Interactions of 17β-Hydroxysteroid Dehydrogenase Type 10 and Cyclophilin D in Alzheimer's Disease
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
16-27611A
AZV CR
PubMed
31997103
PubMed Central
PMC7078148
DOI
10.1007/s11064-020-02970-y
PII: 10.1007/s11064-020-02970-y
Knihovny.cz E-zdroje
- Klíčová slova
- Alzheimer's disease, Amyloid β, Cerebrospinal fluid, Frontotemporal lobar degeneration, Mitochondrial matrix proteins, Transgenic rat model,
- MeSH
- 17-hydroxysteroidní dehydrogenasy mozkomíšní mok metabolismus MeSH
- Alzheimerova nemoc metabolismus MeSH
- amyloidový prekurzorový protein beta genetika MeSH
- kinetika MeSH
- lidé MeSH
- mitochondrie metabolismus MeSH
- mozek metabolismus MeSH
- peptidylprolylisomerasa F metabolismus MeSH
- potkani transgenní MeSH
- potkani Wistar MeSH
- povrchová plasmonová rezonance MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 17-hydroxysteroidní dehydrogenasy MeSH
- amyloidový prekurzorový protein beta MeSH
- peptidylprolylisomerasa F MeSH
The nucleus-encoded 17β-hydroxysteroid dehydrogenase type 10 (17β-HSD10) regulates cyclophilin D (cypD) in the mitochondrial matrix. CypD regulates opening of mitochondrial permeability transition pores. Both mechanisms may be affected by amyloid β peptides accumulated in mitochondria in Alzheimer's disease (AD). In order to clarify changes occurring in brain mitochondria, we evaluated interactions of both mitochondrial proteins in vitro (by surface plasmon resonance biosensor) and detected levels of various complexes of 17β-HSD10 formed in vivo (by sandwich ELISA) in brain mitochondria isolated from the transgenic animal model of AD (homozygous McGill-R-Thy1-APP rats) and in cerebrospinal fluid samples of AD patients. By surface plasmon resonance biosensor, we observed the interaction of 17β-HSD10 and cypD in a direct real-time manner and determined, for the first time, the kinetic parameters of the interaction (ka 2.0 × 105 M1s-1, kd 5.8 × 104 s-1, and KD 3.5 × 10-10 M). In McGill-R-Thy1-APP rats compared to controls, levels of 17β-HSD10-cypD complexes were decreased and those of total amyloid β increased. Moreover, the levels of 17β-HSD10-cypD complexes were decreased in cerebrospinal fluid of individuals with AD (in mild cognitive impairment as well as dementia stages) or with Frontotemporal lobar degeneration (FTLD) compared to cognitively normal controls (the sensitivity of the complexes to AD dementia was 92.9%, that to FTLD 73.8%, the specificity to AD dementia equaled 91.7% in a comparison with the controls but only 26.2% with FTLD). Our results demonstrate the weakened ability of 17β-HSD10 to regulate cypD in the mitochondrial matrix probably via direct effects of amyloid β. Levels of 17β-HSD10-cypD complexes in cerebrospinal fluid seem to be the very sensitive indicator of mitochondrial dysfunction observed in neurodegeneration but unfortunately not specific to AD pathology. We do not recommend it as the new biomarker of AD.
Institute of Physiology of the Czech Academy of Sciences Videnska 1083 142 20 Prague Czech Republic
National Institute of Mental Health Topolova 748 250 67 Klecany Czech Republic
Zobrazit více v PubMed
Yang SY, He XY, Schulz H. Multiple functions of type 10 17β-hydroxysteroid dehydrogenase. Trends Endocrin Met. 2005;16:167–175. doi: 10.1016/j.tem.2005.03.006. PubMed DOI
Yang SY, He XY, Isaacs C, Dobkin C, Miller D, Philipp M. Roles of 17β-hydroxysteroid dehydrogenase type 10 in neurodegenerative disorders. J Steroid Biochem Mol Biol. 2014;143:460–472. doi: 10.1016/j.jsbmb.2014.07.001. PubMed DOI
Rauschenberger K, Schöler K, Sass JO, Sauer S, Djuric Z, Rumig C, Wolf NI, Okun JG, Kolker S, Schwarz H, Fisher C, Grziwa B, Runz H, Numann A, Shafqat N, Kavanagh KL, Hammerling G, Wanders RJA, Shield JPH, Wendel U, Stern D, Nawroth P, Hoffmann GF, Bartram CR, Arnold B, Bierhaus A, Oppermann U, Steinbeisser H, Zschocke J. A non-enzymatic function of 17β-hydroxysteroid dehydrogenase type 10 is required for mitochondrial integrity and cell survival. EMBO Mol Med. 2010;2:51–62. doi: 10.1002/emmm.200900055. PubMed DOI PMC
Harbauer AB, Zahedi RP, Sickman A, Pfanner N, Meisinger C. The protein import machinery of mitochondria—a regulatory hub in metabolism, stress, and disease. Cell Metab. 2014;19:357–372. doi: 10.1016/j.cmet.2014.01.010. PubMed DOI
Bertolin G, Jacoupy M, Traver S, Ferrendo-Miguel R, Saint Georges T, Grenier K, Ardila-Osorio H, Muriel MP, Takahashi H, Lees AJ, Gautier C, Guedin D, Coge F, Fon EA, Brice A, Corti O. Parkin maintains mitochondrial levels of the protective Parkinson's disease-related enzyme 17-β hydroxysteroid dehydrogenase type 10. Cell Death Differ. 2015;22:1563–1576. doi: 10.1038/cdd.2014.224. PubMed DOI PMC
Von Stockum S, Nardin A, Schrepfer E, Ziviani E. Mitochondrial dynamics and mitophagy in Parkinson's disease: a fly point of view. Neurobiol Dis. 2016;90:58–67. doi: 10.1016/j.nbd.2015.11.002. PubMed DOI
Yan SD, Stern DM. Mitochondrial dysfunction and Alzheimer's disease: role of amyloid-β peptide alcohol dehydrogenase (ABAD) Int J Exp Path. 2005;86:161–171. doi: 10.1111/j.0959-9673.2005.00427.x. PubMed DOI PMC
Yan SD, Fu J, Soto C, Chen X, Zhu H, Al-Mohanna F, Collison K, Zhu A, Stern E, Saido T, Tohyama M, Ogawa S, Roher A, Stern D. An intracellular protein that binds amyloid-beta peptide and mediates neurotoxicity in Alzheimer's disease. Nature. 1997;389:689–695. doi: 10.1038/39522. PubMed DOI
Lustbader JW, Cirilli M, Lin C, Xu HW, Takuma K, Wang N, Casperson C, Chen X, Pollak S, Chaney M, Trinchese F, Liu S, Gunn-Moore F, Lue LF, Walker DG, Kuppusamy P, Zewier Z, Arancio O, Stern D. ABAD directly links Aβ to mitochondrial toxicity in Alzheimer's disease. Science. 2004;304:448–452. doi: 10.1126/science.1091230. PubMed DOI
Kristofikova Z, Bockova M, Hegnerova K, Bartos A, Klaschka J, Ricny J, Ripova D, Homola J. Enhanced levels of mitochondrial enzyme 17β-hydroxysteroid dehydrogenase type 10 in patients with Alzheimer disease and multiple sclerosis. Mol Biosyst. 2009;5:1174–1179. doi: 10.1039/b904799a. PubMed DOI
Kristofikova Z, Ripova D, Bartos A, Bockova M, Hegnerova K, Ricny J, Cechova L, Vrajov M, Homola J. Neuroinflammation and complexes of 17β-hydroxysteroid dehydrogenase type 10—amyloid β in Alzheimer's disease. Curr Alzheimer Res. 2013;10:165–173. doi: 10.2174/1567205011310020006. PubMed DOI
Kristofikova Z, Ricny J, Vyhnalek M, Hort J, Laczo J, Sirova J, Klaschka J, Ripova D. Levels of 17β-hydroxysteroid dehydrogenase type 10 in cerebrospinal fluid of people with mild cognitive impairment and various types of dementias. J Alzheimers Dis. 2015;48:105–114. doi: 10.3233/JAD-142898. PubMed DOI
Oppermann UCD, Salim S, Tjernberg LO, Terenius L, .Jörnvall H. Binding of amyloid β-peptide to mitochondrial hydroxyacyl-CoA dehydrogenase (ERAB): regulation of an SDR enzyme acitivity with implications for apoptosis in Alzheimer's disease. FEBS Lett. 1999;451:238–242. doi: 10.1016/S0014-5793(99)00586-4. PubMed DOI
Powell AJ, Read JA, Banfield MJ, Gunn-Moore F, Yan SD, Lusbader J, Stern AR, Stern DM, Brady RL. Recognition of structurally diverse substrates by type II 3-hydroxyacyl-CoA dehydrogenase (HADH II)/amyloid-β binding alcohol dehydrogenase (ABAD) J Mol Biol. 2000;303:311–327. doi: 10.1006/jmbi.2000.4139. PubMed DOI
Yan Y, Liu Y, Sorci M, Belfort G, Lustbader JW, Yan SD, Wang C. Surface plasmon resonance and nuclear magnetic resonance studies of ABAD—Aβ interactions. Biochemistry. 2007;46:1724–1731. doi: 10.1021/bi061314n. PubMed DOI
Hegnerova K, Bockova M, Vaisocherova H, Kristofikova Z, Ricny J, Ripova D, Homola J. Surface plasmon resonance biosensors for detection of Alzheimer disease biomarker. Sens Actuator B Chem. 2009;139:69–73. doi: 10.1016/j.snb.2008.09.006. DOI
Chen JX, Yan SD. Role of mitochondrial amyloid-β in Alzheimer's disease. J Alzheimers Dis. 2010;20:S569–S578. doi: 10.3233/JAD-2010-100357. PubMed DOI
Muirhead KEA, Borger E, Aitken L, Conway SJ, Gunn-Moore FJ. The consequences of mitochondrial amyloid β-peptide in Alzheimer's disease. Biochem J. 2010;426:255–270. doi: 10.1042/BJ20091941. PubMed DOI
Yao J, Du H, Yan S, Fang F, Wang C, Lue LF, Guo L, Chen D, Stern DM, Gunn-Moore FJ, Chen JX, Arancio O, Yan SD. Inhibition of amyloid-β (Aβ) peptide-binding alcohol dehydrogenase-Aβ interaction reduces Aβ accumulation and improves mitochondrial function in a mouse model of Alzheimer's disease. J Neurosci. 2011;31:2313–2320. doi: 10.1523/JNEUROSCI.4717-10.2011. PubMed DOI PMC
Carlson EA, Marquez RT, Du F, Wang Y, Xu L, Yan SD. Overexpression of 17β-hydroxysteroid dehydrogenase type 10 increases pheochromocytoma cell growth and resistance to cell death. BMC Cancer. 2015;15:166. doi: 10.1186/s12885-015-1173-5. PubMed DOI PMC
Du H, Yan SD. Mitochondrial permeability transition pore in Alzheimer's disease: cyclophilin D and amyloid beta. Biochim Biophys Acta. 2010;1802:198–204. doi: 10.1016/j.bbadis.2009.07.005. PubMed DOI PMC
Du H, Guo L, Zhang W, Rydzewska M, Yan SD. Cyclophilin D deficiency improves mitochodnrial function and learning/memory in aging Alzheimer disease mouse model. Neurobiol Aging. 2011;32:398–406. doi: 10.1016/j.neurobiolaging.2009.03.003. PubMed DOI PMC
Springer T, Piliarik M, Homola J. Surface plasmon resonance sensor with dispersionless microfluidics for direct detection of nucleic acids at the low femtomole level. Sensor Actuat B Chem. 2010;145:588–591. doi: 10.1016/j.snb.2009.11.018. DOI
Springer T, Piliarik M, Homola J. Real-time monitoring of biomolecular interactions in blood plasma using a surface plasmon resonance biosensor. Anal Bioanal Chem. 2010;398:1955–1961. doi: 10.1007/s00216-010-4159-9. PubMed DOI
Springer T, Homola J. Biofunctionalized gold nanoparticles for SPR-biosensor-based detection of CEA in blood plasma. Anal Bioanal Chem. 2012;404:2869–2875. doi: 10.1007/s00216-012-6308-9. PubMed DOI
Kissinger CR, Rejto PA, Pelletier LA, Thomson JA, Showalter RE, Abre MA, Agree CS, Margosiak S, Meng JJ, Aust TM, Vanderpool D, Li B, Tempczyk-Russell A, Villafranca JE. Crystal structure of human ABAD/HSD10 with a bound inhibitor: implications for design of Alzheimer's disease therapeutics. J Mol Biol. 2004;342:943–952. doi: 10.1016/j.jmb.2004.07.071. PubMed DOI
Rajapakse N, Shimizu K, Payne M, Busija D. Isolation and characterization of intact mitochondria from neonatal rat brain. Brain Res Protoc. 2001;8:176–183. doi: 10.1016/S1385-299X(01)00108-8. PubMed DOI
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI
Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, Gamst A, Holtzman DM, Jagust WJ, Petersen RC, Snyder PJ, Carrillo MC, Thies B, Phelps CH. The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer´s Association workgroups on diagnostic guidelines for Alzheimer's diseases. Alzheimers Dement. 2011;7:270–279. doi: 10.1016/j.jalz.2011.03.008. PubMed DOI PMC
McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR, Kawas CH, Klunk WE, Koroshetz WJ, Manly JJ, Mayeux R, Mohs RC, Morris JC, Rossor MN, Scheltens P, Carrillo MC, Thies B, Weintraub S, Phelps CH. The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 2011;7:263–269. doi: 10.1016/j.jalz.2011.03.005. PubMed DOI PMC
Neary D, Snowden JS, Gustafson L, Passant U, Stuss D, Black S, Freedman M, Kertesz A, Robert PH, Albert M, Boone K, Miller BL, Cummings J, Benson DF. Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology. 1998;51:1546–1554. doi: 10.1212/WNL.51.6.1546. PubMed DOI
Sheskin DJ. Measures of association/correlation. In: Sheskin DJ, editor. Handbook of parametric and nonparametric statistical procedures. New York: Chapman and Hall/CRC; 2011. pp. 1219–1413.
Luvisetto S, Basso E, Petronilli V, Bernardi P, Forte M. Enhancement of anxiety, facilitation of avoidance behavior, and occurrence of adult-onset obesity in mice lacking mitochondrial cyclophilin D. Neuroscience. 2008;155:585–596. doi: 10.1016/j.neuroscience.2008.06.030. PubMed DOI PMC
Leon WC, Canneva F, Partridge V, Allard S, Ferretti MT, DeWilde A, Vercauteren F, Atifeh R, Ducatenzeiler A, Klein W, Szyf M, Alhonen L, Cuello AC. A novel transgenic rat model with a full Alzheimer's-like amyloid pathology displays pre-plaque intracellular amyloid-beta-associated cognitive impairment. J Alzheimers Dis. 2010;20:113–126. doi: 10.3233/JAD-2010-1349. PubMed DOI
Petrasek T, Vojtechova I, Lobellova V, Popelikova A, Janikova M, Brozka H, Houdek P, Sladek M, Sumova A, Kristofikova Z, Vales K, Stuchlik A. The McGill transgenic rat model of Alzheimer's disease displays cognitive and motor impairments, changes in anxiety and social behavior, and altered circadian activity. Front Aging Neurosci. 2018;10:250. doi: 10.3389/fnagi.2018.00250. PubMed DOI PMC
Iulita MF, Allard S, Richter L, Munter LM, Ducatenzeiler A, Weise C, Do Carmo S, Klein WL, Multhaup G, Cuello AC. Intracellular Aβ pathology and early cognitive impairments in a transgenic rat overexpressing human amyloid precursor protein: a multidimensional study. Acta Neuropathol Commum. 2014;2:61. doi: 10.1186/2051-5960-2-61. PubMed DOI PMC
Nilsen LH, Witter MP, Sonnewald U. Neuronal and astrocytic metabolism in a transgenic rat model of Alzheimer's disease. J Cereb Blood Flow Metab. 2014;34:906–914. doi: 10.1038/jcbfm.2014.37. PubMed DOI PMC
Martino Adami PV, Quijano C, Magnani N, Galeano P, Evelson P, Cassina A, Do Carmo S, Leal MC, Castano EM, Cuello AC, Morelli L. Synaptosomal bioenergetic defects are associated with cognitive impairment in a transgenic rat model of early Alzheimer's disease. J Cereb Blood Flow Metab. 2017;37:69–84. doi: 10.1177/0271678X15615132. PubMed DOI PMC
Reddy PH, Beal F. Amyloid beta, mitochondrial dysfunction and synaptic damage: implications for cognitive decline in aging and Alzheimer's disease. Trends Mol Med. 2008;14:45–53. doi: 10.1016/j.molmed.2007.12.002. PubMed DOI PMC
Hemmerova E, Springer T, Kristofikova Z, Homola J. In vitro study of interaction of 17β-hydroxysteroid dehydrogenase type 10 and cyclophilin D and its potential implications for Alzheimer's disease. Sci Rep. 2019;9:16700. doi: 10.1038/s41598-019-53157-7. PubMed DOI PMC
Rossi L, Lombardo MF, Ciriolo MR, Rotilio G. Mitochondrial dysfunction in neurodegenerative diseases associated with copper imbalance. Neurochem Res. 2004;29:493–504. doi: 10.1023/B:NERE.0000014820.99232.8a. PubMed DOI
Kristofikova Z, Ricny J, Kolarova M, Vyhnalek M, Hort J, Lacso J, Sirova J, Ripova D. Interactions between amyloid β and tau in cerebrospinal fluid of people with mild cognitive impairment and Alzheimer's disease. J Alzheimers Dis. 2014;42(3):S91–S98. doi: 10.3233/JAD-132393. PubMed DOI
Ionic Environment Affects Biomolecular Interactions of Amyloid-β: SPR Biosensor Study