type 10 is required for mitochondrial integrity and cell survival. EMBO Mol Med. 2010;2:51–62. doi: 10.1002/emmm.200900055. PubMed DOI PMC
Lustbader JW, et al. ABAD directly links Abeta to mitochondrial toxicity in Alzheimer’s disease. Science. 2004;304:448–452. doi: 10.1126/science.1091230. PubMed DOI
Rao VK, Carlson EA, Yan SS. Mitochondrial permeability transition pore is a potential drug target for neurodegeneration. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 2014;1842:1267–1272. doi: 10.1016/j.bbadis.2013.09.003. PubMed DOI PMC
Du H, Guo L, Yan SS. Synaptic Mitochondrial Pathology in Alzheimer’s Disease. Antioxidants & Redox Signaling. 2012;16:1467–1475. doi: 10.1089/ars.2011.4277. PubMed DOI PMC
Singh P, Suman S, Chandna S, Das TK. Possible role of amyloid-beta, adenine nucleotide translocase and cyclophilin-D interaction in mitochondrial dysfunction of Alzheimer’s disease. Bioinformation. 2009;3:440–445. doi: 10.6026/97320630003440. PubMed DOI PMC
Carlson EA, et al. Overexpression of 17β-hydroxysteroid dehydrogenase type 10 increases pheochromocytoma cell growth and resistance to cell death. BMC cancer. 2015;15:166. doi: 10.1186/s12885-015-1173-5. PubMed DOI PMC
Poburko D, Santo-Domingo J, Demaurex N. Dynamic regulation of the mitochondrial proton gradient during cytosolic calcium elevations. The Journal of biological chemistry. 2011;286:11672–11684. doi: 10.1074/jbc.M110.159962. PubMed DOI PMC
Santo-Domingo J, Demaurex N. The renaissance of mitochondrial pH. The Journal of General Physiology. 2012;139:415–423. doi: 10.1085/jgp.201110767. PubMed DOI PMC
Ivannikov MV, Macleod GT. Mitochondrial Free Ca2+ Levels and Their Effects on Energy Metabolism in Drosophila Motor Nerve Terminals. Biophysical Journal. 2013;104:2353–2361. doi: 10.1016/j.bpj.2013.03.064. PubMed DOI PMC
Murphy E, Eisner DA. Regulation of intracellular and mitochondrial Na in health and disease. Circulation research. 2009;104:292–303. doi: 10.1161/CIRCRESAHA.108.189050. PubMed DOI PMC
Augustynek B, et al. What we don’t know about mitochondrial potassium channels? Postepy biochemii. 2016;62:189–198. PubMed
Gout E, Rebeille F, Douce R, Bligny R. Interplay of Mg2+, ADP, and ATP in the cytosol and mitochondria: unravelling the role of Mg2+ in cell respiration. Proc Natl Acad Sci USA. 2014;111:E4560–4567. doi: 10.1073/pnas.1406251111. PubMed DOI PMC
Haumann J, et al. Mitochondrial free [Ca2+] increases during ATP/ADP antiport and ADP phosphorylation: exploration of mechanisms. Biophys J. 2010;99:997–1006. doi: 10.1016/j.bpj.2010.04.069. PubMed DOI PMC
O’Rourke B, Cortassa S, Aon MA. Mitochondrial Ion Channels: Gatekeepers of Life and Death. Physiology (Bethesda, Md.) 2005;20:303–315. doi: 10.1152/physiol.00020.2005. PubMed DOI PMC
Lee Jiyong, Culyba Elizabeth K, Powers Evan T, Kelly Jeffery W. Amyloid-β forms fibrils by nucleated conformational conversion of oligomers. Nature Chemical Biology. 2011;7(9):602–609. doi: 10.1038/nchembio.624. PubMed DOI PMC
Garlid KD, Paucek P. Mitochondrial potassium transport: the K+ cycle. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 2003;1606:23–41. doi: 10.1016/S0005-2728(03)00108-7. PubMed DOI
Kaasik A, Safiulina D, Zharkovsky A, Veksler V. Regulation of mitochondrial matrix volume. American Journal of Physiology-Cell Physiology. 2007;292:C157–C163. doi: 10.1152/ajpcell.00272.2006. PubMed DOI
Zoeteweij JP, van de Water B, de Bont HJ, Nagelkerke JF. Mitochondrial K+ as modulator of Ca2+-dependent cytotoxicity in hepatocytes. Novel application of the K+-sensitive dye PBFI (K+-binding benzofuran isophthalate) to assess free mitochondrial K+ concentrations. The Biochemical journal. 1994;299(Pt 2):539–543. doi: 10.1042/bj2990539. PubMed DOI PMC
Gout E, Rébeillé F, Douce R, Bligny R. Interplay of Mg2+, ADP, and ATP in the cytosol and mitochondria: Unravelling the role of Mg2+ in cell respiration. Proceedings of the National Academy of Sciences of the United States of America. 2014;111:E4560–E4567. doi: 10.1073/pnas.1406251111. PubMed DOI PMC
Jung DW, Apel L, Brierley GP. Matrix free magnesium changes with metabolic state in isolated heart mitochondria. Biochemistry. 1990;29:4121–4128. doi: 10.1021/bi00469a015. PubMed DOI
Springer T, Piliarik M, Homola J. Surface plasmon resonance sensor with dispersionless microfluidics for direct detection of nucleic acids at the low femtomole level. Sensor Actuat B-Chem. 2010;145:588–591. doi: 10.1016/j.snb.2009.11.018. DOI
Špringer T, Chadtová Song X, Ermini ML, Lamačová J, Homola J. Functional gold nanoparticles for optical affinity biosensing. Analytical and Bioanalytical Chemistry. 2017;409:4087–4097. doi: 10.1007/s00216-017-0355-1. PubMed DOI
Ionic Environment Affects Biomolecular Interactions of Amyloid-β: SPR Biosensor Study
Interactions of 17β-Hydroxysteroid Dehydrogenase Type 10 and Cyclophilin D in Alzheimer's Disease