The McGill Transgenic Rat Model of Alzheimer's Disease Displays Cognitive and Motor Impairments, Changes in Anxiety and Social Behavior, and Altered Circadian Activity
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
30210330
PubMed Central
PMC6121039
DOI
10.3389/fnagi.2018.00250
Knihovny.cz E-zdroje
- Klíčová slova
- Alzheimer's disease, amyloid precursor protein, circadian system, cognition, rat, social behavior, transgenic,
- Publikační typ
- časopisecké články MeSH
The McGill-R-Thy1-APP transgenic rat is an animal model of the familial form of Alzheimer's disease (AD). This model mirrors several neuropathological hallmarks of the disease, including the accumulation of beta-amyloid and the formation of amyloid plaques (in homozygous animals only), neuroinflammation and the gradual deterioration of cognitive functions even prior to plaque formation, although it lacks the tauopathy observed in human victims of AD. The goal of the present study was a thorough characterization of the homozygous model with emphasis on its face validity in several domains of behavior known to be affected in AD patients, including cognitive functions, motor coordination, emotionality, sociability, and circadian activity patterns. On the behavioral level, we found normal locomotor activity in spontaneous exploration, but problems with balance and gait coordination, increased anxiety and severely impaired spatial cognition in 4-7 month old homozygous animals. The profile of social behavior and ultrasonic communication was altered in the McGill rats, without a general social withdrawal. McGill rats also exhibited changes in circadian profile, with a shorter free-running period and increased total activity during the subjective night, without signs of sleep disturbances during the inactive phase. Expression of circadian clock gene Bmal1 was found to be increased in the parietal cortex and cerebellum, while Nr1d1 expression was not changed. The clock-controlled gene Prok2 expression was found to be elevated in the parietal cortex and hippocampus, which might have contributed to the observed changes in circadian phenotype. We conclude that the phenotype in the McGill rat model is not restricted to the cognitive domain, but also includes gait problems, changes in emotionality, social behavior, and circadian profiles. Our findings show that the model should be useful for the development of new therapeutic approaches targeting not only memory decline but also other symptoms decreasing the quality of life of AD patients.
Zobrazit více v PubMed
Ambrée O., Touma C., Gortz N., Keyvani K., Paulus W., Palme R., et al. . (2006). Activity changes and marked stereotypic behavior precede Abeta pathology in TgCRND8 Alzheimer mice. Neurobiol. Aging 27, 955–964. 10.1016/j.neurobiolaging.2005.05.009 PubMed DOI
Bahník Š. (2014). Carousel Maze Manager (Version 0.4.0) *Software+. Available online at: https://github.com/bahniks/CM_Manager_0_4_0
Bayer T. A., Wirths O. (2014). Focusing the amyloid cascade hypothesis on N-truncated Abeta peptides as drug targets against Alzheimer's disease. Acta Neuropathol. 127, 787–801. 10.1007/s00401-014-1287-x PubMed DOI PMC
Beaudreau S. A., O'hara R. (2008). Late-life anxiety and cognitive impairment: a review. Am. J. Geriatr. Psychiatry 16, 790–803. 10.1097/JGP.0b013e31817945c3 PubMed DOI
Bureš J., Fenton A. A., Kaminsky Y., Zinyuk L. (1997). Place cells and place navigation. Proc. Natl. Acad. Sci. U.S.A. Vol. 94, pp. 343–350. PubMed PMC
Cermakian N., Lamont E. W., Boudreau P., Boivin D. B. (2011). Circadian clock gene expression in brain regions of Alzheimer 's disease patients and control subjects. J. Biol. Rhythms 26, 160–170. 10.1177/0748730410395732 PubMed DOI
Chauhan N., Chawla S., Pundir C. S., Jain U. (2017). An electrochemical sensor for detection of neurotransmitter-acetylcholine using metal nanoparticles, 2D material and conducting polymer modified electrode. Biosens. Bioelectron. 89, 377–383. 10.1016/j.bios.2016.06.047 PubMed DOI
Cheng M. Y., Bullock C. M., Chuanyu L., Lee A. G., Bermak J. C., Belluzi J., et al. . (2002). Prokineticin 2 transmits the behavioural circadian rhythm of the suprachiasmatic nucleus. Nature 417, 405–410. 10.1038/417405a PubMed DOI
Cheng M. Y., Lee A. G., Culbertson C., Sun G., Talati R. K., Manley N. C., et al. . (2012). Prokineticin 2 is an endangering mediator of cerebral ischemic injury. Proc. Natl. Acad. Sci. U.S.A. 109, 5475–5480. 10.1073/pnas.1113363109 PubMed DOI PMC
Crispim Junior C. F., Pederiva C. N., Bose R. C., Garcia V. A., Lino-de-Oliveira C., Marino-Neto J. (2012). ETHOWATCHER: validation of a tool for behavioral and video-tracking analysis in laboratory animals. Comput. Biol. Med. 42, 257–264. 10.1016/j.compbiomed.2011.12.002 PubMed DOI
Devanand D. P., Michaels-Marston K. S., Liu X., Pelton G. H., Padilla M., Marder K., et al. . (2000). Olfactory deficits in patients with mild cognitive impairment predict Alzheimer's disease at follow-up. Am. J. Psychiatry 157, 1399–1405. 10.1176/appi.ajp.157.9.1399 PubMed DOI
D'Hooge R., De Deyn P. P. (2001). Applications of the Morris water maze in the study of learning and memory. Brain Res. Brain Res. Rev. 36, 60–90. 10.1016/S0165-0173(01)00067-4 PubMed DOI
Do Carmo S., Cuello A. C. (2013). Modeling Alzheimer's disease in transgenic rats. Mol. Neurodegener. 8:37. 10.1186/1750-1326-8-37 PubMed DOI PMC
Duncan M. J., Smith J. T., Franklin K. M., Beckett T. L., Murphy M. P., St Clair D. K., et al. . (2012). Effects of aging and genotype on circadian rhythms, sleep, and clock gene expression in APPxPS1 knock-in mice, a model for Alzheimer's disease. Exp. Neurol. 236, 249–258. 10.1016/j.expneurol.2012.05.011 PubMed DOI
Esquerda-Canals G., Montoliu-Gaya L., Güell-Bosch J., Villegas S. (2017). Mouse models of alzheimer's disease. J. Alzheimers Dis. 57, 1171–1183. 10.3233/JAD-170045 PubMed DOI
Fenton A. A., Wesierska M., Kaminsky Y., Bures J. (1998). Both here and there: simultaneous expression of autonomous spatial memories in rats. Proc. Natl. Acad. Sci. U.S.A. 95, 11493–11498. 10.1073/pnas.95.19.11493 PubMed DOI PMC
Field T. (2015). Smell and taste dysfunction as early markers for neurodegenerative and neuropsychiatric diseases. J. Alzheimers Dis. Parkinsonism 5:186 10.4172/2161-0460.1000186 DOI
Franchi S., Sacerdote P., Panerai A. (2017). The prokineticin system: an interface between neural inflammation and pain. Neurol. Sci. 38, 27–30. 10.1007/s10072-017-2875-z PubMed DOI
Friard O., Gamba M. (2016). BORIS: a free, versatile open-source event-logging software for video/audio coding and live observations. Methods Ecol. Evol. 7, 1325–1330. 10.1111/2041-210X.12584 DOI
Galeano P., Martino Adami P. V., Carmo S. D., Blanco Calvo E., Rotondaro C., Capani F., et al. . (2014). Longitudinal analysis of the behavioral phenotype in a novel transgenic rat model of early stages of Alzheimer's disease. Front. Behav. Neurosci. 8:321. 10.3389/fnbeh.2014.00321 PubMed DOI PMC
Gazova I., Vlcek K., Laczó J., Nedelska Z., Hyncicova E., Mokrisova I., et al. . (2015). Spatial navigation—a unique window into physiological and pathological aging. Front. Aging Neurosci. 4:16. 10.3389/fnagi.2012.00016 PubMed DOI PMC
Goldstein L. B. (1993). Rapid reliable measurement of lesion parameters for studies of motor recovery after sensorimotor cortex injury in the rat. J. Neurosci. Methods 48, 35–42. 10.1016/S0165-0270(05)80005-6 PubMed DOI
Görtz N., Lewejohann L., Tomm M., Ambrée O., Keyvani K., Paulus W., et al. . (2008). Effects of environmental enrichment on exploration, anxiety, and memory in female TgCRND8 Alzheimer mice. Behav. Brain Res. 191, 43–48. 10.1016/j.bbr.2008.03.006 PubMed DOI
Graybeal J. J., Bozzelli P. L., Graybeal L. L., Groeber C. M., Mcknight P. E., Cox D. N., et al. . (2015). Human ApoE epsilon4 alters circadian rhythm activity, IL-1beta, and GFAP in CRND8 mice. J. Alzheimers Dis. 43, 823–834. 10.3233/JAD-132009 PubMed DOI
Grootendorst J., Kempes M. M., Lucassen P. J., Dalm S., De Kloet E. R., Oitzl M. S. (2002). Differential effect of corticosterone on spatial learning abilities in apolipoprotein E knockout and C57BL/6J mice. Brain Res. 953, 281–285. 10.1016/S0006-8993(02)03399-1 PubMed DOI
Hanzel C. E., Pichet-Binette A., Pimentel L. S., Iulita M. F., Allard S., Ducatenzeiler A., et al. . (2014). Neuronal driven pre-plaque inflammation in a transgenic rat model of Alzheimer's disease. Neurobiol. Aging 35, 2249–2262. 10.1016/j.neurobiolaging.2014.03.026 PubMed DOI
Hofman M. A., Swaab D. F. (1994). Alterations in circadian rhythmicity of the vasopressin-producing neurons of the human suprachiasmatic nucleus (SCN) with aging. Brain Res. 651, 134–142. 10.1016/0006-8993(94)90689-0 PubMed DOI
Hood S., Amir S. (2017). Neurodegeneration and the Circadian Clock. Front. Aging Neurosci. 9:170. 10.3389/fnagi.2017.00170 PubMed DOI PMC
Hu W. P., Li J. D., Zhang C., Boehmer L., Siegel J. M., Zhou Q. Y. (2007). Altered circadian and homeostatic sleep regulation in prokineticin 2-deficient mice. Sleep 30, 247–256. 10.1093/sleep/30.3.247 PubMed DOI PMC
Iulita M. F., Allard S., Richter L., Munter L. M., Ducatenzeiler A., Weise C., et al. . (2014). Intracellular Aβ pathology and early cognitive impairments in a transgenic rat overexpressing human amyloid precursor protein: a multidimensional study. Acta Neuropathol. Commun. 2:61. 10.1186/2051-5960-2-61 PubMed DOI PMC
Janus C. (2004). Search strategies used by APP transgenic mice during navigation in the Morris water maze. Learn. Mem. 11, 337–346. 10.1101/lm.70104 PubMed DOI PMC
Kondratova A. A., Kondratov R. V. (2012). The circadian clock and pathology of the ageing brain. Nat. Rev. Neurosci. 13, 325–335. 10.1038/nrn3208 PubMed DOI PMC
Kubík Š., Fenton A. A. (2005). Behavioral evidence that segregation and representation are dissociable hippocampal functions. J. Neurosci. 25, 9205–9212. 10.1523/JNEUROSCI.1707-05.2005 PubMed DOI PMC
Lee K. W., Lee S. H., Kim H., Song J. S., Yang S. D., Paik S. G., et al. . (2004). Progressive cognitive impairment and anxiety induction in the absence of plaque deposition in C57BL/6 inbred mice expressing transgenic amyloid precursor protein. J. Neurosci. Res. 76, 572–580. 10.1002/jnr.20127 PubMed DOI
Lemaire M. (2003). Social recognition task in the rat. Curr. Protoc. Pharmacol. 20, 5.30.1–5.30.11. 10.1002/0471141755.ph0530s20 PubMed DOI
Leon W. C., Canneva F., Partridge V., Allard S., Ferretti M. T., Dewilde A., et al. . (2010). A novel transgenic rat model with a full Alzheimer's-like amyloid pathology displays pre-plaque intracellular amyloid-beta-associated cognitive impairment. J. Alzheimers Dis. 20, 113–126. 10.3233/JAD-2010-1349 PubMed DOI
Livak K. J., Schmittgen T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402–408. 10.1006/meth.2001.1262 PubMed DOI
Martino Adami P. V., Galeano P., Wallinger M. L., Quijano C., Rabossi A., Pagano E. S., et al. . (2017a). Worsening of memory deficit induced by energy-dense diet in a rat model of early-Alzheimer's disease is associated to neurotoxic Aβ species and independent of neuroinflammation. Biochim. Biophys. Acta 1863, 731–743. 10.1016/j.bbadis.2016.12.014 PubMed DOI
Martino Adami P. V., Quijano C., Magnani N., Galeano P., Evelson P., Cassina A., et al. . (2017b). Synaptosomal bioenergetic defects are associated with cognitive impairment in a transgenic rat model of early Alzheimer's disease. J. Cereb. Blood Flow Metab. 37, 69–84. 10.1177/0271678X15615132 PubMed DOI PMC
Mohawk J. A., Green C. B., Takahashi J. S. (2012). Central and peripheral circadian clocks in mammals. Annu. Rev. Neurosci. 35, 445–462. 10.1146/annurev-neuro-060909-153128 PubMed DOI PMC
Morris R. G. (1981). Spatial localization does not require the presence of local cues. Learn. Motiv. 12, 239–260. 10.1016/0023-9690(81)90020-5 DOI
Moura P. J., Meirelles S. T., Xavier G. F. (2010). Long-term social recognition memory in adult male rats: factor analysis of the social and non-social behaviors. Braz. J. Med. Biol. Res. 43, 663–676. 10.1590/S0100-879X2010007500047 PubMed DOI
O'Carroll C. M., Martin S. J., Sandin J., Frenguelli B., Morris R. G. (2006). Dopaminergic modulation of the persistence of one-trial hippocampus-dependent memory. Learn. Mem. 13, 760–769. 10.1101/lm.321006 PubMed DOI PMC
Pai M. C., Jacobs W. J. (2004). Topographical disorientation in community-residing patients with Alzheimer's disease. Int. J. Geriatr. Psychiatry 19, 250–255. 10.1002/gps.1081 PubMed DOI
Pentkowski N. S., Berkowitz L. E., Thompson S. M., Drake E. N., Olguin C. R., Clark B. J. (2018). Anxiety-like behavior as an early endophenotype in the TgF344-AD rat model of Alzheimer's disease. Neurobiol. Aging 61, 169–176. 10.1016/j.neurobiolaging.2017.09.024 PubMed DOI PMC
Petrasek T., Prokopova I., Bahnik S., Schonig K., Berger S., Vales K., et al. (2014). Nogo-A downregulation impairs place avoidance in the Carousel maze but not spatial memory in the Morris water maze. Neurobiol. Learn. Mem. 107, 42–49. 10.1016/j.nlm.2013.10.015 PubMed DOI
Petrasek T., Skurlova M., Maleninska K., Vojtechova I., Kristofikova Z., Matuskova H., et al. . (2016). A rat model of Alzheimer's disease based on Abeta42 and pro-oxidative substances exhibits cognitive deficit and alterations in glutamatergic and cholinergic neurotransmitter systems. Front. Aging Neurosci. 8:83. 10.3389/fnagi.2016.00083 PubMed DOI PMC
Polidarová L., Houdek P., Sladek M., Novosadova Z., Pacha J., Sumova A. (2017). Mechanisms of hormonal regulation of the peripheral circadian clock in the colon. Chronobiol. Int. 34, 1–16. 10.1080/07420528.2016.1231198 PubMed DOI
Polidarová L., Sladek M., Novakova M., Parkanova D., Sumova A. (2013). Increased sensitivity of the circadian system to temporal changes in the feeding regime of spontaneously hypertensive rats - a potential role for Bmal2 in the liver. PLoS ONE 8:e75690. 10.1371/journal.pone.0075690 PubMed DOI PMC
Polidarová L., Sladek M., Sotak M., Pacha J., Sumova A. (2011). Hepatic, duodenal, and colonic circadian clocks differ in their persistence under conditions of constant light and in their entrainment by restricted feeding. Chronobiol. Int. 28, 204–215. 10.3109/07420528.2010.548615 PubMed DOI
Porter V. R., Buxton W. G., Fairbanks L. A., Strickland T., O'Connor S. M., Rosenberg-Thompson S., et al. . (2003). Frequency and characteristics of anxiety among patients with Alzheimer's disease and related dementias. J. Neuropsychiatry Clin. Neurosci. 15, 180–186. 10.1176/jnp.15.2.180 PubMed DOI
Rossor M. N., Newman S., Frackowiak R. S., Lantos P., Kennedy A. M. (1993). Alzheimer's disease families with amyloid precursor protein mutations. Ann. N. Y. Acad. Sci. 695, 198–202. 10.1111/j.1749-6632.1993.tb23052.x PubMed DOI
Sabbagh J. J., Kinney J. W., Cummings J. L. (2013). Animal systems in the development of treatments for Alzheimer's disease: challenges, methods, and implications. Neurobiol. Aging 34, 169–183. 10.1016/j.neurobiolaging.2012.02.027 PubMed DOI
Schmitt K., Grimm A., Eckert A. (2017). Amyloid-beta-Induced changes in molecular clock properties and cellular bioenergetics. Front. Neurosci. 11:124. 10.3389/fnins.2017.00124 PubMed DOI PMC
Severini C., Lattanzi R., Maftei D., Marconi V., Ciotti M. T., Petrocchi Passeri P., et al. . (2015). Bv8/prokineticin 2 is involved in Abeta-induced neurotoxicity. Sci. Rep. 5:15301. 10.1038/srep15301 PubMed DOI PMC
Sládek M., Jindrakova Z., Bendova Z., Sumova A. (2007a). Postnatal ontogenesis of the circadian clock within the rat liver. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R1224–R1229. 10.1152/ajpregu.00184.2006 PubMed DOI
Sládek M., Polidarova L., Novakova M., Parkanova D., Sumova A. (2012). Early chronotype and tissue-specific alterations of circadian clock function in spontaneously hypertensive rats. PLoS ONE 7:e46951. 10.1371/journal.pone.0046951 PubMed DOI PMC
Sládek M., Rybova M., Jindrakova Z., Zemanova Z., Polidarova L., Mrnka L., et al. . (2007b). Insight into the circadian clock within rat colonic epithelial cells. Gastroenterology 133, 1240–1249. 10.1053/j.gastro.2007.05.053 PubMed DOI
Song H., Moon M., Choe H. K., Han D. H., Jang C., Kim A., et al. . (2015). Abeta-induced degradation of BMAL1 and CBP leads to circadian rhythm disruption in Alzheimer's disease. Mol. Neurodegener. 10:13. 10.1186/s13024-015-0007-x PubMed DOI PMC
Steele R. J., Morris R. G. (1999). Delay-dependent impairment of a matching-to-place task with chronic and intrahippocampal infusion of the NMDA-antagonist D-AP5. Hippocampus 9, 118–136. 10.1002/(SICI)1098-1063(1999)9:2<118::AID-HIPO4>3.0.CO;2-8 PubMed DOI
Sterniczuk R., Dyck R. H., Laferla F. M., Antle M. C. (2010). Characterization of the 3xTg-AD mouse model of Alzheimer's disease: part 1. Circadian changes. Brain Res. 1348, 139–148. 10.1016/j.brainres.2010.05.013 PubMed DOI
Stopa E. G., Volicer L., Kuo-Leblanc V., Harper D., Lathi D., Tate B., et al. . (1999). Pathologic evaluation of the human suprachiasmatic nucleus in severe dementia. J. Neuropathol. Exp. Neurol. 58, 29–39. 10.1097/00005072-199901000-00004 PubMed DOI
Stuchlík A., Kubik S., Vlcek K., Valeš K. (2014). Spatial navigation: implications for animal models, drug development and human studies. Physiol. Res. 63(Suppl. 1), S237–S249. PubMed
Stuchlík A., Petrásek T., Prokopová I., Holubová K., Hatalová H., Valesš K., et al. . (2013). Place avoidance tasks as tools in the behavioral neuroscience of learning and memory. Physiol. Res. 62(Suppl. 1), S1–S19. PubMed
Suttanon P., Hill K. D., Said C. M., LoGiudice D., Lautenschlager N. T., Dodd K. J. (2012). Balance and mobility dysfunction and falls risk in older people with mild to moderate Alzheimer disease. Am. J. Phys. Med. Rehabil. 91, 12–23. 10.1097/PHM.0b013e31823caeea PubMed DOI
Swaab D. F., Fliers E., Partiman T. S. (1985). The suprachiasmatic nucleus of the human brain in relation to sex, age and senile dementia. Brain Res. 342, 37–44. 10.1016/0006-8993(85)91350-2 PubMed DOI
Tak S. H., Hong S. H. (2014). Face-name memory in Alzheimer's disease. Geriatr. Nurs. 35, 290–294. 10.1016/j.gerinurse.2014.03.004 PubMed DOI
Tate B., Aboody-Guterman K. S., Morris A. M., Walcott E. C., Majocha R. E., Marotta C. A. (1992). Disruption of circadian regulation by brain grafts that overexpress Alzheimer beta/A4 amyloid. Proc. Natl. Acad. Sci. U.S.A. 89, 7090–7094. PubMed PMC
van Tijn P., Kamphuis W., Marlatt M. W., Hol E. M., Lucassen P. J. (2011). Presenilin mouse and zebrafish models for dementia: focus on neurogenesis. Prog. Neurobiol. 93, 149–164. 10.1016/j.pneurobio.2010.10.008 PubMed DOI
Visser H. (1983). Gait and balance in senile dementia of Alzheimer's type. Age Ageing 12, 296–301. 10.1093/ageing/12.4.296 PubMed DOI
Vlcek K. (2011). Spatial navigation impairment in healthy aging and Alzheimer's disease in The Clinical Spectrum of Alzheimer's Disease-The Charge Toward Comprehensive Diagnostic and Therapeutic Strategies, ed De La Monte S. (InTech; ). 10.5772/20278 DOI
Vojtechova I., Petrasek T., Hatalova H., Pistikova A., Vales K., Stuchlik A. (2016). Dizocilpine (MK-801) impairs learning in the active place avoidance task but has no effect on the performance during task/context alternation. Behav. Brain Res. 305, 247–257. 10.1016/j.bbr.2016.03.020 PubMed DOI
Vojtechova I., Petrasek T., Maleninska K., Brozka H., Tejkalova H., Horacek J., et al. . (2018). Neonatal immune activation by lipopolysaccharide causes inadequate emotional responses to novel situations but no changes in anxiety or cognitive behavior in Wistar rats. Behav. Brain Res. 349, 42–53. 10.1016/j.bbr.2018.05.001 PubMed DOI
Waring S. C., Rosenberg R. N. (2008). Genome-wide association studies in Alzheimer disease. Arch. Neurol. 65, 329–334. 10.1001/archneur.65.3.329 PubMed DOI
Weissová K., Bartos A., Sladek M., Novakova M., Sumova A. (2016). Moderate changes in the circadian system of Alzheimer's disease patients detected in their home environment. PLoS ONE 11:e0146200. 10.1371/journal.pone.0146200 PubMed DOI PMC
Welsh D. K., Takahashi J. S., Kay S. A. (2010). Suprachiasmatic nucleus: cell autonomy and network properties. Annu. Rev. Physiol. 72, 551–577. 10.1146/annurev-physiol-021909-135919 PubMed DOI PMC
Wesierska M., Dockery C., Fenton A. A. (2005). Beyond memory, navigation, and inhibition: behavioral evidence for hippocampus-dependent cognitive coordination in the rat. J. Neurosci. 25, 2413–2419. 10.1523/JNEUROSCI.3962-04.2005 PubMed DOI PMC
Wesson D. W., Levy E., Nixon R. A., Wilson D. A. (2010). Olfactory dysfunction correlates with amyloid-β burden in an Alzheimer's disease mouse model. J. Neurosci. 30, 505–514. 10.1523/JNEUROSCI.4622-09.2010 PubMed DOI PMC
Wilson E. N., Abela A. R., Do Carmo S., Allard S., Marks A. R., Welikovitch L. A., et al. . (2017). Intraneuronal amyloid beta accumulation disrupts hippocampal CRTC1-dependent gene expression and cognitive function in a rat model of Alzheimer disease. Cereb. Cortex 27, 1501–1511. 10.1093/cercor/bhv332 PubMed DOI PMC
Wisor J. P., Edgar D. M., Yesavage J., Ryan H. S., Mccormick C. M., Lapustea N., et al. . (2005). Sleep and circadian abnormalities in a transgenic mouse model of Alzheimer's disease: a role for cholinergic transmission. Neuroscience 131, 375–385. 10.1016/j.neuroscience.2004.11.018 PubMed DOI
Wright J. M., Gourdon J. C., Clarke P. B. (2010). Identification of multiple call categories within the rich repertoire of adult rat 50-kHz ultrasonic vocalizations: effects of amphetamine and social context. Psychopharmacology 211, 1–13. 10.1007/s00213-010-1859-y PubMed DOI
Interactions of 17β-Hydroxysteroid Dehydrogenase Type 10 and Cyclophilin D in Alzheimer's Disease