Place cells and place navigation
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
8990211
PubMed Central
PMC19339
DOI
10.1073/pnas.94.1.343
Knihovny.cz E-zdroje
- MeSH
- bludiště - učení MeSH
- hipokampus cytologie fyziologie MeSH
- kognice MeSH
- krysa rodu Rattus MeSH
- orientace fyziologie MeSH
- paměť MeSH
- prostorové chování fyziologie MeSH
- výzkumný projekt * MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
The assumption that hippocampal place cells (PCs) form the neural substrate of cognitive maps can be experimentally tested by comparing the effect of experimental interventions on PC activity and place navigation. Conditions that interfere with place navigation (darkness, cholinergic blockade) but leave PC activity unaffected obviously disrupt spatial memory at a post-PC level. Situations creating a conflict between egocentric and allocentric orientation (place navigation in the Morris water maze filled with slowly rotating water) slow down spatial learning. PC recording in rats searching food pellets in a rotating arena makes it possible to determine which firing fields are stable relative to the room (allocentrically dependent on sighted extramaze landmarks), to the surface of the arena (dependent on egocentric path integration mechanisms and intra-arena cues), or disappear during rotation. Such comparison is made possible by the computerized tracking system simultaneously displaying a rat's locomotion and the respective firing rate maps both in the room reference and arena reference frames. More severe conflict between allocentric and egocentric inputs is produced in the field clamp situation when the rat searching food in a ring-shaped arena is always returned by rotation of the arena to the same allocentric position. Ten-minute exposure to this condition caused subsequent disintegration or remapping of 70% PCs (n = 100). Simultaneous examination of PC activity and navigation is possible in the place avoidance task. A rat searching food in a stationary or rotating arena learns to avoid an allocentrically or egocentrically defined location where it receives mild electric footshock. In the place preference task the rat releases pellet delivery by entering an unmarked goal area and staying in it for a criterion time. Both tasks allow direct comparison of the spatial reference frames used by the PCs and by the behaving animal.
Zobrazit více v PubMed
Leao A A P. J Neurophysiol. 1944;7:359–390.
Buresova O. Physiol Bohemoslov. 1956;5:350–358. PubMed
Bures J, Buresova O, Krivanek J. The Mechanism and Applications of Leao’s Spreading Depression of EEG Activity. New York: Academic; 1974.
Bures J, Buresova O, Huston J P. Techniques and Basic Experiments for the Study of Brain and Behavior. Amsterdam: Elsevier; 1976.
Bures J, Buresova O, Krivanek J. Brain and Behavior: Paradigms for Research in Neural Mechanisms. Chichester, U.K.: Wiley; 1988.
Dolbakyan E, Hernandez-Mesa N, Bures J. Neuroscience. 1977;2:73–80. PubMed
Aleksanyan Z A, Buresova O, Bures J. Physiol Behav. 1976;17:173–179. PubMed
Buresova O. Acta Neurobiol Exp. 1980;40:51–66. PubMed
Olton D S, Samuelson R J. J Exp Psychol Anim Behav Processes. 1976;2:97–116.
Morris R G M. Learn Motiv. 1981;12:239–261.
Squire L R. Memory and Brain. Oxford: Oxford Univ. Press; 1987.
Brandeis R, Brandys Y, Yehuda S. Int J Neurosci. 1989;48:29–69. PubMed
Bures J, Buresova O. In: Machinery of Mind. John E R, editor. Boston: Birkhauser; 1990. pp. 291–310.
Buresova O, Krekule I, Zahalka A, Bures J. J Neurosci Methods. 1985;15:63–72. PubMed
Morris R G M. J Neurosci Methods. 1984;14:47–60. PubMed
Spooner R J W, Thompson A, Hall J, Morris R G M, Salter S H. Learn Mem. 1994;1:203–211. PubMed
Buresova O, Homuta L, Krekule I, Bures J. Behav Neural Biol. 1988;49:240–248. PubMed
O’Keefe J, Nadel L. The Hippocampus as a Cognitive Map. Oxford: Oxford Univ. Press; 1978.
Gallistel C R. The Organization of Learning. Cambridge, MA: MIT Press; 1990.
Tolman E C. Psychol Rev. 1948;55:189–208. PubMed
Alyan S, Jander R. Anim Behav. 1994;48:285–298.
Jarrard R D. Behav Neural Biol. 1993;60:9–26. PubMed
Morris R G M, Garrud P, Rawlins J N P, O’Keefe J. Nature (London) 1982;297:681–683. PubMed
Fenton A A, Bures J. Behav Neurosci. 1993;107:552–563. PubMed
Whishaw I Q, Cassel J-C, Jarrard L E. J Neurosci. 1995;15:5779–5788. PubMed PMC
Kelsey J E, Vargas H. Behav Neurosci. 1988;102:289–293. PubMed
Schenk F, Morris R G M. Exp Brain Res. 1985;58:11–28. PubMed
Moser M-B, Moser E I, Forrest E, Andersen P. Proc Natl Acad Sci USA. 1995;92:9697–9701. PubMed PMC
Kolb B, Sutherland R J, Whishaw I Q. J Comp Physiol Psychol. 1983;97:13–27.
Mizumori S J Y, Miya D Y, Ward K E. Brain Res. 1994;644:168–174. PubMed
Whishaw I Q, Mittleman G, Bunch S T, Dunnett S B. Behav Brain Res. 1987;24:125–138. PubMed
O’Keefe J, Dostrovsky J. Brain Res. 1971;34:171–175. PubMed
Ranck J B., Jr Exp Neurol. 1973;41:461–531. PubMed
Fox S E, Ranck J B., Jr Exp Neurol. 1975;49:299–313. PubMed
O’Keefe J, Conway D H. Exp Brain Res. 1978;31:573–590. PubMed
Kubie J L, Muller R U, Hawley E S, Jia C P. Soc Neurosci Abstr. 1992;18:1062.
Markus E J, Barnes C A, McNaughton B L, Gladden V L, Skaggs W E. Hippocampus. 1994;4:410–421. PubMed
Knierim J J, Kudrimoti H S, McNaughton B L. J Neurosci. 1995;15:1648–1659. PubMed PMC
Quirk G J, Muller R U, Kubie J L. J Neurosci. 1990;10:2008–2017. PubMed PMC
Miniaci M C, Moghaddam M, Bures J. Soc Neurosci Abstr. 1996;22:914.
Muller R U, Stead M, Pach J. J Gen Physiol. 1996;107:663–694. PubMed PMC
Muller R U, Kubie J L, Ranck J B., Jr J Neurosci. 1987;7:1935–1950. PubMed PMC
Muller R U, Kubie J L. J Neurosci. 1989;9:4101–4110. PubMed PMC
Sutherland R J, Dyck R H. Can J Psychol. 1984;38:322–347.
Moghaddam M, Bures J. Behav Brain Res. 1996;78:121–129. PubMed
Save E, Moghaddam M. Behav Neurosci. 1996;110:74–85. PubMed
O’Keefe J. Exp Neurol. 1976;51:78–109. PubMed
Hill A J, Best P J. Exp Neurol. 1981;74:204–217. PubMed
McNaughton B L, Leonard B, Chen L. Psychobiology. 1989;17:230–235.
Markus E J, Qin Y-L, Leonard B, Skaggs W E, McNaughton B L, Barnes C. J Neurosci. 1995;15:7079–7094. PubMed PMC
Arolfo M P, Nerad L, Schenk F, Bures J. Behav Neurosci. 1994;108:308–316. PubMed
Rashidy-Pour A, Zinyuk L, Kaminsky Yu, Bures J. Eur J Neurosci. 1995;S8:185. (abstr.).
Muller R U, Kubie J L. J Neurosci. 1987;7:1951–1968. PubMed PMC
Buresova O, Bolhuis J J, Bures J. Behav Neurosci. 1986;100:476–482. PubMed
Mizumori S J Y, McNaughton B L, Barnes C A, Fox K B. J Neurosci. 1989;9:3915–3928. PubMed PMC
Brazhnik E, Muller R U, Fox S E. Soc Neurosci Abstr. 1995;21:1439.
Moghaddam M, Bures J. Soc Neurosci Abstr. 1994;20:804.
Zinyuk L, Kaminsky Yu, Kubik S, Bures J. Eur J Neurosci. 1996;S9:140. (abstr.).
O’Keefe J, Speakman A. Exp Brain Res. 1987;68:1–27. PubMed
Sharp P E, Muller R U, Kubie J L. J Neurosci. 1990;10:3093–3105. PubMed PMC
Taube J. J Neurosci. 1995;15:70–86. PubMed PMC
Rotenberg A, Kubie J L, Muller R U. Soc Neurosci Abstr. 1993;19:357.
Gothard K M, Skaggs W E, Moore K M, McNaughton B L. J Neurosci. 1996;16:823–835. PubMed PMC
CRMP2 mediates Sema3F-dependent axon pruning and dendritic spine remodeling
Drugs Interfering with Muscarinic Acetylcholine Receptors and Their Effects on Place Navigation
Both here and there: simultaneous expression of autonomous spatial memories in rats